1
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Ghani L, Zhang X, Munk CF, Hariharan P, Lan B, Yun HS, Byrne B, Guan L, Loland CJ, Liu X, Chae PS. Tris(hydroxymethyl)aminomethane Linker-Bearing Triazine-Based Triglucosides for Solubilization and Stabilization of Membrane Proteins. Bioconjug Chem 2023; 34:739-747. [PMID: 36919927 PMCID: PMC10145683 DOI: 10.1021/acs.bioconjchem.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 03/16/2023]
Abstract
High-resolution membrane protein structures are essential for a fundamental understanding of the molecular basis of diverse cellular processes and for drug discovery. Detergents are widely used to extract membrane-spanning proteins from membranes and maintain them in a functional state for downstream characterization. Due to limited long-term stability of membrane proteins encapsulated in conventional detergents, development of novel agents is required to facilitate membrane protein structural study. In the current study, we designed and synthesized tris(hydroxymethyl)aminomethane linker-bearing triazine-based triglucosides (TTGs) for solubilization and stabilization of membrane proteins. When these glucoside detergents were evaluated for four membrane proteins including two G protein-coupled receptors, a few TTGs including TTG-C10 and TTG-C11 displayed markedly enhanced behaviors toward membrane protein stability relative to two maltoside detergents [DDM (n-dodecyl-β-d-maltoside) and LMNG (lauryl maltose neopentyl glycol)]. This is a notable feature of the TTGs as glucoside detergents tend to be inferior to maltoside detergents at stabilizing membrane proteins. The favorable behavior of the TTGs for membrane protein stability is likely due to the high hydrophobicity of the lipophilic groups, an optimal range of hydrophilic-lipophilic balance, and the absence of cis-trans isomerism.
Collapse
Affiliation(s)
- Lubna Ghani
- Department
of Bionano Engineering, Hanyang University, Ansan 155-88, South Korea
| | - Xiang Zhang
- Tsinghua-Peking
Center for Life Sciences, Beijing Frontier Research Center for Biological
Structure, Beijing Advanced Innovation Center for Structural Biology,
School of Medicine, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chastine F. Munk
- Department
of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Parameswaran Hariharan
- Department
of Cell Physiology and Molecular Biophysics, Center for Membrane Protein
Research, School of Medicine, Texas Tech
University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Baoliang Lan
- Tsinghua-Peking
Center for Life Sciences, Beijing Frontier Research Center for Biological
Structure, Beijing Advanced Innovation Center for Structural Biology,
School of Medicine, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Sik Yun
- Department
of Bionano Engineering, Hanyang University, Ansan 155-88, South Korea
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Lan Guan
- Department
of Cell Physiology and Molecular Biophysics, Center for Membrane Protein
Research, School of Medicine, Texas Tech
University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Claus J. Loland
- Department
of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Xiangyu Liu
- Tsinghua-Peking
Center for Life Sciences, Beijing Frontier Research Center for Biological
Structure, Beijing Advanced Innovation Center for Structural Biology,
School of Medicine, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Pil Seok Chae
- Department
of Bionano Engineering, Hanyang University, Ansan 155-88, South Korea
| |
Collapse
|
3
|
Zhao F, Zhu Z, Xie L, Luo F, Wang H, Qiu Y, Luo W, Zhou F, Xue D, Zhang Z, Hua T, Wu D, Liu Z, Le Z, Tao H. Two‐Dimensional Detergent Expansion Strategy for Membrane Protein Studies. Chemistry 2022; 28:e202201388. [DOI: 10.1002/chem.202201388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Zhao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihao Zhu
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Linshan Xie
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Feng Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Huixia Wang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Yanli Qiu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiling Luo
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fang Zhou
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Dongxiang Xue
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhihui Zhang
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Tian Hua
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dong Wu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
| | - Zhi‐Jie Liu
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Zhiping Le
- College of Chemistry Nanchang University Nanchang, Jiangxi Province 330031 China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Shanghai 201210 China
- Shanghai Frontiers Science Center of TCM Chemical Biology Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| |
Collapse
|
4
|
Lee HJ, Ehsan M, Zhang X, Katsube S, Munk CF, Wang H, Ahmed W, Kumar A, Byrne B, Loland CJ, Guan L, Liu X, Chae PS. Development of 1,3-acetonedicarboxylate-derived glucoside amphiphiles (ACAs) for membrane protein study. Chem Sci 2022; 13:5750-5759. [PMID: 35694361 PMCID: PMC9116450 DOI: 10.1039/d2sc00539e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Detergents are extensively used for membrane protein manipulation. Membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation, rendering downstream characterization of these bio-macromolecules difficult. Although many amphiphiles have been developed to overcome the limited efficacy of conventional detergents for protein stabilization, only a handful of novel detergents have so far proved useful for membrane protein structural studies. Here, we introduce 1,3-acetonedicarboxylate-derived amphiphiles (ACAs) containing three glucose units and two alkyl chains as head and tail groups, respectively. The ACAs incorporate two different patterns of alkyl chain attachment to the core detergent unit, generating two sets of amphiphiles: ACA-As (asymmetrically alkylated) and ACA-Ss (symmetrically alkylated). The difference in the attachment pattern of the detergent alkyl chains resulted in minor variation in detergent properties such as micelle size, critical micelle concentration, and detergent behaviors toward membrane protein extraction and stabilization. In contrast, the impact of the detergent alkyl chain length on protein stability was marked. The two C11 variants (ACA-AC11 and ACA-SC11) were most effective at stabilizing the tested membrane proteins. The current study not only introduces new glucosides as tools for membrane protein study, but also provides detergent structure–property relationships important for future design of novel amphiphiles. Newly developed amphiphiles, designated ACAs, are not only efficient at extracting G protein-coupled receptors from the membranes, but also conferred enhanced stability to the receptors compared to the gold standards (DDM and LMNG).![]()
Collapse
Affiliation(s)
- Ho Jin Lee
- Department of Bionano Engineering, Hanyang University Ansan 155-88 Korea
| | - Muhammad Ehsan
- Department of Bionano Engineering, Hanyang University Ansan 155-88 Korea
| | - Xiang Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University 100084 Beijing China
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Chastine F Munk
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University California 94305 USA
| | - Waqar Ahmed
- Department of Bionano Engineering, Hanyang University Ansan 155-88 Korea
| | - Ashwani Kumar
- Department of Bionano Engineering, Hanyang University Ansan 155-88 Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen Copenhagen DK-2200 Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences, Tsinghua University 100084 Beijing China
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University Ansan 155-88 Korea
| |
Collapse
|
5
|
|
6
|
Ehsan M, Wang H, Katsube S, Munk CF, Du Y, Youn T, Yoon S, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Glyco-steroidal amphiphiles (GSAs) for membrane protein structural study. Chembiochem 2022; 23:e202200027. [PMID: 35129249 PMCID: PMC8986615 DOI: 10.1002/cbic.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM, but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Haoqing Wang
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Satoshi Katsube
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Chastine F Munk
- University of Copenhagen: Kobenhavns Universitet, Department of Neuroscience, DENMARK
| | - Yang Du
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Taeyeol Youn
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Soyoung Yoon
- Hanyang University, Department of Bionano Engineering, KOREA, REPUBLIC OF
| | - Bernadette Byrne
- Imperial College London, Department of Life Sciences, UNITED KINGDOM
| | - Claus J Loland
- University of Copenhagen: Kobenhavns Universitet, Department of Neurosciences, DENMARK
| | - Lan Guan
- Texas Tech University, Department of Cell Physiology and Molecular Biophysics, UNITED STATES
| | - Brian K Kobilka
- Stanford University, Department of Molecular and Cellular Physiology, UNITED STATES
| | - Pil Seok Chae
- Hanyang University, Department of Bionano Engineering, 55 Hanyangdaehak-ro, 426-791, Ansan, KOREA, REPUBLIC OF
| |
Collapse
|
7
|
Das M, Mahler F, Hariharan P, Wang H, Du Y, Mortensen JS, Patallo EP, Ghani L, Glück D, Lee HJ, Byrne B, Loland CJ, Guan L, Kobilka BK, Keller S, Chae PS. Diastereomeric Cyclopentane-Based Maltosides (CPMs) as Tools for Membrane Protein Study. J Am Chem Soc 2020; 142:21382-21392. [PMID: 33315387 PMCID: PMC8015409 DOI: 10.1021/jacs.0c09629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-β-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Florian Mahler
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Eugenio Pérez Patallo
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Lubna Ghani
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - David Glück
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Ho Jin Lee
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Sandro Keller
- Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Pil Seok Chae
- Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
8
|
Bonnet C, Guillet P, Mahler F, Igonet S, Keller S, Jawhari A, Durand G. Detergent‐Like Polymerizable Monomers: Synthesis, Physicochemical, and Biochemical Characterization. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christophe Bonnet
- Chimie Bioorganique et Systèmes amphiphiles Institut des Biomolécules Max Mousseron (UMR 5247 UM‐CNRS‐ENSCM) & Avignon University 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
- CHEM2STAB 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
| | - Pierre Guillet
- Chimie Bioorganique et Systèmes amphiphiles Institut des Biomolécules Max Mousseron (UMR 5247 UM‐CNRS‐ENSCM) & Avignon University 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
- CHEM2STAB 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
| | - Florian Mahler
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Erwin‐Schrödinger‐Str. 13 67663 Kaiserslautern Germany
| | - Sébastien Igonet
- CHEM2STAB 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
- CALIXAR 60A Avenue Rockefeller – 69008 Lyon France
| | - Sandro Keller
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Erwin‐Schrödinger‐Str. 13 67663 Kaiserslautern Germany
| | - Anass Jawhari
- CHEM2STAB 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
- CALIXAR 60A Avenue Rockefeller – 69008 Lyon France
| | - Grégory Durand
- Chimie Bioorganique et Systèmes amphiphiles Institut des Biomolécules Max Mousseron (UMR 5247 UM‐CNRS‐ENSCM) & Avignon University 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
- CHEM2STAB 301 rue Baruch de Spinoza – 84916 AVIGNON cedex 9 France
| |
Collapse
|
9
|
Lactobionamide-based fluorinated detergent for functional and structural stabilization of membrane proteins. Methods 2020; 180:19-26. [DOI: 10.1016/j.ymeth.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/28/2022] Open
|
10
|
Ehsan M, Katsube S, Cecchetti C, Du Y, Mortensen JS, Wang H, Nygaard A, Ghani L, Loland CJ, Kobilka BK, Byrne B, Guan L, Chae PS. New Malonate-Derived Tetraglucoside Detergents for Membrane Protein Stability. ACS Chem Biol 2020; 15:1697-1707. [PMID: 32501004 DOI: 10.1021/acschembio.0c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins are widely studied in detergent micelles, a membrane-mimetic system formed by amphiphilic compounds. However, classical detergents have serious limitations in their utility, particularly for unstable proteins such as eukaryotic membrane proteins and membrane protein complexes, and thus, there is an unmet need for novel amphiphiles with enhanced ability to stabilize membrane proteins. Here, we developed a new class of malonate-derived detergents with four glucosides, designated malonate-derived tetra-glucosides (MTGs), and compared these new detergents with previously reported octyl glucose neopentyl glycol (OGNG) and n-dodecyl-β-d-maltoside (DDM). When tested with two G-protein coupled receptors (GPCRs) and three transporters, a couple of MTGs consistently conferred enhanced stability to all tested proteins compared to DDM and OGNG. As a result of favorable behaviors for a range of membrane proteins, these MTGs have substantial potential for membrane protein research. This study additionally provides a new detergent design principle based on the effect of a polar functional group (i.e., ether) on protein stability depending on its position in the detergent scaffold.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, 2001 Longxiang Avenue, Shenzhen, Guangdong 518172, China
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Haoqing Wang
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
11
|
Ma Q, Zhang M, Xu X, Meng K, Yao C, Zhao Y, Sun J, Du Y, Yang D. Multiresponsive Supramolecular Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47404-47412. [PMID: 31763814 DOI: 10.1021/acsami.9b17236] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular luminescent hydrogels based on natural molecules have shown high potential for a variety of applications because of unique optical properties and biocompatibility, particularly serving as advanced biomaterials for bioimaging, biosensing, cell engineering, and so forth. A lanthanide complex-based system provides a promising way to prepare supramolecular luminescent hydrogels. Herein, we realize the creation of a luminescent hydrogel assembled from lanthanides and nucleosides. Nucleosides, the essential components of nucleic acids, functioning as the ligands, successfully chelate with lanthanides and form complexes in water. The complexes subsequently serve as building-blocks to form supramolecular hydrogels, which exhibit characteristic luminescent emission of lanthanides. The coordination modes and forming mechanism are studied by electrospray ionization time-of-flight mass spectrometry, matrix-assisted laser desorption/ionization time of flight mass spectrometry, 1H NMR spectroscopy, and Fourier transform infrared spectroscopy; the corresponding molecular simulations are presented, and macro-/micro-morphologies, mechanical properties, and luminescent performances of hydrogels are systemically studied. Remarkably, these luminescent hydrogels show fluorochromic properties in response to external stimuli, including pH, temperature, anions, and cations, which are thus adopted to design smart luminescent switches and detect specific species such as Cu2+. Our work provides a feasible strategy to prepare stimuli-responsive luminescent hydrogels, reveals the diverse potential of nucleoside-based hydrogels, and exhibits a novel pathway for the preparation of smart optical materials.
Collapse
Affiliation(s)
- Qianmin Ma
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Meng Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Xihan Xu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Ke Meng
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Jie Sun
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional Materials , Nankai University , Tianjin 300350 , P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| |
Collapse
|
12
|
Ghani L, Munk CF, Zhang X, Katsube S, Du Y, Cecchetti C, Huang W, Bae HE, Saouros S, Ehsan M, Guan L, Liu X, Loland CJ, Kobilka BK, Byrne B, Chae PS. 1,3,5-Triazine-Cored Maltoside Amphiphiles for Membrane Protein Extraction and Stabilization. J Am Chem Soc 2019; 141:19677-19687. [PMID: 31809039 DOI: 10.1021/jacs.9b07883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite their major biological and pharmacological significance, the structural and functional study of membrane proteins remains a significant challenge. A main issue is the isolation of these proteins in a stable and functional state from native lipid membranes. Detergents are amphiphilic compounds widely used to extract membrane proteins from the native membranes and maintain them in a stable form during downstream analysis. However, due to limitations of conventional detergents, it is essential to develop novel amphiphiles with optimal properties for protein stability in order to advance membrane protein research. Here we designed and synthesized 1,3,5-triazine-cored dimaltoside amphiphiles derived from cyanuric chloride. By introducing variations in the alkyl chain linkage (ether/thioether) and an amine-functionalized diol linker (serinol/diethanolamine), we prepared two sets of 1,3,5-triazine-based detergents. When tested with several model membrane proteins, these agents showed remarkable efficacy in stabilizing three transporters and two G protein-coupled receptors. Detergent behavior substantially varied depending on the detergent structural variation, allowing us to explore detergent structure-property-efficacy relationships. The 1,3,5-triazine-based detergents introduced here have significant potential for membrane protein study as a consequence of their structural diversity and universal stabilization efficacy for several membrane proteins.
Collapse
Affiliation(s)
- Lubna Ghani
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Chastine F Munk
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Xiang Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Yang Du
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Cristina Cecchetti
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Hyoung Eun Bae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Savvas Saouros
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Muhammad Ehsan
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Xiangyu Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Medicine, School of Pharmaceutical Sciences , Tsinghua University , 100084 Beijing , China
| | - Claus J Loland
- Department of Neuroscience , University of Copenhagen , Copenhagen DK-2200 , Denmark
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan 155-88 , Korea
| |
Collapse
|
13
|
Mohamed AH. An Efficient Approach for the Synthesis of 1,2,3‐Triazole Moiety to Generate Uracil Molecular Architectures Through Cu‐Catalyzed Azide–Alkyne Cycloaddition. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| |
Collapse
|
14
|
Ehsan M, Du Y, Mortensen JS, Hariharan P, Qu Q, Ghani L, Das M, Grethen A, Byrne B, Skiniotis G, Keller S, Loland CJ, Guan L, Kobilka BK, Chae PS. Self-Assembly Behavior and Application of Terphenyl-Cored Trimaltosides for Membrane-Protein Studies: Impact of Detergent Hydrophobic Group Geometry on Protein Stability. Chemistry 2019; 25:11545-11554. [PMID: 31243822 DOI: 10.1002/chem.201902468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/13/2023]
Abstract
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d-maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2 AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.,Current address: Department of Chemistry, Mirpur University of Science & Technology, Mirpur, AJK, 10250, Pakistan)
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Qianhui Qu
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Georgios Skiniotis
- Molecular and Cellular Physiology and Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
15
|
Zhang Q, Cherezov V. Chemical tools for membrane protein structural biology. Curr Opin Struct Biol 2019; 58:278-285. [PMID: 31285102 DOI: 10.1016/j.sbi.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
Solving high-resolution structures of membrane proteins has been an important challenge for decades, still lagging far behind that of soluble proteins even with the recent remarkable technological advances in X-ray crystallography and electron microscopy. Central to this challenge is the necessity to isolate and solubilize membrane proteins in a stable, natively folded and functional state, a process influenced by not only the proteins but also their surrounding chemical environment. This review highlights recent community efforts in the development and characterization of novel membrane agents and ligand tools to stabilize individual proteins and protein complexes, which together have accelerated progress in membrane protein structural biology.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Ehsan M, Kumar A, Mortensen JS, Du Y, Hariharan P, Kumar KK, Ha B, Byrne B, Guan L, Kobilka BK, Loland CJ, Chae PS. Self-Assembly Behaviors of a Penta-Phenylene Maltoside and Its Application for Membrane Protein Study. Chem Asian J 2019; 14:1926-1931. [PMID: 30969484 PMCID: PMC7239035 DOI: 10.1002/asia.201900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Indexed: 01/07/2023]
Abstract
We prepared an amphiphile with a penta-phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta-phenylene maltoside (PPM), showed a marked tendency to self-assembly into micelles via strong aromatic-aromatic interactions in aqueous media, as evidenced by 1 H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic-aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
- Current address: Department of Chemistry, Mirpur University of Science&Technology (MUST), Mirpur-, 10250 (AJK), Pakistan
| | - Ashwani Kumar
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Kaavya K Kumar
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Betty Ha
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea
| |
Collapse
|
17
|
Dauvergne J, Desuzinges EM, Faugier C, Igonet S, Soulié M, Grousson E, Cornut D, Bonneté F, Durand G, Dejean E, Jawhari A. Glycosylated Amphiphilic Calixarene‐Based Detergent for Functional Stabilization of Native Membrane Proteins. ChemistrySelect 2019. [DOI: 10.1002/slct.201901220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Elodie Mandon Desuzinges
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Clarisse Faugier
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Sébastien Igonet
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Marine Soulié
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Emilie Grousson
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Damien Cornut
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Françoise Bonneté
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Current address: Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique 13 rue Pierre et Marie Curie 75005 Paris France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Grégory Durand
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
- Avignon University, Equipe Chimie Bioorganique et Systèmes amphiphiles 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France. Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM)
| | - Emmanuel Dejean
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| | - Anass Jawhari
- CALIXAR 60 avenue Rockefeller 69008 Lyon France
- CHEM2STAB, laboratoire commun 301 rue Baruch de Spinoza – 84916 Avignon cedex 9 France
| |
Collapse
|
18
|
Xue D, Wang J, Song X, Wang W, Hu T, Ye L, Liu Y, Zhou Q, Zhou F, Jiang ZX, Liu ZJ, Tao H. A Chemical Strategy for Amphiphile Replacement in Membrane Protein Research. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4319-4327. [PMID: 30781953 DOI: 10.1021/acs.langmuir.8b04072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Membrane mimics are indispensable tools in the structural and functional understanding of membrane proteins (MPs). Given stringent requirements of integral MP manipulations, amphiphile replacement is often required in sample preparation for various biophysical purposes. Current protocols generally rely on physical methodologies and rarely reach complete replacement. In comparison, we report herein a chemical alternative that facilitates the exhaustive exchange of membrane-mimicking systems for MP reconstitution. This method, named sacrifice-replacement strategy, was enabled by a class of chemically cleavable detergents (CCDs), derived from the disulfide incorporation in the traditional detergent n-dodecyl-β-d-maltopyranoside. The representative CCD behaved well in both solubilizing the diverse α-helical human G protein-coupled receptors and refolding of the β-barrel bacterial outer membrane protein X, and more importantly, it could also be readily degraded under mild conditions. By this means, the A2A adenosine receptor was successfully reconstituted into a series of commercial detergents for stabilization screening and nanodiscs for electron microscopy analysis. Featured by the simplicity and compatibility, this CCD-mediated strategy would later find more applications when being integrated in other biophysics studies.
Collapse
Affiliation(s)
- Dongxiang Xue
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jingjing Wang
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | - Xiyong Song
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Wei Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Tao Hu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Lintao Ye
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Yang Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Qingtong Zhou
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Fang Zhou
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences , Wuhan University , Wuhan 430071 , China
| | - Zhi-Jie Liu
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Houchao Tao
- iHuman Institute , ShanghaiTech University , Ren Building, 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
19
|
Ehsan M, Du Y, Molist I, Seven AB, Hariharan P, Mortensen JS, Ghani L, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Vitamin E-based glycoside amphiphiles for membrane protein structural studies. Org Biomol Chem 2019; 16:2489-2498. [PMID: 29564464 DOI: 10.1039/c8ob00270c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane proteins play critical roles in a variety of cellular processes. For a detailed molecular level understanding of their biological functions and roles in disease, it is necessary to extract them from the native membranes. While the amphipathic nature of these bio-macromolecules presents technical challenges, amphiphilic assistants such as detergents serve as useful tools for membrane protein structural and functional studies. Conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus it is essential to develop novel agents with enhanced properties. Here, we designed and characterized a novel class of amphiphiles with vitamin E (i.e., α-tocopherol) as the hydrophobic tail group and saccharide units as the hydrophilic head group. Designated vitamin E-based glycosides (VEGs), these agents were evaluated for their ability to solubilize and stabilize a set of membrane proteins. VEG representatives not only conferred markedly enhanced stability to a diverse range of membrane proteins compared to conventional detergents, but VEG-3 also showed notable efficacy toward stabilization and visualization of a membrane protein complex. In addition to hydrophile-lipophile balance (HLB) of detergent molecules, the chain length and molecular geometry of the detergent hydrophobic group seem key factors in determining detergent efficacy for membrane protein (complex) stability.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | - Iago Molist
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Alpay B Seven
- Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX 79430, USA.
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, DK- 2200 Copenhagen, Denmark.
| | - Lubna Ghani
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, DK- 2200 Copenhagen, Denmark.
| | | | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center Lubbock, TX 79430, USA.
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
20
|
Breyton C, Javed W, Vermot A, Arnaud CA, Hajjar C, Dupuy J, Petit-Hartlein I, Le Roy A, Martel A, Thépaut M, Orelle C, Jault JM, Fieschi F, Porcar L, Ebel C. Assemblies of lauryl maltose neopentyl glycol (LMNG) and LMNG-solubilized membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:939-957. [PMID: 30776334 DOI: 10.1016/j.bbamem.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Laurylmaltose neopentylglycol (LMNG) bears two linked hydrophobic chains of equal length and two hydrophilic maltoside groups. It arouses a strong interest in the field of membrane protein biochemistry, since it was shown to efficiently solubilize and stabilize membrane proteins often better than the commonly used dodecylmaltopyranoside (DDM), and to allow structure determination of some challenging membrane proteins. However, LMNG was described to form large micelles, which could be unfavorable for structural purposes. We thus investigated its auto-assemblies and the association state of different membrane proteins solubilized in LMNG by analytical ultracentrifugation, size exclusion chromatography coupled to light scattering, centrifugation on sucrose gradient and/or small angle scattering. At high concentrations (in the mM range), LMNG forms long rods, and it stabilized the membrane proteins investigated herein, i.e. a bacterial multidrug transporter, BmrA; a prokaryotic analogous of the eukaryotic NADPH oxidases, SpNOX; an E. coli outer membrane transporter, FhuA; and the halobacterial bacteriorhodopsin, bR. BmrA, in the Apo and the vanadate-inhibited forms showed reduced kinetics of limited proteolysis in LMNG compared to DDM. Both SpNOX and BmrA display an increased specific activity in LMNG compared to DDM. The four proteins form LMNG complexes with their usual quaternary structure and with usual amount of bound detergent. No heterogeneous complexes related to the large micelle size of LMNG alone were observed. In conditions where LMNG forms assemblies of large size, FhuA crystals diffracting to 4.0 Å were obtained by vapor diffusion. LMNG large micelle size thus does not preclude membrane protein homogeneity and crystallization.
Collapse
Affiliation(s)
- Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Waqas Javed
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France; University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Charles-Adrien Arnaud
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Christine Hajjar
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Jérôme Dupuy
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Isabelle Petit-Hartlein
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Anne Martel
- Institut Max Von Laue Paul Langevin, 38042 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Cédric Orelle
- University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Jean-Michel Jault
- University of Lyon, CNRS, UMR5086, Molecular Microbiology and Structural Biochemistry, IBCP, Lyon 69367, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France
| | - Lionel Porcar
- Institut Max Von Laue Paul Langevin, 38042 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institute for Structural Biology (IBS), 38000 Grenoble, France.
| |
Collapse
|
21
|
Hussain H, Helton T, Du Y, Mortensen JS, Hariharan P, Ehsan M, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. A comparative study of branched and linear mannitol-based amphiphiles on membrane protein stability. Analyst 2019; 143:5702-5710. [PMID: 30334564 DOI: 10.1039/c8an01408f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The study of membrane proteins is extremely challenging, mainly because of the incompatibility of the hydrophobic surfaces of membrane proteins with an aqueous medium. Detergents are essential agents used to maintain membrane protein stability in non-native environments. However, conventional detergents fail to stabilize the native structures of many membrane proteins. Development of new amphipathic agents with enhanced efficacy for membrane protein stabilization is necessary to address this important problem. We have designed and synthesized linear and branched mannitol-based amphiphiles (MNAs), and comparative studies showed that most of the branched MNAs had advantages over the linear agents in terms of membrane protein stability. In addition, a couple of the new MNAs displayed favorable behaviors compared to n-dodecyl-β-d-maltoside and the previously developed MNAs in maintaining the native protein structures, indicating potential utility of these new agents in membrane protein study.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Successful amphiphiles as the key to crystallization of membrane proteins: Bridging theory and practice. Biochim Biophys Acta Gen Subj 2018; 1863:437-455. [PMID: 30419284 DOI: 10.1016/j.bbagen.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Membrane proteins constitute a major group of proteins and are of great significance as pharmaceutical targets, but underrepresented in the Protein Data Bank. Particular reasons are their low expression yields and the constant need for cautious and diligent handling in a sufficiently stable hydrophobic environment substituting for the native membrane. When it comes to protein crystallization, such an environment is often established by detergents. SCOPE OF REVIEW In this review, 475 unique membrane protein X-ray structures from the online data bank "Membrane proteins of known 3D structure" are presented with a focus on the detergents essential for protein crystallization. By systematic analysis of the most successful compounds, including current trends in amphiphile development, we provide general insights for selection and design of detergents for membrane protein crystallization. MAJOR CONCLUSIONS The most successful detergents share common features, giving rise to favorable protein interactions. The hydrophile-lipophile balance concept of well-balanced hydrophilic and hydrophobic detergent portions is still the key to successful protein crystallization. Although a single detergent compound is sufficient in most cases, sometimes a suitable mixture of detergents has to be found to alter the resulting protein-detergent complex. Protein crystals with a high diffraction limit involve a tight crystal packing generally favored by detergents with shorter alkyl chains. GENERAL SIGNIFICANCE The formation of well-diffracting membrane protein crystals strongly depends on suitable surfactants, usually screened in numerous crystallization trials. The here-presented findings provide basic criteria for the assessment of surfactants within the vast space of potential crystallization conditions for membrane proteins.
Collapse
|
23
|
Le Guenic S, Chaveriat L, Lequart V, Joly N, Martin P. Renewable Surfactants for Biochemical Applications and Nanotechnology. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12216] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah Le Guenic
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Ludovic Chaveriat
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Vincent Lequart
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Nicolas Joly
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Patrick Martin
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| |
Collapse
|
24
|
Das M, Du Y, Mortensen JS, Hariharan P, Lee HS, Byrne B, Loland CJ, Guan L, Kobilka BK, Chae PS. Rationally Engineered Tandem Facial Amphiphiles for Improved Membrane Protein Stabilization Efficacy. Chembiochem 2018; 19:2225-2232. [PMID: 30070754 DOI: 10.1002/cbic.201800388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 01/11/2023]
Abstract
A new family of tandem facial glucosides/maltosides (TFGs/TFMs) for membrane protein manipulation was prepared. The best detergent varied depending on the hydrophobic thickness of the target protein, but ether-based TFMs (TFM-C0E, TFM-C3E, and TFM-C5E) were notable for their ability to confer higher membrane protein stability than the previously developed amide-based TFA-1 (P. S. Chae, K. Gotfryd, J. Pacyna, L. J. W. Miercke, S. G. F. Rasmussen, R. A. Robbins, R. R. Rana, C. J. Loland, B. Kobilka, R. Stroud, B. Byrne, U. Gether, S. H. Gellman, J. Am. Chem. Soc. 2010, 132, 16750-16752). Thus, this study not only introduces novel agents with the potential to be used in membrane protein research but also highlights the importance of both the hydrophobic length and linker functionality of the detergent in stabilizing membrane proteins.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea.,Present address: Molecular Biophysics, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Hyun Sung Lee
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St. MS 6551, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 155-88, Korea
| |
Collapse
|
25
|
Ehsan M, Ghani L, Du Y, Hariharan P, Mortensen JS, Ribeiro O, Hu H, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies. Analyst 2018; 142:3889-3898. [PMID: 28913526 DOI: 10.1039/c7an01168g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integral membrane proteins either alone or as complexes carry out a range of key cellular functions. Detergents are indispensable tools in the isolation of membrane proteins from biological membranes for downstream studies. Although a large number of techniques and tools, including a wide variety of detergents, are available, purification and structural characterization of many membrane proteins remain challenging. In the current study, a new class of tripod amphiphiles bearing two different penta-saccharide head groups, designated TPSs, were developed and evaluated for their ability to extract and stabilize a range of diverse membrane proteins. Variations in the structures of the detergent head and tail groups allowed us to prepare three sets of the novel agents with distinctive structures. Some TPSs (TPS-A8 and TPS-E7) were efficient at extracting two proteins in a functional state while others (TPS-E8 and TPS-E10L) conferred marked stability to all membrane proteins (and membrane protein complexes) tested here compared to a conventional detergent. Use of TPS-E10L led to clear visualization of a receptor-Gs complex using electron microscopy, indicating profound potential in membrane protein research.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ehsan M, Das M, Stern V, Du Y, Mortensen JS, Hariharan P, Byrne B, Loland CJ, Kobilka BK, Guan L, Chae PS. Steroid-Based Amphiphiles for Membrane Protein Study: The Importance of Alkyl Spacers for Protein Stability. Chembiochem 2018; 19:1433-1443. [PMID: 29660780 PMCID: PMC7238963 DOI: 10.1002/cbic.201800106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 01/04/2023]
Abstract
Membrane proteins allow effective communication between cells and organelles and their external environments. Maintaining membrane protein stability in a non-native environment is the major bottleneck to their structural study. Detergents are widely used to extract membrane proteins from the membrane and to keep the extracted protein in a stable state for downstream characterisation. In this study, three sets of steroid-based amphiphiles-glyco-diosgenin analogues (GDNs) and steroid-based pentasaccharides either lacking a linker (SPSs) or containing a linker (SPS-Ls)-have been developed as new chemical tools for membrane protein research. These detergents were tested with three membrane proteins in order to characterise their ability to extract membrane proteins from the membrane and to stabilise membrane proteins long-term. Some of the detergents, particularly the SPS-Ls, displayed favourable behaviour with the tested membrane proteins. This result indicates the potential utility of these detergents as chemical tools for membrane protein structural study and a critical role of the simple alkyl spacer in determining detergent efficacy.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Valerie Stern
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University, Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| |
Collapse
|
27
|
Das M, Du Y, Mortensen JS, Bae HE, Byrne B, Loland CJ, Kobilka BK, Chae PS. An Engineered Lithocholate-Based Facial Amphiphile Stabilizes Membrane Proteins: Assessing the Impact of Detergent Customizability on Protein Stability. Chemistry 2018; 24:9860-9868. [PMID: 29741269 DOI: 10.1002/chem.201801141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/27/2018] [Indexed: 01/06/2023]
Abstract
Amphiphiles are critical tools for the structural and functional study of membrane proteins. Membrane proteins encapsulated by conventional head-to-tail detergents tend to undergo structural degradation, necessitating the development of structurally novel agents with improved efficacy. In recent years, facial amphiphiles have yielded encouraging results in terms of membrane protein stability. Herein, we report a new facial detergent (i.e., LFA-C4) that confers greater stability to tested membrane proteins than the bola form analogue. Owing to the increased facial property and the adaptability of the detergent micelles in complex with different membrane proteins, LFA-C4 yields increased stability compared to n-dodecyl-β-d-maltoside (DDM). Thus, this study not only describes a novel maltoside detergent with enhanced protein-stabilizing properties, but also shows that the customizable nature of a detergent plays an important role in the stabilization of membrane proteins. Owing to both synthetic convenience and enhanced stabilization efficacy for a range of membrane proteins, the new agent has major potential in membrane protein research.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA, 94305, USA
| | - Jonas S Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
28
|
Birch J, Axford D, Foadi J, Meyer A, Eckhardt A, Thielmann Y, Moraes I. The fine art of integral membrane protein crystallisation. Methods 2018; 147:150-162. [PMID: 29778646 DOI: 10.1016/j.ymeth.2018.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Arne Meyer
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Annette Eckhardt
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Yvonne Thielmann
- Max Planck Institute of Biophysics, Molecular Membrane Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK; National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
29
|
Hardy D, Desuzinges Mandon E, Rothnie AJ, Jawhari A. The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods 2018; 147:118-125. [PMID: 29477816 DOI: 10.1016/j.ymeth.2018.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins (MP) are stable in their native lipid environment. To enable structural and functional investigations, MP need to be extracted from the membrane. This is a critical step that represents the main obstacle for MP biochemistry and structural biology. General guidelines and rules for membrane protein solubilization remain difficult to establish. This review aims to provide the reader with a comprehensive overview of the general concepts of MP solubilization and stabilization as well as recent advances in detergents innovation. Understanding how solubilization and stabilization are intimately linked is key to facilitate MP isolation toward fundamental structural and functional research as well as drug discovery applications. How to manage the tour de force of destabilizing the lipid bilayer and stabilizing MP at the same time is the holy grail of successful isolation and investigation of such a delicate and fascinating class of proteins.
Collapse
Affiliation(s)
- David Hardy
- CALIXAR, 60 Avenue Rockefeller, 69008 Lyon, France; Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Alice J Rothnie
- Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
30
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
31
|
Abstract
To study integral membrane proteins, one has to extract them from the membrane—the step that is typically achieved by the application of detergents. In this mini-review, we summarize the top 10 detergents used for the structural analysis of membrane proteins based on the published results. The aim of this study is to provide the reader with an overview of the main properties of available detergents (critical micelle concentration (CMC) value, micelle size, etc.) and provide an idea of what detergents to may merit further study. Furthermore, we briefly discuss alternative solubilization and stabilization agents, such as polymers.
Collapse
|
32
|
Abstract
High-resolution membrane protein structures are essential for understanding the molecular basis of diverse biological events and important in drug development. Detergents are usually used to extract these bio-macromolecules from the membranes and maintain them in a soluble and stable state in aqueous solutions for downstream characterization. However, many eukaryotic membrane proteins solubilized in conventional detergents tend to undergo structural degradation, necessitating the development of new amphiphilic agents with enhanced properties. In this study, we designed and synthesized a novel class of glucoside amphiphiles, designated tandem malonate-based glucosides (TMGs). A few TMG agents proved effective at both stabilizing a range of membrane proteins and extracting proteins from the membrane environment. These favourable characteristics, along with synthetic convenience, indicate that these agents have potential in membrane protein research.
Collapse
|
33
|
Hussain H, Du Y, Tikhonova E, Mortensen JS, Ribeiro O, Santillan C, Das M, Ehsan M, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane-Protein Stability. Chemistry 2017; 23:6724-6729. [PMID: 28303608 DOI: 10.1002/chem.201605016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/08/2022]
Abstract
As a membrane-mimetic system, detergent micelles are popularly used to extract membrane proteins from lipid environments and to maintain their solubility and stability in an aqueous medium. However, many membrane proteins encapsulated in conventional detergents tend to undergo structural degradation during extraction and purification, thus necessitating the development of new agents with enhanced properties. In the current study, two classes of new amphiphiles are introduced, resorcinarene-based glucoside and maltoside amphiphiles (designated RGAs and RMAs, respectively), for which the alkyl chains are facially segregated from the carbohydrate head groups. Of these facial amphiphiles, two RGAs (RGA-C11 and RGA-C13) conferred markedly enhanced stability to four tested membrane proteins compared to a gold-standard conventional detergent. The relatively high water solubility and micellar stability of the RGAs compared to the RMAs, along with their generally favourable behaviours for membrane protein stabilisation described here, are likely to be, at least in part, a result of the high conformational flexibility of these glucosides. This study suggests that flexibility could be an important factor in determining the suitability of new detergents for membrane protein studies.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| | - Claus J Loland
- Center of Neuroscience, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 155-88, Korea
| |
Collapse
|
34
|
Ramin MA, Sindhu KR, Appavoo A, Oumzil K, Grinstaff MW, Chassande O, Barthélémy P. Cation Tuning of Supramolecular Gel Properties: A New Paradigm for Sustained Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605227. [PMID: 28151562 DOI: 10.1002/adma.201605227] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Hydrogels formed by the self-assembly of low-molecular-weight gelators (LMWGs) are promising scaffolds for drug-delivery applications. A new biocompatible hydrogel, resulting from the self-assembly of nucleotide-lipid salts can be safely injected in vivo. The resulting hydrogel provides sustained-release of protein for more than a week.
Collapse
Affiliation(s)
- Michael A Ramin
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | | | - Ananda Appavoo
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Khalid Oumzil
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Philippe Barthélémy
- ARNA Laboratory, Inserm, U1212, CNRS 5320, Université de Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
35
|
Das M, Du Y, Ribeiro O, Hariharan P, Mortensen JS, Patra D, Skiniotis G, Loland CJ, Guan L, Kobilka BK, Byrne B, Chae PS. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study: Implications of Detergent Kink for Micellar Properties. J Am Chem Soc 2017; 139:3072-3081. [PMID: 28218862 PMCID: PMC5818264 DOI: 10.1021/jacs.6b11997] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties. Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n-dodecyl-β-d-maltoside (DDM) for all membrane proteins tested. Efficacy of the individual NBMs varied depending on the overall detergent shape and alkyl chain length. Specifically, NBMs with no kink in the lipophilic region conferred greater stability to the proteins than NBMs with a kink. In addition, long alkyl chain NBMs were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes novel maltoside detergents with enhanced protein-stabilizing properties but also suggests that overall detergent geometry has an important role in determining membrane protein stability. Notably, this is the first systematic study on the effect of detergent kinking on micellar properties and associated membrane protein stability.
Collapse
Affiliation(s)
- Manabendra Das
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonas S. Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Dhabaleswar Patra
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Claus J. Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
36
|
Bonneté F, Loll PJ. Characterization of New Detergents and Detergent Mimetics by Scattering Techniques for Membrane Protein Crystallization. Methods Mol Biol 2017; 1635:169-193. [PMID: 28755369 DOI: 10.1007/978-1-4939-7151-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Membrane proteins are difficult to manipulate and stabilize once they have been removed from their native membranes. However, despite these difficulties, successes in membrane-protein structure determination have continued to accumulate for over two decades, thanks to advances in chemistry and technology. Many of these advances have resulted from efforts focused on protein engineering, high-throughput expression, and development of detergent screens, all with the aim of enhancing protein stability for biochemistry and biophysical studies. In contrast, considerably less work has been done to decipher the basic mechanisms that underlie the structure of protein-detergent complexes and to describe the influence of detergent structure on stabilization and crystallization. These questions can be addressed using scattering techniques (employing light, X-rays, and/or neutrons), which are suitable to describe the structure and conformation of macromolecules in solution, as well as to assess weak interactions between particles, both of which are clearly germane to crystallization. These techniques can be used either in batch modes or coupled to size-exclusion chromatography, and offer the potential to describe the conformation of a detergent-solubilized membrane protein and to quantify and model detergent bound to the protein in order to optimize crystal packing. We will describe relevant techniques and present examples of scattering experiments, which allow one to explore interactions between micelles and between membrane protein complexes, and relate these interactions to membrane protein crystallization.
Collapse
Affiliation(s)
- Françoise Bonneté
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM-ENSCM, Chimie BioOrganique et Systèmes Amphiphiles, Université d'Avignon, 301, rue Baruch de Spinoza, F84000, Avignon, France.
| | - Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| |
Collapse
|
37
|
Cho KH, Hariharan P, Mortensen JS, Du Y, Nielsen AK, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length. Chembiochem 2016; 17:2334-2339. [PMID: 27981750 DOI: 10.1002/cbic.201600429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 01/23/2023]
Abstract
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4thStreet MS 6551, Lubbock, TX, 79430, USA
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, 157 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Anne K Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, 157 Beckman Center, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 18.6 Panum Institute, 2200, Copenhagen, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, 3601 4thStreet MS 6551, Lubbock, TX, 79430, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Korea
| |
Collapse
|
38
|
Bae HE, Mortensen JS, Ribeiro O, Du Y, Ehsan M, Kobilka BK, Loland CJ, Byrne B, Chae PS. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation. Chem Commun (Camb) 2016; 52:12104-12107. [PMID: 27711401 PMCID: PMC5500197 DOI: 10.1039/c6cc06147h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared to DDM. These agents have potential for use in membrane protein research.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Orquidea Ribeiro
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Yang Du
- Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| | | | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
39
|
Hussain H, Du Y, Scull NJ, Mortensen JS, Tarrasch J, Bae HE, Loland CJ, Byrne B, Kobilka BK, Chae PS. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation. Chemistry 2016; 22:7068-73. [PMID: 27072057 DOI: 10.1002/chem.201600533] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/29/2022]
Abstract
Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent-solubilised membrane proteins often denature and aggregate, resulting in loss of both structure and function. In this study, a novel class of agents, designated mannitol-based amphiphiles (MNAs), were prepared and characterised for their ability to solubilise and stabilise membrane proteins. Some of MNAs conferred enhanced stability to four membrane proteins including a G protein-coupled receptor (GPCR), the β2 adrenergic receptor (β2 AR), compared to both n-dodecyl-d-maltoside (DDM) and the other MNAs. These agents were also better than DDM for electron microscopy analysis of the β2 AR. The ease of preparation together with the enhanced membrane protein stabilisation efficacy demonstrates the value of these agents for future membrane protein research.
Collapse
Affiliation(s)
- Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Nicola J Scull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Jeffrey Tarrasch
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea.
| |
Collapse
|
40
|
Ehsan M, Du Y, Scull NJ, Tikhonova E, Tarrasch J, Mortensen JS, Loland CJ, Skiniotis G, Guan L, Byrne B, Kobilka BK, Chae PS. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. J Am Chem Soc 2016; 138:3789-96. [PMID: 26966956 DOI: 10.1021/jacs.5b13233] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA/Es with a novel highly branched pentasaccharide hydrophilic group. The PSA/Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA/Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University , Ansan, 426-791, Korea
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University , Stanford, California 94305, United States
| | - Nicola J Scull
- Department of Life Sciences, Imperial College London , London, SW7 2AZ, U.K
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Jeffrey Tarrasch
- Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, DK-2200, Denmark
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen , Copenhagen, DK-2200, Denmark
| | - Georgios Skiniotis
- Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London , London, SW7 2AZ, U.K
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University , Stanford, California 94305, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University , Ansan, 426-791, Korea
| |
Collapse
|
41
|
Detergents in Membrane Protein Purification and Crystallisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:13-28. [PMID: 27553232 DOI: 10.1007/978-3-319-35072-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.
Collapse
|
42
|
Sadaf A, Mortensen JS, Capaldi S, Tikhonova E, Hariharan P, de Castro Ribeiro O, Loland CJ, Guan L, Byrne B, Chae PS. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study. Chem Sci 2015; 7:1933-1939. [PMID: 27110345 PMCID: PMC4836865 DOI: 10.1039/c5sc02900g] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel glycoside amphiphile (NDT-C11) displays favorable behavior in maintaining both protein stability and conformational flexibility compared to DDM and MNG-3.
Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791 (Korea)
| | - Jonas S Mortensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen (Denmark)
| | - Stefano Capaldi
- Department of Life Sciences, Imperial College London London, SW7 2AZ (UK) ; Department of Biotechnology, University of Verona, 37134 Verona (Italy)
| | - Elena Tikhonova
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences
| | | | | | | | | | | |
Collapse
|
43
|
Dahani M, Barret LA, Raynal S, Jungas C, Pernot P, Polidori A, Bonneté F. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization. Acta Crystallogr F Struct Biol Commun 2015; 71:838-46. [PMID: 26144228 PMCID: PMC4498704 DOI: 10.1107/s2053230x15009516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 11/11/2022] Open
Abstract
The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar interactions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization.
Collapse
Affiliation(s)
- Mohamed Dahani
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Laurie-Anne Barret
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
- Laboratoire de Bioénergétique Cellulaire/Biologie Végétale et Microbiologie Environnementales, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Simon Raynal
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Colette Jungas
- Laboratoire de Bioénergétique Cellulaire/Biologie Végétale et Microbiologie Environnementales, UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Pétra Pernot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Ange Polidori
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| | - Françoise Bonneté
- Institut des Biomolécules Max Mousseron/CBSA, UMR 5247, Avignon University, 33 Rue Louis Pasteur, 84000 Avignon,France
| |
Collapse
|
44
|
Chae PS, Bae HE, Ehsan M, Hussain H, Kim JW. New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure-property relationships. Org Biomol Chem 2015; 12:8480-7. [PMID: 25227873 DOI: 10.1039/c4ob01375a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Detergents are widely used for membrane protein research; however, membrane proteins encapsulated in micelles formed by conventional detergents tend to undergo structural degradation, necessitating the development of new agents with enhanced efficacy. Here we prepared several hydrophobic variants of ganglio-tripod amphiphiles (TPAs) derived from previously reported TPAs and evaluated for a multi-subunit, pigment protein superassembly. In this study, TPA-16 was found to be most efficient in protein solubilization while TPA-15 proved most favourable in long-term protein stability. The current study combined with previous TPA studies enabled us to elaborate on a few detergent structure-property relationships that could provide useful guidelines for novel amphiphile design.
Collapse
Affiliation(s)
- Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea.
| | | | | | | | | |
Collapse
|
45
|
Cho KH, Du Y, Scull NJ, Hariharan P, Gotfryd K, Loland CJ, Guan L, Byrne B, Kobilka BK, Chae PS. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Chemistry 2015; 21:10008-13. [PMID: 26013293 DOI: 10.1002/chem.201501083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 01/14/2023]
Abstract
Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conventional detergents are commonly used for membrane protein manipulation, but membrane proteins surrounded by these agents often undergo denaturation and aggregation. In this study, a novel class of maltoside-bearing amphiphiles, with a xylene linker in the central region, designated xylene-linked maltoside amphiphiles (XMAs) was developed. When these novel agents were evaluated with a number of membrane proteins, it was found that XMA-4 and XMA-5 have particularly favourable efficacy with respect to membrane protein stabilisation, indicating that these agents hold significant potential for membrane protein structural study.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791 (Republic of Korea)
| | - Yang Du
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 (USA)
| | - Nicola J Scull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Kamil Gotfryd
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen (Denmark).,Present address: Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen (Denmark)
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen (Denmark)
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (USA)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, SW7 2AZ (UK)
| | - Brian K Kobilka
- Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305 (USA)
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791 (Republic of Korea).
| |
Collapse
|
46
|
Chae PS, Bae HE, Das M. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation. Chem Commun (Camb) 2015; 50:12300-3. [PMID: 25178798 DOI: 10.1039/c4cc05746e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.
Collapse
Affiliation(s)
- Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea.
| | | | | |
Collapse
|
47
|
Bae HE, Gotfryd K, Thomas J, Hussain H, Ehsan M, Go J, Loland CJ, Byrne B, Chae PS. Deoxycholate-Based Glycosides (DCGs) for Membrane Protein Stabilisation. Chembiochem 2015; 16:1454-9. [PMID: 25953685 DOI: 10.1002/cbic.201500151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/16/2022]
Abstract
Detergents are an absolute requirement for studying the structure of membrane proteins. However, many conventional detergents fail to stabilise denaturation-sensitive membrane proteins, such as eukaryotic proteins and membrane protein complexes. New amphipathic agents with enhanced efficacy in stabilising membrane proteins will be helpful in overcoming the barriers to studying membrane protein structures. We have prepared a number of deoxycholate-based amphiphiles with carbohydrate head groups, designated deoxycholate-based glycosides (DCGs). These DCGs are the hydrophilic variants of previously reported deoxycholate-based N-oxides (DCAOs). Membrane proteins in these agents, particularly the branched diglucoside-bearing amphiphiles DCG-1 and DCG-2, displayed favourable behaviour compared to previously reported parent compounds (DCAOs) and conventional detergents (LDAO and DDM). Given their excellent properties, these agents should have significant potential for membrane protein studies.
Collapse
Affiliation(s)
- Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Hanyangdaehak-ro, Ansan, 426-791 (Korea)
| | - Kamil Gotfryd
- Department of Neuroscience and Pharmacology, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen (Denmark).,Present address: Department of Biomedical Sciences, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen (Denmark)
| | - Jennifer Thomas
- Present address: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 OQH (UK).,Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ (UK)
| | - Hazrat Hussain
- Department of Bionanotechnology, Hanyang University, Hanyangdaehak-ro, Ansan, 426-791 (Korea)
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Hanyangdaehak-ro, Ansan, 426-791 (Korea)
| | - Juyeon Go
- Department of Bionanotechnology, Hanyang University, Hanyangdaehak-ro, Ansan, 426-791 (Korea)
| | - Claus J Loland
- Department of Neuroscience and Pharmacology, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen (Denmark)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ (UK)
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Hanyangdaehak-ro, Ansan, 426-791 (Korea).
| |
Collapse
|
48
|
Li S, Lee SY, Chung KY. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry. Methods Enzymol 2015; 557:261-78. [PMID: 25950969 DOI: 10.1016/bs.mie.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, University of California at San Diego, San Diego, California, USA
| | - Su Youn Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
49
|
Cho KH, Husri M, Amin A, Gotfryd K, Lee HJ, Go J, Kim JW, Loland CJ, Guan L, Byrne B, Chae PS. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Analyst 2015; 140:3157-63. [PMID: 25813698 DOI: 10.1039/c5an00240k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n-dodecyl-β-D-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP tendency to denature and aggregate. This set of MNGs represents viable alternatives to currently available detergents for handling MPs, and can be also used as tools to estimate MP sensitivity to denaturation and aggregation.
Collapse
Affiliation(s)
- Kyung Ho Cho
- Department of Bionanotechnology, Hanyang University, Ansan, 426-791, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|