1
|
Thiruvengetam P, Sunani P, Kumar Chand D. A Metallomicellar Catalyst for Controlled Oxidation of Alcohols and Lignin Mimics in Water using Open Air as Oxidant. CHEMSUSCHEM 2024; 17:e202301754. [PMID: 38224525 DOI: 10.1002/cssc.202301754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Alcohol groups and β-O-4 (C-C) linkages are widespread in biomass feedstock that are abundant renewable resource for value-added chemicals. The development of sustainable protocols for direct oxidation or oxidative cleavage of feedstock materials in a controlled fashion, using open air as an oxidant is an intellectually stimulating task to produce industrially important value-added carbonyls. Further, the oxidative depolymerization of lignin into fine chemicals has evoked interest in recent times. Herein, we report the first example of a catalyst system that could activate molecular oxygen from atmospheric air for controlled oxidation and oxidative cleavage/depolymerization of feedstock materials such as alcohols, β-O-4 (C-C) linkages and real lignin in water under open air conditions. The selectivity of carbonyl products is controlled by altering the pH between ~7.0 and ~12.0. The current strategy highlights the non-involvement of any external co-catalyst, oxidant, radical additives, and/or destructive organic solvents. The catalyst shows a wide substrate scope and eminent functional group tolerance. The upscaled multigram synthesis using an inexpensive catalyst and easily available oxidant evidences the practical utility of the developed protocol. A plausible mechanism has been proposed with the help of a few controlled experiments, and kinetic and computational studies.
Collapse
Affiliation(s)
- Prabaharan Thiruvengetam
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Pragyansmruti Sunani
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Dillip Kumar Chand
- IoE Centre of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
2
|
Kumar P, Nemiwal M. Advanced Functionalized Nanoclusters (Cu, Ag, and Au) as Effective Catalyst for Organic Transformation Reactions. Chem Asian J 2024; 19:e202400062. [PMID: 38386668 DOI: 10.1002/asia.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
A considerable amount of research has been carried out in recent years on synthesizing metal nanoclusters (NCs), which have wide applications in the field of optical materials with non-linear properties, bio-sensing, and catalysis. Aside from being structurally accurate, the atomically precise NCs possess well-defined compositions due to significant tailoring, both at the surface and the core, for certain functionalities. To illustrate the importance of atomically precise metal NCs for catalytic processes, this review emphasizes 1) the recent work on Cu, Ag, and Au NCs with their synthesis, 2) the parameters affecting the activity and selectivity of NCs catalysis, and 3) the discussion on the catalytic potential of these metal NCs. Additionally, metal NCs will facilitate the design of extremely active and selective catalysts for significant reactions by elucidating catalytic mechanisms at the atomic and molecular levels. Future advancements in the science of catalysis are expected to come from the potential to design NCs catalysts at the atomic level.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, 302017, India
| |
Collapse
|
3
|
Mangesh VL, Govindarajan M, Raju Chekuri RB, Perumal T, Rajendran K, Chandrasekaran K, Siva Kumar N, Basivi PK, Alreshaidan SB, Al-Fatesh AS. Ni-Fe bimetallic catalysts with high dispersion supported by SBA-15 evaluated for the selective oxidation of benzyl alcohol to benzaldehyde. RSC Adv 2024; 14:2300-2310. [PMID: 38213975 PMCID: PMC10782152 DOI: 10.1039/d3ra07086g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
A wetness impregnation method was used to impregnate the substrate with a substantial quantity of oleic acid together with a metal precursor, leading to significantly dispersed Ni-Fe bimetallic catalysts based on mesoporous SBA-15. Using a wide variety of characterization methods, such as XRD, BET, and TEM Analysis, the physiochemical properties of the catalyst were determined. The addition of the metal does not have any effect on the structural characteristics of the SBA-15 catalyst, as validated by transmission electron microscopy (TEM), which shows that the prepared SBA-15 supported catalyst has a hexagonal mesoporous structure. The catalytic capabilities of the Ni-Fe-SBA-15 catalysts were evaluated in the conversion of BzOH using tert-butyl hydroperoxide (TBHP) as an oxidant and acetonitrile as a solvent. The Ni/Fe-SBA-15 (NFS-15) catalytic composition is the best of the developed catalysts, with a maximum conversion of 98% and a selectivity of 99%. In-depth investigations were conducted into the molar ratio of TBHP to BzOH, the dosage of the catalyst, the reaction rate, temperature, and solvent. The recycling investigations indicate that the synthesized Ni/Fe-SBA-15 (NFS-15) catalyst seems to be more durable up to seven successive cycles.
Collapse
Affiliation(s)
- V L Mangesh
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur Andhra Pradesh 522502 India
| | - Murali Govindarajan
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation Vaddeswaram Guntur Andhra Pradesh 522502 India
| | | | - Tamizhdurai Perumal
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, EVR Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91-9677146579
| | - Kumaran Rajendran
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, EVR Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91-9677146579
| | - Kavitha Chandrasekaran
- Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous) (Affiliated to the University of Madras, Chennai) 833, Gokul Bagh, EVR Periyar Road, Arumbakkam Chennai 600 106 Tamil Nadu India +91-9677146579
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia +966-537228108
| | - Praveen Kumar Basivi
- Pukyong National University Industry-University Cooperation Foundation, Pukyong National University Busan 48513 Republic of Korea
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University P.O. Box 800 Riyadh 11451 Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, King Saud University P.O. Box 800 Riyadh 11421 Saudi Arabia +966-537228108
| |
Collapse
|
4
|
Xu M, Ou J, Luo K, Liang R, Liu J, Li N, Hu B, Liu K. External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules 2023; 28:molecules28073031. [PMID: 37049794 PMCID: PMC10096038 DOI: 10.3390/molecules28073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
We present an environment-friendly and highly efficient method for the oxidation of aromatic alcohols to carboxylic acids or ketones in air via light irradiation under external catalyst-, additive-, and base-free conditions. The photoreaction system exhibits a wide substrate scope and the potential for large-scale applications. Most of the desired products are easily obtained via recrystallization and separation from low-boiling reaction medium acetone in good yields, and the products can be subsequent directly transformed without further purification.
Collapse
Affiliation(s)
- Meng Xu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jinhua Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| | - Kejun Luo
- Analytical Testing Center, Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| | - Rongtao Liang
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ni Li
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bonian Hu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Kaijian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| |
Collapse
|
5
|
Maurya MR, Kumar N, Avecilla F. Mononuclear/Binuclear [V IVO]/[V VO 2] Complexes Derived from 1,3-Diaminoguanidine and Their Catalytic Application for the Oxidation of Benzoin via Oxygen Atom Transfer. ACS OMEGA 2023; 8:1301-1318. [PMID: 36643530 PMCID: PMC9835170 DOI: 10.1021/acsomega.2c06732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Ligands H4sal-dag (I) and H4Brsal-dag (II) derived from 1,3-diaminoguanidine and salicylaldehyde or 5-bromosalicylaldehyde react with one or 2 mol equivalent of vanadium precursor to give two different series of vanadium complexes. Thus, complexes [VIVO(H2sal-dag) (H2O)] (1) and [VIVO(H2Brsal-dag) (H2O)] (2) were isolated by the reaction of an equimolar ratio of these ligands with [VIVO(acac)2] in MeOH. In the presence of K+/Cs+ ion and using aerially oxidized [VIVO(acac)2], the above reaction gave complexes [K(H2O){VVO2(H2sal-dag)}]2 (3), [Cs(H2O){VVO2(H2sal-dag)}]2 (4), [K(H2O){VO2(H2Brsal-dag)}]2 (5), and [Cs(H2O){VVO2(H2Brsal-dag)}]2 (6), which could also be isolated by direct aerial oxidation of complexes 1 and 2 in MeOH in the presence of K+/Cs+ ion. Complexes [(H2O)VIVO(Hsal-dag)VVO2] (7) and [(H2O)VIVO(HBrsal-dag)VVO2] (8) were isolated upon increasing the ligand-to-vanadium precursor molar ratio to 1:2 under an air atmosphere. When I and II were reacted with aerially oxidized [VIVO(acac)2] in a 1:2 molar ratio in MeOH in the presence of K+/Cs+ ion, they formed [K(H2O)5{(VVO2)2(Hsal-dag)}]2 (9), [Cs(H2O)2{(VVO2)2(Hsal-dag)}]2 (10), [K2(H2O)4{(VVO2)2(Brsal-dag)}]2 (11), and [Cs2(H2O)4{(VVO2)2(Brsal-dag)}]2 (12). The structures of complexes 3, 4, 5, and 9 determined by single-crystal X-ray diffraction study confirm the mono-, bi-, tri-, and tetra-anionic behaviors of the ligands. All complexes were found to be an effective catalyst for the oxidation of benzoin to benzil via oxygen atom transfer (OAT) between DMSO and benzoin. Under aerobic condition, this oxidation also proceeds effectively in the absence of DMSO. Electron paramagnetic resonance and 51V NMR studies demonstrated the active role of a stable V(IV) intermediate during OAT between DMSO and benzoin.
Collapse
Affiliation(s)
- Mannar R. Maurya
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee247667, India
| | - Naveen Kumar
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee247667, India
| | - Fernando Avecilla
- Grupo
NanoToxGen, Centro de Investigacións Científicas Avanzadas
(CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071A Coruña, Spain
| |
Collapse
|
6
|
Kesharwani N, Chaudhary N, Haldar C. Synthesis and characterization of Merrifield resin and graphene oxide supported air stable oxidovanadium(IV) radical complexes for the catalytic oxidation of light aliphatic alcohols. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Kachhap P, Chaudhary N, Haldar C. Solvent‐free oxidation of straight‐chain aliphatic primary alcohols by polymer‐grafted vanadium complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Payal Kachhap
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Nikita Chaudhary
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| | - Chanchal Haldar
- Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad India
| |
Collapse
|
8
|
Senthamarai T, Chandrashekhar VG, Rockstroh N, Rabeah J, Bartling S, Jagadeesh RV, Beller M. A “universal” catalyst for aerobic oxidations to synthesize (hetero)aromatic aldehydes, ketones, esters, acids, nitriles, and amides. Chem 2021. [DOI: 10.1016/j.chempr.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Lim S, Kwon S, Kim N, Na K. A Multifunctional Au/CeO 2-Mg(OH) 2 Catalyst for One-Pot Aerobic Oxidative Esterification of Aldehydes with Alcohols to Alkyl Esters. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1536. [PMID: 34200722 PMCID: PMC8230364 DOI: 10.3390/nano11061536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Au nanoparticles bound to crystalline CeO2 nanograins that were dispersed on the nanoplate-like Mg(OH)2, denoted as Au/CeO2-Mg(OH)2, were developed as the highly active and selective multifunctional heterogeneous catalyst for direct oxidative esterification of aldehydes with alcohols to produce alkyl esters under base-free aerobic conditions using oxygen or air as the green oxidants. Au/CeO2-Mg(OH)2 converted 93.3% of methacrylaldehyde (MACR) to methyl methacrylate (MMA, monomer of poly(methyl methacrylate)) with 98.2% selectivity within 1 h, and was repeatedly used over eight recycle runs without regeneration. The catalyst was extensively applied to other aldehydes and alcohols to produce desirable alkyl esters. Comprehensive characterization analyses revealed that the strong metal-support interaction (SMSI) among the three catalytic components (Au, CeO2, and Mg(OH)2), and the proximity and strong contact between Au/CeO2 and the Mg(OH)2 surface were prominent factors that accelerated the reaction toward a desirable oxidative esterification pathway. During the reaction, MACR was adsorbed on the surface of CeO2-Mg(OH)2, upon which methanol was simultaneously activated for esterifying the adsorbed MACR. Hemiacetal-form intermediate species were subsequently produced and oxidized to MMA on the surface of the electron-rich Au nanoparticles bound to partially reduced CeO2-x with electron-donating properties. The present study provides new insights into the design of SMSI-induced supported-metal-nanoparticles for the development of novel, multifunctional, and heterogeneous catalysts.
Collapse
Affiliation(s)
| | | | | | - Kyungsu Na
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea; (S.L.); (S.K.); (N.K.)
| |
Collapse
|
10
|
Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts 2021. [DOI: 10.3390/catal11060714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged in recent decades as attractive and selective catalysts for sustainable organic synthesis. Nanostructured gold is indeed environmentally friendly and benign for human health; at the same time, it is active, under different morphologies, in a large variety of oxidation and reduction reactions of interest for the chemical industry. To stabilize the AuNPs and optimize the chemical environment of the catalytic sites, a wide library of natural and synthetic polymers has been proposed. This review describes the main routes for the preparation of AuNPs supported/embedded in synthetic organic polymers and compares the performances of these catalysts with those of the most popular AuNPs supported onto inorganic materials applied in hydrogenation and oxidation reactions. Some examples of cascade coupling reactions are also discussed where the polymer-supported AuNPs allow for the attainment of remarkable activity and selectivity.
Collapse
|
11
|
The Application of Copper-Gold Catalysts in the Selective Oxidation of Glycerol at Acid and Basic Conditions. Catalysts 2021. [DOI: 10.3390/catal11010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The crude glycerol is produced during the transesterification of animal fats and vegetable oils, but it is a by-product of this process. Currently, its elimination is a problem in the chemical industry. The main goal of this work was the preparation, characterization and application of mesoporous cerium-zirconium oxide as supports for copper and gold species and the comparison of selected factors on the properties of catalysts in glycerol oxidation in the liquid phase. The samples were characterized using adsorption and desorption of nitrogen, XRD, UV-vis, XPS, TEM, SEM, and STEM-EDXS. The obtained results of glycerol oxidation show that the bimetallic copper-gold catalysts are more active and selective to glyceric acid in this reaction than analogous monometallic gold catalysts. Additionally, bimetallic catalysts are also characterized by the catalytic stability, and their application leads to the increase of selectivity to glyceric acid during their reusing in glycerol oxidation in alkali media. In this work, the influence of selected factors, e.g., oxygen source and its pressure, solution pH, and base content on the catalytic activity of bimetallic catalysts is discussed.
Collapse
|
12
|
Najafvand-Derikvandi S, Karimi B, Ganji N, Vali H. Cubic nanocasted polyaniline-ordered mesoporous carbon composite and its application for enhanced catalytic activity of palladium nanoparticles in the aerobic oxidation of alcohols in water. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chakraborty T, Mondal R, Ghanta R, Chakraborty A, Chattopadhyay T. Triton X‐100 functionalized Cu(II) dihydrazone based complex immobilized on Fe
3
O
4
@dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tonmoy Chakraborty
- Department of Chemistry University of Calcutta 92, A.P.C.Road Kolkata 700009 India
| | - Rimpa Mondal
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| | - Rinku Ghanta
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| | - Aratrika Chakraborty
- Department of Chemistry University of Calcutta 92, A.P.C.Road Kolkata 700009 India
| | - Tanmay Chattopadhyay
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| |
Collapse
|
14
|
Hazra S, Malik E, Nair A, Tiwari V, Dolui P, Elias AJ. Catalytic Oxidation of Alcohols and Amines to Value‐Added Chemicals using Water as the Solvent. Chem Asian J 2020; 15:1916-1936. [DOI: 10.1002/asia.202000299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Susanta Hazra
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Ekta Malik
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Abhishek Nair
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Vikas Tiwari
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Pritam Dolui
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of ChemistryIndian Institute of Technology, Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
15
|
Ganji N, Karimi B, Najafvand-Derikvandi S, Vali H. Palladium supported on a novel ordered mesoporous polypyrrole/carbon nanocomposite as a powerful heterogeneous catalyst for the aerobic oxidation of alcohols to carboxylic acids and ketones on water. RSC Adv 2020; 10:13616-13631. [PMID: 35492988 PMCID: PMC9051566 DOI: 10.1039/c9ra10941b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Preparation of an ordered mesoporous polypyrrole/carbon (PPy/OMC) composite has been described through a two-step nanocasting process using KIT-6 as a template. Characterization of the PPy/OMC nanocomposite by various analysis methods such as TEM, XRD, TGA, SEM and N2 sorption confirmed the preparation of a material with ordered mesoporous structure, uniform pore size distribution, high surface area and high stability. This nanocomposite was then used for the immobilization of palladium nanoparticles. The nanoparticles were almost uniformly distributed on the support with a narrow particle size of 20-25 nm, confirmed by various analysis methods. Performance of the Pd@PPy/OMC catalyst was evaluated in the aerobic oxidation of various primary and secondary alcohols on water as a green solvent, giving the corresponding carboxylic acids and ketones in high yields and excellent selectivity. The catalyst could also be reused for at least 10 reaction runs without losing its catalytic activity and selectivity. High catalytic efficiency of the catalyst can be attributed to a strong synergism between the PPy/OMC and that of supported Pd nanoparticles.
Collapse
Affiliation(s)
- Nasim Ganji
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) PO-Box 45195-1159, Gava-zang Zanjan 45137-6731 Iran
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) PO-Box 45195-1159, Gava-zang Zanjan 45137-6731 Iran .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Sepideh Najafvand-Derikvandi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) PO-Box 45195-1159, Gava-zang Zanjan 45137-6731 Iran
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research McGill University Montreal Quebec, H3A 2A7 Canada
| |
Collapse
|
16
|
Aerobic Oxidation of Alcohols to Aldehydes and Ketones with Recyclable Pd Catalysts on Cross-linked 1,10-Phenanthroline Polymers. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9115-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Karimi B, Bigdeli A, Safari AA, Khorasani M, Vali H, Khodadadi Karimvand S. Aerobic Oxidation of Alcohols Catalyzed by in Situ Generated Gold Nanoparticles inside the Channels of Periodic Mesoporous Organosilica with Ionic Liquid Framework. ACS COMBINATORIAL SCIENCE 2020; 22:70-79. [PMID: 31944104 DOI: 10.1021/acscombsci.9b00160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In situ generated gold nanoparticles inside the nanospaces of periodic mesoporous organosilica with an imidazolium framework (Au@PMO-IL) were found to be highly active, selective, and reusable catalysts for the aerobic oxidation of activated and nonactivated alcohols under mild reaction conditions. The catalyst was characterized by nitrogen adsorption-desorption measurement, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), elemental analysis (EA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The catalyst exhibited excellent catalytic activity in the presence of either Cs2CO3 (35 °C) or K2CO3 (60 °C) as reaction bases in toluene as a reaction solvent. Under both reaction conditions, various types of alcohols (up to 35 examples) including activated benzylic, primary and secondary aliphatic, heterocyclic, and challenging cyclic aliphatic alcohols converted to the expected carbonyl compounds in good to excellent yields and selectivity. The catalyst was also recovered and reused for at least seven reaction cycles. Data from three independent leaching tests indicated that amounts of leached gold particles were negligible (<0.2 ppm). It is believed that the combination of bridged imidazolium groups and confined nanospaces of PMO-IL might be a major reason explaining the remarkable stabilization and homogeneous distribution of in situ generated gold nanoparticles, thus resulting in the highly active and recyclable catalyst system.
Collapse
Affiliation(s)
- Babak Karimi
- Institute for Advanced Studies in Basic Sciences, No. 444, Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Akram Bigdeli
- Institute for Advanced Studies in Basic Sciences, No. 444, Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| | - Ali Asghar Safari
- Institute for Advanced Studies in Basic Sciences, No. 444, Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| | - Mojtaba Khorasani
- Institute for Advanced Studies in Basic Sciences, No. 444, Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, Montreal, Quebec H3A 2A7, Canada
| | - Somaiyeh Khodadadi Karimvand
- Institute for Advanced Studies in Basic Sciences, No. 444, Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
| |
Collapse
|
18
|
Yang F, Jiang XY, Liang WB, Chai YQ, Yuan R, Zhuo Y. 3D Matrix-Arranged AuAg Nanoclusters As Electrochemiluminescence Emitters for Click Chemistry-Driven Signal Switch Bioanalysis. Anal Chem 2020; 92:2566-2572. [DOI: 10.1021/acs.analchem.9b04256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin-Ya Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
19
|
Miyamura H, Kobayashi S. Nanoparticle Catalysts in Flow Systems. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Metal Nanoparticles for Redox Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Patel A, Patel G, Banerjee S. Visible Light-Emitting Diode Light-Driven Cu 0.9Fe 0.1@RCAC-Catalyzed Highly Selective Aerobic Oxidation of Alcohols and Oxidative Azo-Coupling of Anilines: Tandem One Pot Oxidation-Condensation to Imidazoles and Imines. ACS OMEGA 2019; 4:22445-22455. [PMID: 31909327 PMCID: PMC6941188 DOI: 10.1021/acsomega.9b03096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Here, we have demonstrated visible light-emitting diode light-driven selective and efficient aerobic oxidation of primary/secondary alcohols to aldehydes/ketones and oxidative azo-coupling of anilines using biomass rice husk-derived chemically activated carbon sheet-supported copper-iron bimetallic hybrid nanomaterials (Cu x Fe1-x @RCAC) under oxidant and additive-free conditions. The catalytic activity of the Cu x Fe1-x @RCAC materials has been investigated for the oxidation of alcohols and anilines, and Cu0.9Fe0.1@RCAC was established as the best catalyst. Moreover, a tandem one-pot protocol has been developed for the sequential oxidation of alcohols followed by condensation to functionalized imidazole and imine derivatives in high isolated yields. The hybrid materials were highly robust and stable under the reaction conditions and were recovered simply by filtration and recycled up to 12th run without considerable loss in catalytic activity.
Collapse
|
22
|
Zhu Q, Wang F, Zhang F, Dong Z. Renewable chitosan-derived cobalt@N-doped porous carbon for efficient aerobic esterification of alcohols under air. NANOSCALE 2019; 11:17736-17745. [PMID: 31549694 DOI: 10.1039/c9nr04867g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The direct oxidation of alcohols to esters through a green and cost-effective strategy is a fascinating chemical synthesis route. In this study, an environmentally friendly N-doped porous carbon encapsulated Co-based nano-catalyst was prepared via a simple carbonization procedure, utilizing renewable chitosan, accessible dicyandiamide and low-cost Co(OAc)2 as co-precursors. The obtained Co@NC-2-T catalysts were successfully used in selective oxidation of aromatic alcohols with methanol to esters under atmospheric reaction conditions. The Co@NC-2-900 catalyst (added with 2 g dicyandiamide and pyrolyzed at 900 °C) shows optimal activity and applicability and can also be reused at least six times in the oxidative esterification of aromatic alcohols with excellent stability. The presence of superoxide anion radicals in the current catalytic system was detected by the EPR method, and a possible mechanism of alcohol oxidation to ester was proposed on this basis. Thus, this study provides a facile, eco-friendly, and highly efficient catalytic system for oxidative esterification of alcohols.
Collapse
Affiliation(s)
- Qian Zhu
- College of Chemistry and Chemical Engineering, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, Gansu Provincial Engineering Laboratory for Chemical Catalysis, Lanzhou University, Lanzhou 730000, PR China.
| | | | | | | |
Collapse
|
23
|
Khatun M, Majumdar RS, Anoop A. A Global Optimizer for Nanoclusters. Front Chem 2019; 7:644. [PMID: 31612127 PMCID: PMC6776882 DOI: 10.3389/fchem.2019.00644] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
We have developed an algorithm to automatically build the global minimum and other low-energy minima of nanoclusters. This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. While generating the trial geometries, a Tabu list is used for storing the information of the already used trial geometries to avoid using the similar trial geometries. In this recursive algorithm, an n-sized cluster is built from the geometries of n−1 clusters. The overall procedure automatically generates many unique minimum energy geometries of clusters with size from 2 up to n using this evolutionary growth strategy. We have used our strategy on some of the well-studied clusters such as Pd, Pt, Au, and Al homometallic clusters, Ru-Pt and Au-Pt binary clusters, and Ag-Au-Pt ternary cluster. We have analyzed some of the popular parameters to characterize the clusters, such as relative energy, singlet-triplet energy difference, binding energy, second-order energy difference, and mixing energy, and compared with the reported properties.
Collapse
Affiliation(s)
- Maya Khatun
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
24
|
Sable V, Shah J, Sharma A, Kapdi AR. Pd-Colloids-Catalyzed/Ag 2 O-Oxidized General and Selective Esterification of Benzylic Alcohols. Chem Asian J 2019; 14:2639-2647. [PMID: 31107588 DOI: 10.1002/asia.201900566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Palladium colloids obtained from the degradation of Hermann-Beller palladacycle proved to be an efficient catalytic system in combination with silver oxide as a selective oxidant for the oxidative esterification of differently substituted benzyl alcohols in MeOH as solvent. Excellent reactivity exhibited by the catalytic system also allowed the alcoholic coupling partner to be changed from MeOH to a wide range of alcohols having diverse functionalities. The mildness of the developed protocol also made it possible to employ propargyl alcohol as the coupling partner without any observation of any interference of the terminal alkyne. Selective oxidative coupling of a primary alcoholic functional group over secondary in the case of glycols and glycerols was also made possible using the developed catalyst system. To test the relevancy of Pd/Ag combined catalysis mixed Pd/Ag colloids were synthesized, characterized by TEM, XRD and XPS and applied to oxidative-esterification successfully.
Collapse
Affiliation(s)
- Vaibhav Sable
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Jagrut Shah
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Anuja Sharma
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai-, 400019, India
| |
Collapse
|
25
|
Xu X, Feng H, Li H, Huang L. Enol Ester Intermediate Induced Metal-Free Oxidative Coupling of Carboxylic Acids and Arylboronic Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xianjun Xu
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Huiqiong Li
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
26
|
Li H, Shen H, Pei C, Chen S, Wan Y. A Self‐Assembly Process for the Immobilization of N‐Modified Au Nanoparticles in Ordered Mesoporous Carbon with Large Pores. ChemCatChem 2019. [DOI: 10.1002/cctc.201900626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Li
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Department of ChemistryShanghai Normal University Shanghai 200234 P.R. China
| | - Hong Shen
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Department of ChemistryShanghai Normal University Shanghai 200234 P.R. China
| | - Chun Pei
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Department of ChemistryShanghai Normal University Shanghai 200234 P.R. China
| | - Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Department of ChemistryShanghai Normal University Shanghai 200234 P.R. China
| | - Ying Wan
- Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials and Department of ChemistryShanghai Normal University Shanghai 200234 P.R. China
| |
Collapse
|
27
|
Dolui P, Hazra S, Deb M, Elias AJ. Picolinamide Assisted Oxidation of CH2 Groups Bound to Organic and Organometallic Compounds Using Ferrocene as a Catalyst. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pritam Dolui
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Susanta Hazra
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Mayukh Deb
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Anil J. Elias
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
28
|
Tavallaei H, Jafarpour M, Feizpour F, Rezaeifard A, Farrokhi A. A Cooperative Effect in a Novel Bimetallic Mo-V Nanocomplex Catalyzed Selective Aerobic C-H Oxidation. ACS OMEGA 2019; 4:3601-3610. [PMID: 31459574 PMCID: PMC6648445 DOI: 10.1021/acsomega.8b02832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 05/03/2023]
Abstract
In this study, a new heterobimetallic Mo(VI)-V(V) organosilicon Schiff base complex has been prepared and characterized by different techniques, such as FTIR, Raman, MS, ICP-AES, TGA, and XPS. The bimetallic nanocomplex, revealed by TEM images, showed high oxidation stability and desired activity in the aerobic oxidation of a structurally diverse set of benzylic alcohols in ethanol as a safe solvent. Further, oxidation of benzylic hydrocarbons successfully occurred, producing the target compounds in high yields and excellent selectivities. Our results demonstrated a cooperative effect between Mo(VI) and V(V) as redox active sites in an organosilicon Schiff base framework. A facile and practical reusability of the solid catalyst at the end of the reaction was observed.
Collapse
Affiliation(s)
- Hasan Tavallaei
- Catalysis Research Laboratory, Department
of Chemistry, Faculty of Science, University
of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department
of Chemistry, Faculty of Science, University
of Birjand, Birjand 97179-414, Iran
| | - Fahimeh Feizpour
- Catalysis Research Laboratory, Department
of Chemistry, Faculty of Science, University
of Birjand, Birjand 97179-414, Iran
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department
of Chemistry, Faculty of Science, University
of Birjand, Birjand 97179-414, Iran
| | - Alireza Farrokhi
- Catalysis Research Laboratory, Department
of Chemistry, Faculty of Science, University
of Birjand, Birjand 97179-414, Iran
| |
Collapse
|
29
|
Yang F, Cao Y, Xu C, Xia Y, Chen Z, He X, Li Y, Yang W, Li Y. Nitrogen and Phosphorus Co-Doped Graphene-Like Carbon Catalyzed Selective Oxidation of Alcohols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fan Yang
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Yan Cao
- China Petroleum Engineering&Construction North China Company; NO.3 Jianshe Road Hebei Renqiu China
| | - Chong Xu
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Yan Xia
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Zhuo Chen
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Xing He
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Yun Li
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Wang Yang
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing; China University of Petroleum; Beijing Changping 102249 China
| |
Collapse
|
30
|
Zhang G, Ma D, Zhao Y, Zhang G, Mei G, Lyu J, Ding C, Shan S. NH 3⋅H 2O: The Simplest Nitrogen-Containing Ligand for Selective Aerobic Alcohol Oxidation to Aldehydes or Nitriles in Neat Water. ChemistryOpen 2018; 7:885-889. [PMID: 30460169 PMCID: PMC6232702 DOI: 10.1002/open.201800196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
Aqueous ammonia (NH3⋅H2O) has been shown to serve as the simplest nitrogen-containing ligand to effectively promote copper-catalyzed selective alcohol oxidation under air in water. A series of alcohols with varying electronic and steric properties were selectively oxidized to aldehydes with up to 95 % yield. Notably, by increasing the amount of aqueous ammonia in neat water, the exclusive formation of aryl nitriles was also accomplished with good-to-excellent yields. Additionally, the catalytic system exhibits a high level of functional group tolerance with -OH, -NO2, esters, and heteroaryl groups all being amenable to the reaction conditions. This one-pot and green oxidation protocol provides an important synthetic route for the selective preparation of either aldehydes or nitriles from commercially available alcohols.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Danting Ma
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yiyong Zhao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guihua Zhang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guangyao Mei
- Zhejiang Hongyuan Pharmaceutical Co. LtdTaizhou317016P. R. China
| | - Jinghui Lyu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Shang Shan
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| |
Collapse
|
31
|
Yasukawa T, Yang X, Kobayashi S. Development of N-Doped Carbon-Supported Cobalt/Copper Bimetallic Nanoparticle Catalysts for Aerobic Oxidative Esterifications Based on Polymer Incarceration Methods. Org Lett 2018; 20:5172-5176. [PMID: 30141952 DOI: 10.1021/acs.orglett.8b02118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous nitrogen-doped carbon-incarcerated cobalt/copper bimetallic nanoparticle (NP) catalysts, prepared from nitrogen-containing polymers, were developed, and an efficient catalytic process for aerobic oxidative esterification was achieved in the presence of a low loading (1 mol %) of catalyst that could be reused and easily reactivated. This protocol enabled diverse conditions for the bimetallic NP formation step to be screened, and significant rate acceleration by inclusion of a copper dopant was discovered. The catalytic activity of the bimetallic Co/Cu catalysts is much higher than that for cobalt catalysts reported to date and is even comparable with noble-metal NP catalysts.
Collapse
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Xi Yang
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
32
|
Miyamura H, Suzuki A, Yasukawa T, Kobayashi S. Polysilane-Immobilized Rh-Pt Bimetallic Nanoparticles as Powerful Arene Hydrogenation Catalysts: Synthesis, Reactions under Batch and Flow Conditions and Reaction Mechanism. J Am Chem Soc 2018; 140:11325-11334. [PMID: 30080963 DOI: 10.1021/jacs.8b06015] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hydrogenation of arenes is an important reaction not only for hydrogen storage and transport but also for the synthesis of functional molecules such as pharmaceuticals and biologically active compounds. Here, we describe the development of heterogeneous Rh-Pt bimetallic nanoparticle catalysts for the hydrogenation of arenes with inexpensive polysilane as support. The catalysts could be used in both batch and continuous-flow systems with high performance under mild conditions and showed wide substrate generality. In the continuous-flow system, the product could be obtained by simply passing the substrate and 1 atm H2 through a column packed with the catalyst. Remarkably, much higher catalytic performance was observed in the flow system than in the batch system, and extremely strong durability under continuous-flow conditions was demonstrated (>50 days continuous run; turnover number >3.4 × 105). Furthermore, details of the reaction mechanisms and the origin of different kinetics in batch and flow were studied, and the obtained knowledge was applied to develop completely selective arene hydrogenation of compounds containing two aromatic rings toward the synthesis of an active pharmaceutical ingredient.
Collapse
Affiliation(s)
- Hiroyuki Miyamura
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Aya Suzuki
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
33
|
Superior performance of Co-N/m-C for direct oxidation of alcohols to esters under air. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63058-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Ding S, Tian C, Zhu X, Wang H, Wang H, Abney CW, Zhang N, Dai S. Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chem Commun (Camb) 2018; 54:5058-5061. [PMID: 29726871 DOI: 10.1039/c8cc02966k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A simple charge modulation approach has been developed to stabilize naked Au clusters on a nanoporous conjugated organic network. Through engineering pore walls with regulated charges, the controllable growth of Au nanoclusters has been realized. The resulting supported catalyst exhibits excellent performance in the aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Shunmin Ding
- College of Chemistry, Nanchang University, Nanchang, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Aerobic oxidative esterification of primary alcohols over Pd-Au bimetallic catalysts supported on mesoporous silica nanoparticles. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Jiang B, Xu B, Wang M, Li Z, Liu D, Zhang S. Cobalt(II)/
N
,
N′
,
N′′
‐Trihydroxyisocyanuric Acid Catalyzed Aerobic Oxidative Esterification and Amidation of Aldehydes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Biao‐Lin Jiang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 Shanxi China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and EngineeringState Key Laboratory of Multiphase Complex Systems, Institution of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Bao‐Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and EngineeringState Key Laboratory of Multiphase Complex Systems, Institution of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| | - Meng‐Liang Wang
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 Shanxi China
| | - Zeng‐Xi Li
- College of Chemistry and Chemical EngineeringGraduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Dian‐Sheng Liu
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 Shanxi China
| | - Suo‐Jiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and EngineeringState Key Laboratory of Multiphase Complex Systems, Institution of Process EngineeringChinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
37
|
Kurbah SD, Asthana M, Syiemlieh I, Lal RA. Peroxidative catalytic oxidation of alcohols catalyzed by heterobinuclear vanadium(V) complexes using H2
O2
as terminal oxidizing agents. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sunshine D. Kurbah
- Centre for Advanced Studies, Department of Chemistry; North-Eastern Hill University; Shillong -793022 India
| | - M. Asthana
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati -781039 India
| | - Ibanphylla Syiemlieh
- Centre for Advanced Studies, Department of Chemistry; North-Eastern Hill University; Shillong -793022 India
| | - Ram A. Lal
- Centre for Advanced Studies, Department of Chemistry; North-Eastern Hill University; Shillong -793022 India
| |
Collapse
|
38
|
Mannel DS, King J, Preger Y, Ahmed MS, Root TW, Stahl SS. Mechanistic Insights into Aerobic Oxidative Methyl Esterification of Primary Alcohols with Heterogeneous PdBiTe Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02886] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David S. Mannel
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jesaiah King
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yuliya Preger
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Maaz S. Ahmed
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Thatcher W. Root
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemical
and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Heteropolyacid immobilized on polymer/magnetic zeolite nanocomposite as a new and recyclable catalyst for the selective oxidation of alcohols. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1237-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Zhao M, Ji Y, Wang M, Zhong N, Kang Z, Asao N, Jiang WJ, Chen Q. Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd-Cu-Ni-P Nanoparticles as a Selective and Versatile Catalyst. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34804-34811. [PMID: 28937208 DOI: 10.1021/acsami.7b08082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amorphous materials have been widely researched in heterogeneous catalysis and for next-generation batteries. However, the well-defined production of high-quality (e.g., monodisperse and high surface area) amorphous alloy nanomaterials has rarely been reported. In this work, we investigated the correlations among the composition, morphology, and catalysis of various Pd-M-P nanoparticles (NPs) (M = Cu or Ni), which indicated that less Cu (≤20 atom %) was necessary for the formation of an amorphous morphology. The amorphous Pd-Cu-Ni-P NPs were fabricated with a controllable size and characterized carefully, which show excellent selective catalysis in the semihydrogenation of alkynes, hydrogenation of quinoline, and oxidation of primary alcohols. The uniqueness of the catalytic performance was confirmed by control experiments with monometallic Pd, amorphous Pd-Ni-P NPs, crystalline Pd-Cu-P NPs, and a crystalline counterpart of Pd-Cu-Ni-P catalyst. The catalytic selectivity likely arose from improved Pd-M (M = Cu or Ni) synergistic effects in the amorphous phase and the electron deficiency of Pd. The model reactions proceeded under H2 or O2 gas without any additives, bases, or metal oxide supports, and the catalyst could be reused several times. This report is expected to shed light on the design of amorphous alloy nanomaterials as green and inexpensive catalysts for atom-economic and selective reactions.
Collapse
Affiliation(s)
- Ming Zhao
- School of Chemical Engineering, China University of Mining and Technology , No. 1, Daxue Road, Xuzhou 221116, P. R. China
| | - Yuan Ji
- School of Chemical Engineering, China University of Mining and Technology , No. 1, Daxue Road, Xuzhou 221116, P. R. China
| | - Mengyue Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, P. R. China
| | - Ning Zhong
- School of Chemical Engineering, China University of Mining and Technology , No. 1, Daxue Road, Xuzhou 221116, P. R. China
| | - Zinan Kang
- School of Chemical Engineering, China University of Mining and Technology , No. 1, Daxue Road, Xuzhou 221116, P. R. China
| | - Naoki Asao
- Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University , Ueda 386-8567, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577, Japan
| | - Wen-Jie Jiang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science , Beijing 100190, P. R. China
| | - Qiang Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
41
|
Lal RA, Kumar A, Syiemlieh I, Kurbah SD. Synthesis, characterization, and catalytic activity of a water soluble copper(II) and nickel(II) heterobimetallic complex [CuNi(μ-OH)(μ-OH2)(μ-OAc)(bpy)2](ClO4)2 in aqueous medium in the absence of a base and co-catalyst. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1358812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ram A. Lal
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, India
| | - Arvind Kumar
- Department of Chemistry, Faculty of Science and Technology, The University of West-Indies, St. Augustine, Trinidad and Tobago
| | - Ibanphylla Syiemlieh
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, India
| | - Sunshine D. Kurbah
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, India
| |
Collapse
|
42
|
Impact of Carboxyl Groups in Graphene Oxide on Chemoselective Alcohol Oxidation with Ultra-Low Carbocatalyst Loading. Sci Rep 2017; 7:3146. [PMID: 28600548 PMCID: PMC5466679 DOI: 10.1038/s41598-017-03468-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
A highly efficient and simple chemoselective aerobic oxidation of primary alcohols to either aldehydes or carboxylic acids in the presence of nitric acid was developed, utilising 5 wt% graphene oxide as a carbocatalyst under ambient reaction conditions. Carboxylic acid functional groups on graphene oxides played a vital role in carbocatalyst activity, greatly influencing both the reactivity and selectivity. We also applied this protocol to a variant of the Knoevenagel condensation for primary alcohols and malonates with a secondary amine co-catalyst via cooperative catalysis.
Collapse
|
43
|
Dong H, Liao L, Zhuang S, Yao C, Chen J, Tian S, Zhu M, Liu X, Li L, Wu Z. A novel double-helical-kernel evolution pattern of gold nanoclusters: alternate single-stranded growth at both ends. NANOSCALE 2017; 9:3742-3746. [PMID: 28134388 DOI: 10.1039/c6nr09724c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studying the kernel evolution pattern of gold nanoclusters is intriguing but challenging due to the difficulty of precise size control and structure resolution. Herein, we successfully synthesized two novel gold nanoclusters, Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 (S-c-C6H11: cyclohexanethiolate), and resolved their structures. Interestingly, it was found that the kernel evolves from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26 in a novel fashion: alternate single-stranded evolution at both ends, which is remarkably different from the reported double-stranded growth at the bottom for the 4-tert-butylbenzenethiolate (TBBT)-protected nanocluster series. This work illustrates the variety of kernel evolution patterns and the directionality of the ligands with respect to the evolution of the kernel. In addition, differential pulse voltammetry (DPV) revealed that the electrochemical gap between the first oxidation and the first reduction potential decreases as the size increases from Au28(S-c-C6H11)20 to Au34(S-c-C6H11)22 and Au42(S-c-C6H11)26.
Collapse
Affiliation(s)
- Hongwei Dong
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanhao Yao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Jishi Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Shubo Tian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Min Zhu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Xu Liu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
44
|
Panwar V, Ray SS, Jain SL. Highly efficient (CoO x -N@C, PANI) nanopowder derived from pyrolysis of polyaniline grafted cobalt acetate for oxidative methyl esterification of benzyl alcohols. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.molcata.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Cheng HG, Miguélez J, Miyamura H, Yoo WJ, Kobayashi S. Integration of aerobic oxidation and intramolecular asymmetric aza-Friedel-Crafts reactions with a chiral bifunctional heterogeneous catalyst. Chem Sci 2017; 8:1356-1359. [PMID: 28451276 PMCID: PMC5362052 DOI: 10.1039/c6sc03849b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
A new class of chiral bifunctional heterogeneous materials composed of Au/Pd nanoparticles and chiral phosphoric acids as active orthogonal catalysts was prepared by utilizing a facile pseudo-suspension co-polymerization method. It was found that this heterogeneous catalyst was capable of facilitating the sequential aerobic oxidation-asymmetric intramolecular aza-Friedel-Crafts reaction between benzyl alcohols and N-aminoethylpyrroles. Moreover, the designed chiral heterogeneous catalyst could be recovered and reused several times without significant loss of activity or enantioselectivity.
Collapse
Affiliation(s)
- Hong-Gang Cheng
- Department of Chemistry , School of Science , The University of Tokyo , Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Javier Miguélez
- Department of Chemistry , School of Science , The University of Tokyo , Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Hiroyuki Miyamura
- Department of Chemistry , School of Science , The University of Tokyo , Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Woo-Jin Yoo
- Department of Chemistry , School of Science , The University of Tokyo , Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan .
| | - Shū Kobayashi
- Department of Chemistry , School of Science , The University of Tokyo , Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan .
| |
Collapse
|
46
|
|
47
|
Mannel DS, Ahmed MS, Root TW, Stahl SS. Discovery of Multicomponent Heterogeneous Catalysts via Admixture Screening: PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols. J Am Chem Soc 2017; 139:1690-1698. [DOI: 10.1021/jacs.6b12722] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David S. Mannel
- Department
of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Maaz S. Ahmed
- Department
of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Thatcher W. Root
- Department
of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department
of Chemical and Biological Engineering and ‡Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
48
|
Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS. Activating Cobalt Nanoparticles via the Mott–Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. J Am Chem Soc 2017; 139:811-818. [DOI: 10.1021/jacs.6b10710] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hui Su
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke-Xin Zhang
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bing Zhang
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hong-Hui Wang
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiu-Ying Yu
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xin-Hao Li
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, 14424 Potsdam, Germany
| | - Jie-Sheng Chen
- School
of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
49
|
Promotion effect of nickel for Cu–Ni/γ-Al2O3 catalysts in the transfer dehydrogenation of primary aliphatic alcohols. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-016-0963-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Mao F, Qi Z, Fan H, Sui D, Chen R, Huang J. Heterogeneous cobalt catalysts for selective oxygenation of alcohols to aldehydes, esters and nitriles. RSC Adv 2017. [DOI: 10.1039/c6ra27073e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heterogeneous Co catalysts were demonstrated for the selective oxygenation of alcohols to aldehydes, esters and nitriles respectively.
Collapse
Affiliation(s)
- Fei Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Zhengliang Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Haipeng Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Dejun Sui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jun Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|