1
|
Chua GNL, Liu S. When Force Met Fluorescence: Single-Molecule Manipulation and Visualization of Protein-DNA Interactions. Annu Rev Biophys 2024; 53:169-191. [PMID: 38237015 DOI: 10.1146/annurev-biophys-030822-032904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities-often central to the protein function-thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein-DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.
Collapse
Affiliation(s)
- Gabriella N L Chua
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
- Tri-Institutional PhD Program in Chemical Biology, New York, New York, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, New York, USA;
| |
Collapse
|
2
|
Mondal A, Bhattacherjee A. Understanding protein diffusion on force-induced stretched DNA conformation. Front Mol Biosci 2022; 9:953689. [PMID: 36545509 PMCID: PMC9760818 DOI: 10.3389/fmolb.2022.953689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022] Open
Abstract
DNA morphology is subjected to environmental conditions and is closely coupled with its function. For example, DNA experiences stretching forces during several biological processes, including transcription and genome transactions, that significantly alter its conformation from that of B-DNA. Indeed, a well-defined 1.5 times extended conformation of dsDNA, known as Σ-DNA, has been reported in DNA complexes with proteins such as Rad51 and RecA. A striking feature in Σ-DNA is that the nucleobases are partitioned into triplets of three locally stacked bases separated by an empty rise gap of ∼ 5 Å. The functional role of such a DNA base triplet was hypothesized to be coupled with the ease of recognition of DNA bases by DNA-binding proteins (DBPs) and the physical origin of three letters (codon/anti-codon) in the genetic code. However, the underlying mechanism of base-triplet formation and the ease of DNA base-pair recognition by DBPs remain elusive. To investigate, here, we study the diffusion of a protein on a force-induced stretched DNA using coarse-grained molecular dynamics simulations. Upon pulling at the 3' end of DNA by constant forces, DNA exhibits a conformational transition from B-DNA to a ladder-like S-DNA conformation via Σ-DNA intermediate. The resulting stretched DNA conformations exhibit non-uniform base-pair clusters such as doublets, triplets, and quadruplets, of which triplets are energetically more stable than others. We find that protein favors the triplet formation compared to its unbound form while interacting non-specifically along DNA, and the relative population of it governs the ruggedness of the protein-DNA binding energy landscape and enhances the efficiency of DNA base recognition. Furthermore, we analyze the translocation mechanism of a DBP under different force regimes and underscore the significance of triplet formation in regulating the facilitated diffusion of protein on DNA. Our study, thus, provides a plausible framework for understanding the structure-function relationship between triplet formation and base recognition by a DBP and helps to understand gene regulation in complex regulatory processes.
Collapse
Affiliation(s)
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Afanasyev AY, Onufriev AV. Stretching of Long Double-Stranded DNA and RNA Described by the Same Approach. J Chem Theory Comput 2022; 18:3911-3920. [PMID: 35544776 DOI: 10.1021/acs.jctc.1c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose an approach to help interpret polymer force-extension curves that exhibit plateau regimes. When coupled to a bead-spring dynamic model, the approach accurately reproduces a variety of experimental force-extension curves of long double-stranded DNA and RNA, including torsionally constrained and unconstrained DNA and negatively supercoiled DNA. A key feature of the model is a specific nonconvex energy function of the spring. We provide an algorithm to obtain the five required parameters of the model from experimental force-extension curves. The applicability of the approach to the force-extension curves of double-stranded (ds) DNA of variable GC content as well as to a DNA/RNA hybrid structure is explored and confirmed. We use the approach to explain counterintuitive sequence-dependent trends and make predictions. In the plateau region of the force-extension curves, our molecular dynamics simulations show that the polymer separates into a mix of weakly and strongly stretched states without forming macroscopically distinct phases. The distribution of these states is predicted to depend on the sequence.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
King GA, Spakman D, Peterman EJG, Wuite GJL. Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers. Methods Mol Biol 2022; 2478:243-272. [PMID: 36063323 DOI: 10.1007/978-1-0716-2229-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many genomic processes lead to the formation of underwound (negatively supercoiled) or overwound (positively supercoiled) DNA. These DNA topological changes regulate the interactions of DNA-binding proteins, including transcription factors, architectural proteins and topoisomerases. In order to advance our understanding of the structure and interactions of supercoiled DNA, we recently developed a single-molecule approach called Optical DNA Supercoiling (ODS). This method enables rapid generation of negatively supercoiled DNA (with between <5% and 70% lower helical twist than nonsupercoiled DNA) using a standard dual-trap optical tweezers instrument. ODS is advantageous as it allows for combined force spectroscopy, fluorescence imaging, and spatial control of the supercoiled substrate, which is difficult to achieve with most other approaches. Here, we describe how to generate negatively supercoiled DNA using dual-trap optical tweezers. To this end, we provide detailed instructions on the design and preparation of suitable DNA substrates, as well as a step-by-step guide for how to control and calibrate the supercoiling density produced.
Collapse
Affiliation(s)
- Graeme A King
- Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. Methods Enzymol 2022; 673:311-358. [DOI: 10.1016/bs.mie.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Moon HM, Park JS, Lee IB, Kang YI, Jung HJ, An D, Shin Y, Kim MJ, Kim HI, Song JJ, Kim J, Lee NK, Hong SC. Cisplatin fastens chromatin irreversibly even at a high chloride concentration. Nucleic Acids Res 2021; 49:12035-12047. [PMID: 34865121 PMCID: PMC8643659 DOI: 10.1093/nar/gkab922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/12/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cisplatin is one of the most potent anti-cancer drugs developed so far. Recent studies highlighted several intriguing roles of histones in cisplatin's anti-cancer effect. Thus, the effect of nucleosome formation should be considered to give a better account of the anti-cancer effect of cisplatin. Here we investigated this important issue via single-molecule measurements. Surprisingly, the reduced activity of cisplatin under [NaCl] = 180 mM, corresponding to the total concentration of cellular ionic species, is still sufficient to impair the integrity of a nucleosome by retaining its condensed structure firmly, even against severe mechanical and chemical disturbances. Our finding suggests that such cisplatin-induced fastening of chromatin can inhibit nucleosome remodelling required for normal biological functions. The in vitro chromatin transcription assay indeed revealed that the transcription activity was effectively suppressed in the presence of cisplatin. Our direct physical measurements on cisplatin-nucleosome adducts suggest that the formation of such adducts be the key to the anti-cancer effect by cisplatin.
Collapse
Affiliation(s)
- Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| | - Young-Im Kang
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Hae Jun Jung
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Dongju An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yumi Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min Ji Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Nam-Kyung Lee
- Department of Physics, Sejong University, Seoul 05006, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.,Department of Physics, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Belan O, Moore G, Kaczmarczyk A, Newton MD, Anand R, Boulton SJ, Rueda DS. Generation of versatile ss-dsDNA hybrid substrates for single-molecule analysis. STAR Protoc 2021; 2:100588. [PMID: 34169285 PMCID: PMC8209646 DOI: 10.1016/j.xpro.2021.100588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we describe a rapid and versatile protocol to generate gapped DNA substrates for single-molecule (SM) analysis using optical tweezers via site-specific Cas9 nicking and force-induced melting. We provide examples of single-stranded (ss) DNA gaps of different length and position. We outline protocols to visualize these substrates by replication protein A-enhanced Green Fluorescent Protein (RPA-eGFP) and SYTOX Orange staining using commercially available optical tweezers (C-TRAP). Finally, we demonstrate the utility of these substrates for SM analysis of bidirectional growth of RAD-51-ssDNA filaments. For complete details on the use and execution of this protocol, please refer to Belan et al. (2021).
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - George Moore
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthew D. Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J. Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|
8
|
Zhang X, Zhang Y, Zhang W. Dynamic topology of double-stranded telomeric DNA studied by single-molecule manipulation in vitro. Nucleic Acids Res 2020; 48:6458-6470. [PMID: 32496520 PMCID: PMC7337930 DOI: 10.1093/nar/gkaa479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The dynamic topological structure of telomeric DNA is closely related to its biological function; however, no such structural information on full-length telomeric DNA has been reported due to difficulties synthesizing long double-stranded telomeric DNA. Herein, we developed an EM-PCR and TA cloning-based approach to synthesize long-chain double-stranded tandem repeats of telomeric DNA. Using mechanical manipulation assays based on single-molecule atomic force microscopy, we found that mechanical force can trigger the melting of double-stranded telomeric DNA and the formation of higher-order structures (G-quadruplexes or i-motifs). Our results show that only when both the G-strand and C-strand of double-stranded telomeric DNA form higher-order structures (G-quadruplexes or i-motifs) at the same time (e.g. in the presence of 100 mM KCl under pH 4.7), that the higher-order structure(s) can remain after the external force is removed. The presence of monovalent K+, single-wall carbon nanotubes (SWCNTs), acidic conditions, or short G-rich fragments (∼30 nt) can shift the transition from dsDNA to higher-order structures. Our results provide a new way to regulate the topology of telomeric DNA.
Collapse
Affiliation(s)
- Xiaonong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Yingqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Jiang Y, Feldman T, Bakx JA, Yang D, Wong WP. Stretching DNA to twice the normal length with single-molecule hydrodynamic trapping. LAB ON A CHIP 2020; 20:1780-1791. [PMID: 32301470 PMCID: PMC7239757 DOI: 10.1039/c9lc01028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-molecule force spectroscopy has brought many new insights into nanoscale biology, from the functioning of molecular motors to the mechanical response of soft materials within the cell. To expand the single-molecule toolbox, we have developed a surface-free force spectroscopy assay based on a high-speed hydrodynamic trap capable of applying extremely high tensions for long periods of time. High-speed single-molecule trapping is enabled by a rigid and gas-impermeable microfluidic chip, rapidly and inexpensively fabricated out of glass, double-sided tape and UV-curable adhesive. Our approach does not require difficult covalent attachment chemistries, and enables simultaneous force application and single-molecule fluorescence. Using this approach, we have induced a highly extended state with twice the contour length of B-DNA in regions of partially intercalated double-stranded (dsDNA) by applying forces up to 250 pN. This highly extended state resembles the hyperstretched state of dsDNA, which was initially discovered as a structure fully intercalated by dyes under high tension. It has been hypothesized that hyperstretched DNA could also be induced without the aid of intercalators if high-enough forces were applied, which matches our observation. Combining force application with single-molecule fluorescence imaging is critical for distinguishing hyperstretched DNA from single-stranded DNA that can result from peeling. High-speed hydrodynamic trapping is a powerful yet accessible force spectroscopy method that enables the mechanics of biomolecules to be probed in previously difficult to access regimes.
Collapse
Affiliation(s)
- Yan Jiang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Theodore Feldman
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Julia A.M. Bakx
- Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Wesley P. Wong
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhao X, Guo S, Lu C, Chen J, Le S, Fu H, Yan J. Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol 2019; 53:106-117. [DOI: 10.1016/j.cbpa.2019.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/24/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
|
11
|
Drozdetski AV, Mukhopadhyay A, Onufriev AV. Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment. FRONTIERS IN PHYSICS 2019; 7:195. [PMID: 32601596 PMCID: PMC7323118 DOI: 10.3389/fphy.2019.00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The strong bending of polymers is poorly understood. We propose a general quantitative framework of polymer bending that includes both the weak and strong bending regimes on the same footing, based on a single general physical principle. As the bending deformation increases beyond a certain (polymer-specific) point, the change in the convexity properties of the effective bending energy of the polymer makes the harmonic deformation energetically unfavorable: in this strong bending regime the energy of the polymer varies linearly with the average bending angle as the system follows the convex hull of the deformation energy function. For double-stranded DNA, the effective bending deformation energy becomes non-convex for bends greater than ~ 2° per base-pair, equivalent to the curvature of a closed circular loop of ~ 160 base pairs. A simple equation is derived for the polymer loop energy that covers both the weak and strong bending regimes. The theory shows quantitative agreement with recent DNA cyclization experiments on short DNA fragments, while maintaining the expected agreement with experiment in the weak bending regime. Counter-intuitively, cyclization probability (j-factor) of very short DNA loops is predicted to increase with decreasing loop length; the j-factor reaches its minimum for loops of ≃ 45 base pairs. Atomistic simulations reveal that the attractive component of the short-range Lennard-Jones interaction between the backbone atoms can explain the underlying non-convexity of the DNA effective bending energy, leading to the linear bending regime. Applicability of the theory to protein-DNA complexes, including the nucleosome, is discussed.
Collapse
Affiliation(s)
| | | | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, VA, United States
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Varela S, Montañes B, López F, Berche B, Guillot B, Mujica V, Medina E. Intrinsic Rashba coupling due to hydrogen bonding in DNA. J Chem Phys 2019; 151:125102. [PMID: 31575191 DOI: 10.1063/1.5121025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an analytical model for the role of hydrogen bonding on the spin-orbit coupling of a model DNA molecule. Here, we analyze in detail the electric fields due to the polarization of the hydrogen bond on the DNA base pairs and derive, within a tight binding analytical band folding approach, an intrinsic Rashba coupling which should dictate the order of the spin active effects in the chiral-induced spin selectivity effect. The coupling found is ten times larger than the intrinsic coupling estimated previously and points out to the predominant role of hydrogen bonding in addition to chirality in the case of biological molecules. We expect similar dominant effects in oligopeptides, where the chiral structure is supported by hydrogen-bonding and bears on orbital carrying transport electrons.
Collapse
Affiliation(s)
- S Varela
- School of Chemical Sciences and Engineering, Yachay Tech University, 100119 Urcuquí, Ecuador
| | - B Montañes
- Laboratorio de Física Estadística de Sistemas Desordenados, Centro de Física, Instituto Venezolano de Investigaciones Cíentificas (IVIC), Apartado 21827, Caracas 1020 A, Venezuela
| | - F López
- School of Chemical Sciences and Engineering, Yachay Tech University, 100119 Urcuquí, Ecuador
| | - B Berche
- Laboratoire de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS 7019, 54506 Vandœuvre les Nancy, France
| | - B Guillot
- Universite de Lorraine, Institut Jean Barriol, Laboratoire de Cristallographie, Résonance Magnétique et Modélisations CRM2, UMR CNRS-UL 7036, Nacy, France
| | - V Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - E Medina
- Yachay Tech University, School of Physical Sciences and Nanotechnology, 100119 Urcuquí, Ecuador
| |
Collapse
|
13
|
Chowdhury SR, Lu HP. Spontaneous Rupture and Entanglement of Human Neuronal Tau Protein Induced by Piconewton Compressive Force. ACS Chem Neurosci 2019; 10:4061-4067. [PMID: 31423763 DOI: 10.1021/acschemneuro.9b00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mechanical force vector fluctuations in living cells can have a significant impact on protein behavior and functions. Here we report that a human tau protein tertiary structure can abruptly and spontaneously rupture, like a balloon, under biologically available piconewton compressive force, using a home-modified atomic force microscopy single-molecule manipulation. The rupture behavior is dependent on the physiological level of presence of ions, such as K+ and Mg2+. We observed rupture events in the presence of K+ but not in the presence of Mg2+ ions. We have also explored the entangled protein state formed following the events of the multiple and simultaneous protein ruptures under crowding. Crowded proteins simultaneously rupture and then spontaneously refold to an entangled folding state, different from either folded and unfolded states of the tau protein, which can be a plausible pathway for the tau protein aggregation that is related to a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- S. Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H. Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
14
|
Melkonyan L, Bercy M, Bizebard T, Bockelmann U. Overstretching Double-Stranded RNA, Double-Stranded DNA, and RNA-DNA Duplexes. Biophys J 2019; 117:509-519. [PMID: 31337545 PMCID: PMC6697464 DOI: 10.1016/j.bpj.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
Using single-molecule force measurements, we compare the overstretching transition of the four types of duplexes composed of DNA or RNA strands. Three of the four extremities of each double helix are attached to two microscopic beads, and a stretching force is applied with a dual-beam optical trapping interferometer. We find that overstretching occurs for all four duplexes with small differences between the plateau forces. Double-stranded RNA (dsRNA) exhibits a smooth transition in contrast to the other three duplexes that show sawtooth patterns, the latter being a characteristic signature of peeling. This difference is observed for a wide range of experimental conditions. We present a theoretical description that explains the difference and predicts that peeling and bubble formation do not occur in overstretching double-stranded RNA. Formation of S-RNA is proposed, an overstretching mechanism that contrary to the other two does not generate single strands. We suggest that this singular RNA property helps RNA structures to assemble and play their essential roles in the biological cell.
Collapse
Affiliation(s)
- Lena Melkonyan
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Mathilde Bercy
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Thierry Bizebard
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France.
| | - Ulrich Bockelmann
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France.
| |
Collapse
|
15
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Wasserman MR, Liu S. A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry 2019; 58:4667-4676. [PMID: 31251042 DOI: 10.1021/acs.biochem.9b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA is both a fundamental building block of life and a fascinating natural polymer. The advent of single-molecule manipulation tools made it possible to exert controlled force on individual DNA molecules and measure their mechanical response. Such investigations elucidated the elastic properties of DNA and revealed its distinctive structural configurations across force regimes. In the meantime, a detailed understanding of DNA mechanics laid the groundwork for single-molecule studies of DNA-binding proteins and DNA-processing enzymes that bend, stretch, and twist DNA. These studies shed new light on the metabolism and transactions of nucleic acids, which constitute a major part of the cell's operating system. Furthermore, the marriage of single-molecule fluorescence visualization and force manipulation has enabled researchers to directly correlate the applied tension to changes in the DNA structure and the behavior of DNA-templated complexes. Overall, experimental exploitation of DNA mechanics has been and will continue to be a unique and powerful strategy for understanding how molecular machineries recognize and modify the physical state of DNA to accomplish their biological functions.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry , The Rockefeller University , New York , New York 10065 , United States
| |
Collapse
|
17
|
Zhao XC, Fu H, Song L, Yang YJ, Zhou EC, Liu GX, Chen XF, Li Z, Wu WQ, Zhang XH. S-DNA and RecA/RAD51-Mediated Strand Exchange in Vitro. Biochemistry 2019; 58:2009-2016. [PMID: 30900876 DOI: 10.1021/acs.biochem.8b01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S-DNA (stretched DNA) is an elongated base-paired DNA conformation under high tension. Because the RecA/Rad51 family DNA recombinases form helical filaments on DNA and mediate the formation of the DNA triplex (D-loop), in which the DNA is stretched, and because the extension of these nucleoprotein filaments is similar to the extension of S-DNA, S-DNA has long been hypothesized as a possible state of DNA that participants in RecA/Rad51-mediated DNA strand exchange in homologous recombination. Such a hypothesis, however, is still lacking direct experimental studies. In this work, we have studied the polymerization and strand exchange on S-DNA mediated by Escherichia coli RecA, human Rad51, and Saccharomyces cerevisiae Rad51 by single-molecule magnetic tweezers. We report that RecA/Rad51 polymerizes faster on S-DNA than on B-DNA with the same buffer conditions. Furthermore, the RecA/Rad51-mediated DNA triplex forms faster from S-DNA than from B-DNA together with the homologous single-stranded DNA. These results provide evidence that S-DNA can interact with RecA and Rad51 and shed light on the possible functions of S-DNA.
Collapse
Affiliation(s)
- Xiao-Cong Zhao
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Hang Fu
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Lun Song
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Ya-Jun Yang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Er-Chi Zhou
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Guang-Xue Liu
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Xue-Feng Chen
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| | - Zhuo Li
- Third Institute of Oceanography , State Oceanic Administration , Xiamen 361005 , China
| | - Wen-Qiang Wu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology , Henan University , Kaifeng 475001 , China
| | - Xing-Hua Zhang
- College of Life Sciences, The Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
18
|
Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X. The Mechanical Properties of RNA-DNA Hybrid Duplex Stretched by Magnetic Tweezers. Biophys J 2018; 116:196-204. [PMID: 30635125 DOI: 10.1016/j.bpj.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
RNA can anneal to its DNA template to generate an RNA-DNA hybrid (RDH) duplex and a displaced DNA strand, termed R-loop. RDH duplex occupies up to 5% of the mammalian genome and plays important roles in many biological processes. The functions of RDH duplex are affected by its mechanical properties, including the elasticity and the conformation transitions. The mechanical properties of RDH duplex, however, are still unclear. In this work, we studied the mechanical properties of RDH duplex using magnetic tweezers in comparison with those of DNA and RNA duplexes with the same sequences. We report that the contour length of RDH duplex is ∼0.30 nm/bp, and the stretching modulus of RDH duplex is ∼660 pN, neither of which is sensitive to NaCl concentration. The persistence length of RDH duplex depends on NaCl concentration, decreasing from ∼63 nm at 1 mM NaCl to ∼49 nm at 500 mM NaCl. Under high tension of ∼60 pN, the end-opened RDH duplex undergoes two distinct overstretching transitions; at high salt in which the basepairs are stable, it undergoes the nonhysteretic transition, leading to a basepaired elongated structure, whereas at low salt, it undergoes a hysteretic peeling transition, leading to the single-stranded DNA strand under force and the single-stranded RNA strand coils. The peeled RDH is difficult to reanneal back to the duplex conformation, which may be due to the secondary structures formed in the coiled single-stranded RNA strand. These results help us understand the full picture of the structures and mechanical properties of nucleic acid duplexes in solution and provide a baseline for studying the interaction of RDH with proteins at the single-molecule level.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Yajun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Erchi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Zhijie Tan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Goktas M, Luo C, Sullan RMA, Bergues-Pupo AE, Lipowsky R, Vila Verde A, Blank KG. Molecular mechanics of coiled coils loaded in the shear geometry. Chem Sci 2018; 9:4610-4621. [PMID: 29899954 PMCID: PMC5969510 DOI: 10.1039/c8sc01037d] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/19/2018] [Indexed: 01/25/2023] Open
Abstract
Coiled coils are important nanomechanical building blocks in biological and biomimetic materials. A mechanistic molecular understanding of their structural response to mechanical load is essential for elucidating their role in tissues and for utilizing and tuning these building blocks in materials applications. Using a combination of single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations, we have investigated the mechanics of synthetic heterodimeric coiled coils of different length (3-4 heptads) when loaded in shear geometry. Upon shearing, we observe an initial rise in the force, which is followed by a constant force plateau and ultimately strand separation. The force required for strand separation depends on the coiled coil length and the applied loading rate, suggesting that coiled coil shearing occurs out of equilibrium. This out-of-equilibrium behaviour is determined by a complex structural response which involves helix uncoiling, uncoiling-assisted sliding of the helices relative to each other in the direction of the applied force as well as uncoiling-assisted dissociation perpendicular to the force axis. These processes follow a hierarchy of timescales with helix uncoiling being faster than sliding and sliding being faster than dissociation. In SMFS experiments, strand separation is dominated by uncoiling-assisted dissociation and occurs at forces between 25-45 pN for the shortest 3-heptad coiled coil and between 35-50 pN for the longest 4-heptad coiled coil. These values are highly similar to the forces required for shearing apart short double-stranded DNA oligonucleotides, reinforcing the potential role of coiled coils as nanomechanical building blocks in applications where protein-based structures are desired.
Collapse
Affiliation(s)
- Melis Goktas
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Chuanfu Luo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ruby May A Sullan
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana E Bergues-Pupo
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Ana Vila Verde
- Max Planck Institute of Colloids and Interfaces , Department of Theory & Bio-Systems , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces , Mechano(bio)chemistry , Science Park Potsdam-Golm , 14424 Potsdam , Germany .
| |
Collapse
|
20
|
Fabian R, Tyson C, Tuma PL, Pegg I, Sarkar A. A Horizontal Magnetic Tweezers and Its Use for Studying Single DNA Molecules. MICROMACHINES 2018; 9:mi9040188. [PMID: 30424121 PMCID: PMC6187538 DOI: 10.3390/mi9040188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
We report the development of a magnetic tweezers that can be used to micromanipulate single DNA molecules by applying picoNewton (pN)-scale forces in the horizontal plane. The resulting force–extension data from our experiments show high-resolution detection of changes in the DNA tether’s extension: ~0.5 pN in the force and <10 nm change in extension. We calibrate our instrument using multiple orthogonal techniques including the well-characterized DNA overstretching transition. We also quantify the repeatability of force and extension measurements, and present data on the behavior of the overstretching transition under varying salt conditions. The design and experimental protocols are described in detail, which should enable straightforward reproduction of the tweezers.
Collapse
Affiliation(s)
- Roberto Fabian
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Christopher Tyson
- Biomedical Engineering Department and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Ian Pegg
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| | - Abhijit Sarkar
- Department of Physics and Vitreous State Laboratory, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
21
|
Chowdhury SR, Lu HP. Probing Activated and Non-Activated Single Calmodulin Molecules under a Piconewton Compressive Force. Biochemistry 2018. [PMID: 29516736 DOI: 10.1021/acs.biochem.7b01283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interrogating the protein structure-function inter-relationship under a piconewton force manipulation has been highly promising and informative. Although protein conformational changes under pulling force manipulations have been extensively studied, protein conformational changes under a compressive force have not been explored in detail. Using our home-modified sensitive and high signal-to-noise atomic force microscopy (AFM) approach, we have applied a piconewton compressive force, manipulating a Calmodulin (CaM) molecule to characterize two different forms of CaM, the Ca2+-ligated activated form and the Ca2+ free non-activated form (apo-CaM). We observed sudden and spontaneous structural rupture of apo-CaM under compressive force applied by an AFM tip, though no such events were recorded in the case of Ca2+-ligated activated CaM form. The sudden spontaneous structural rupture under a piconewton force compression has never been reported before, which presents an unexplored function that is likely important for protein-protein interactions and cell signaling functions.
Collapse
Affiliation(s)
- S Roy Chowdhury
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| |
Collapse
|
22
|
Walder R, Van Patten WJ, Adhikari A, Perkins TT. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy. ACS NANO 2018; 12:198-207. [PMID: 29244486 DOI: 10.1021/acsnano.7b05721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Ayush Adhikari
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology , and University of Colorado, Boulder, Colorado 80309, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Abstract
The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely used in biophysical/chemical assays and drug treatments. We present single-molecule experiments and a three-state statistical mechanical model that provide a quantitative understanding of the interplay between B-DNA, overstretched DNA and intercalated DNA. The predictions of this model include a hitherto unconfirmed hyperstretched state, twice the length of B-DNA. Our force-fluorescence experiments confirm this hyperstretched state and reveal its sequence dependence. These results pin down the physical principles that govern DNA mechanics under the influence of tension and biochemical reactions. A predictive understanding of the possibilities and limitations of DNA extension can guide refined exploitation of DNA in, e.g., programmable soft materials and DNA origami applications. The mechanics and structural transitions of DNA are important to many essential processes inside living cells. Here the authors combine theory and single-molecule experiments to show that intercalator binding stabilises a new structural state of DNA: hyperstretched DNA.
Collapse
|
24
|
Garai A, Mogurampelly S, Bag S, Maiti PK. Overstretching of B-DNA with various pulling protocols: Appearance of structural polymorphism and S-DNA. J Chem Phys 2017; 147:225102. [DOI: 10.1063/1.4991862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ashok Garai
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur 302031, India
| | - Santosh Mogurampelly
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Saientan Bag
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Okoniewski SR, Uyetake L, Perkins TT. Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA. Nucleic Acids Res 2017; 45:10775-10782. [PMID: 28977580 PMCID: PMC5737210 DOI: 10.1093/nar/gkx761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 01/15/2023] Open
Abstract
Single-molecule force spectroscopy provides insight into how proteins bind to and move along DNA. Such studies often embed a single-stranded (ss) DNA region within a longer double-stranded (ds) DNA molecule. Yet, producing these substrates remains laborious and inefficient, particularly when using the traditional three-way hybridization. Here, we developed a force-activated substrate that yields an internal 1000 nucleotide (nt) ssDNA region when pulled partially into the overstretching transition (∼65 pN) by engineering a 50%-GC segment to have no adjacent GC base pairs. Once the template was made, these substrates were efficiently prepared by polymerase chain reaction amplification followed by site-specific nicking. We also generated a more complex structure used in high-resolution helicase studies, a DNA hairpin adjacent to 33 nt of ssDNA. The temporally defined generation of individual hairpin substrates in the presence of RecQ helicase and saturating adenine triphosphate let us deduce that RecQ binds to ssDNA via a near diffusion-limited reaction. More broadly, these substrates enable the precise initiation of an important class of protein–DNA interactions.
Collapse
Affiliation(s)
- Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309-0440, USA.,Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA
| | - Lyle Uyetake
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309-0440, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309-0440, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0440, USA
| |
Collapse
|
26
|
Walder R, LeBlanc MA, Van Patten WJ, Edwards DT, Greenberg JA, Adhikari A, Okoniewski SR, Sullan RMA, Rabuka D, Sousa MC, Perkins TT. Rapid Characterization of a Mechanically Labile α-Helical Protein Enabled by Efficient Site-Specific Bioconjugation. J Am Chem Soc 2017; 139:9867-9875. [PMID: 28677396 DOI: 10.1021/jacs.7b02958] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - William J Van Patten
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Devin T Edwards
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | | | - Ayush Adhikari
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - Ruby May A Sullan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| | - David Rabuka
- Catalent Biologics-West , Emeryville, California 94608, United States
| | | | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
27
|
Single-molecule studies of high-mobility group B architectural DNA bending proteins. Biophys Rev 2016; 9:17-40. [PMID: 28303166 PMCID: PMC5331113 DOI: 10.1007/s12551-016-0236-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein–DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.
Collapse
|
28
|
Zhu YL, Lu ZY, Sun ZY. The mechanism of the emergence of distinct overstretched DNA states. J Chem Phys 2016; 144:024901. [PMID: 26772584 DOI: 10.1063/1.4939623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although multiple overstretched DNA states were identified in experiments, the mechanism of the emergence of distinct states is still unclear. Molecular dynamics simulation is an ideal tool to clarify the mechanism, but the force loading rates in stretching achieved by conventional all-atom DNA models are much faster, which essentially affect overstretching states. We employed a modified coarse-grained DNA model with an unprecedented low loading rate in simulations to study the overstretching transitions of end-opened double-stranded DNA. We observed two-strand peeling off for DNA with low stability and the S-DNA with high stability under tension. By introducing a melting-forbidden model which prevents base-pair breaking, we still observed the overstretching transition induced by the formation of S-DNA due to the change of dihedral angle. Hence, we confirmed that the competition between the two strain-softening manners, i.e., base-pair breaking and dihedral angle variation, results in the emergence of distinct overstretched DNA states.
Collapse
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
29
|
Kou X, Zhang W, Zhang W. Quantifying the Interactions between PEI and Double-Stranded DNA: Toward the Understanding of the Role of PEI in Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21055-21062. [PMID: 27435435 DOI: 10.1021/acsami.6b06399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(ethylene imine) (PEI) is one of the most efficient nonviral vectors, and its binding mode/strength with double-stranded DNA (dsDNA), which is still not clear, is a core area of transfection studies. In this work we used the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) to detect the interaction between branched PEI and dsDNA quantitatively by using a long chain DNA as a probe. Our results indicate that PEI binds to phosphoric acid skeletons of dsDNA mainly via electrostatic interactions, no obvious groove-binding or intercalation has happened. The interaction strength is about 24-25 pN, and it remains unchanged at pH 5.0 and 7.4, which correspond to the pH values in lysosomes and in the cytoplasmic matrix, respectively. However, the interaction is found to be sensitive to the ionic strength of the environment. In addition, the unbinding force shows no obvious loading rate dependence indicative of equilibrium binding/unbinding.
Collapse
Affiliation(s)
- Xiaolong Kou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| |
Collapse
|
30
|
Bongini L, Pongor C, Falorsi G, Pertici I, Kellermayer M, Lombardi V, Bianco P. An AT-barrier mechanically controls DNA reannealing under tension. Nucleic Acids Res 2016; 44:7954-62. [PMID: 27378772 PMCID: PMC5027502 DOI: 10.1093/nar/gkw604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained λ-phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ∼750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ∼210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.
Collapse
Affiliation(s)
- L Bongini
- PhysioLab, Department of Biology, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - C Pongor
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47 Budapest IX, H-1094 Hungary
| | - G Falorsi
- PhysioLab, Department of Biology, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - I Pertici
- PhysioLab, Department of Biology, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - M Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47 Budapest IX, H-1094 Hungary
| | - V Lombardi
- PhysioLab, Department of Biology, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - P Bianco
- PhysioLab, Department of Biology, University of Florence, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J Struct Biol 2016; 197:26-36. [PMID: 27368129 DOI: 10.1016/j.jsb.2016.06.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/21/2022]
Abstract
Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come.
Collapse
|
32
|
King GA, Peterman EJG, Wuite GJL. Unravelling the structural plasticity of stretched DNA under torsional constraint. Nat Commun 2016; 7:11810. [PMID: 27263853 PMCID: PMC4897764 DOI: 10.1038/ncomms11810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/29/2016] [Indexed: 01/26/2023] Open
Abstract
Regions of the genome are often held under torsional constraint. Nevertheless, the influence of such constraint on DNA-protein interactions during genome metabolism is still poorly understood. Here using a combined optical tweezers and fluorescence microscope, we quantify and explain how torsional constraint influences the structural stability of DNA under applied tension. We provide direct evidence that concomitant basepair melting and helical unwinding can occur in torsionally constrained DNA at forces >∼50 pN. This striking result indicates that local changes in linking number can be absorbed by the rest of the DNA duplex. We also present compelling new evidence that an overwound DNA structure (likely P-DNA) is created (alongside underwound structures) at forces >∼110 pN. These findings substantiate previous theoretical predictions and highlight a remarkable structural plasticity of torsionally constrained DNA. Such plasticity may be required in vivo to absorb local changes in linking number in DNA held under torsional constraint.
Collapse
Affiliation(s)
- Graeme A King
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Pawlak K, Strzelecki J. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments. Ultramicroscopy 2016; 164:17-23. [DOI: 10.1016/j.ultramic.2016.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 01/05/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
|
34
|
Bruot C, Xiang L, Palma JL, Li Y, Tao N. Tuning the Electromechanical Properties of Single DNA Molecular Junctions. J Am Chem Soc 2015; 137:13933-7. [DOI: 10.1021/jacs.5b08668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Bruot
- Center
for Bioelectronics and Biosensors, Biodesign Institute School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Limin Xiang
- Center
for Bioelectronics and Biosensors, Biodesign Institute School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Julio L. Palma
- Center
for Bioelectronics and Biosensors, Biodesign Institute School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Yueqi Li
- Center
for Bioelectronics and Biosensors, Biodesign Institute School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5801, United States
| | - Nongjian Tao
- Center
for Bioelectronics and Biosensors, Biodesign Institute School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5801, United States
| |
Collapse
|
35
|
Lei H, Hu X, Zhu P, Chang X, Zeng Y, Hu C, Li H, Hu X. Nano-level position resolution for particle tracking in digital in-line holographic microscopy. J Microsc 2015; 260:100-6. [PMID: 26239892 DOI: 10.1111/jmi.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 11/30/2022]
Abstract
Three-dimensional particle tracking in biological systems is a quickly growing field, many techniques have been developed providing tracking characters. Digital in-line holographic microscopy is a valuable technique for particle tracking. However, the speckle noise, out-of-focus signals and twin image influenced the particle tracking. Here an adaptive noise reduction method based on bidimensional ensemble empirical mode decomposition is introduced into digital in-line holographic microscopy. It can eliminate the speckle noise and background of the hologram adaptively. Combined with the three-dimensional deconvolution approach in the reconstruction, the particle feature would be identified effectively. Tracking the fixed beads on the cover-glass with piezoelectric stage through multiple holographic images demonstrate the tracking resolution, which approaches 2 nm in axial direction and 1 nm in transverse direction. This would facilitate the development and use in the biological area such as living cells and single-molecule approaches.
Collapse
Affiliation(s)
- H Lei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - X Hu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - P Zhu
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, 300072, China
| | - X Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - Y Zeng
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - C Hu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| | - H Li
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - X Hu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
36
|
Ander M, Subramaniam S, Fahmy K, Stewart AF, Schäffer E. A Single-Strand Annealing Protein Clamps DNA to Detect and Secure Homology. PLoS Biol 2015; 13:e1002213. [PMID: 26271032 PMCID: PMC4535883 DOI: 10.1371/journal.pbio.1002213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/26/2015] [Indexed: 11/24/2022] Open
Abstract
Repair of DNA breaks by single-strand annealing (SSA) is a major mechanism for the maintenance of genomic integrity. SSA is promoted by proteins (single-strand-annealing proteins [SSAPs]), such as eukaryotic RAD52 and λ phage Redβ. These proteins use a short single-stranded region to find sequence identity and initiate homologous recombination. However, it is unclear how SSAPs detect homology and catalyze annealing. Using single-molecule experiments, we provide evidence that homology is recognized by Redβ monomers that weakly hold single DNA strands together. Once annealing begins, dimerization of Redβ clamps the double-stranded region and nucleates nucleoprotein filament growth. In this manner, DNA clamping ensures and secures a successful detection for DNA sequence homology. The clamp is characterized by a structural change of Redβ and a remarkable stability against force up to 200 pN. Our findings not only present a detailed explanation for SSAP action but also identify the DNA clamp as a very stable, noncovalent, DNA-protein interaction.
Collapse
Affiliation(s)
- Marcel Ander
- Nanomechanics Group, Biotechnology Center, TU Dresden, Dresden, Germany
| | | | - Karim Fahmy
- Division of Biophysics, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A. Francis Stewart
- Department of Genomics, Biotechnology Center, TU Dresden, Dresden, Germany
| | - Erik Schäffer
- Nanomechanics Group, Biotechnology Center, TU Dresden, Dresden, Germany
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), Universität Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
38
|
Le S, Yao M, Chen J, Efremov AK, Azimi S, Yan J. Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies. Nucleic Acids Res 2015; 43:e113. [PMID: 26007651 PMCID: PMC4787821 DOI: 10.1093/nar/gkv554] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Single-molecule manipulation technologies have been extensively applied to studies of the structures and interactions of DNA and proteins. An important aspect of such studies is to obtain the dynamics of interactions; however the initial binding is often difficult to obtain due to large mechanical perturbation during solution introduction. Here, we report a simple disturbance-free rapid solution exchange method for magnetic tweezers single-molecule manipulation experiments, which is achieved by tethering the molecules inside microwells (typical dimensions–diameter (D): 40–50 μm, height (H): 100 μm; H:D∼2:1). Our simulations and experiments show that the flow speed can be reduced by several orders of magnitude near the bottom of the microwells from that in the flow chamber, effectively eliminating the flow disturbance to molecules tethered in the microwells. We demonstrate a wide scope of applications of this method by measuring the force dependent DNA structural transitions in response to solution condition change, and polymerization dynamics of RecA on ssDNA/SSB-coated ssDNA/dsDNA of various tether lengths under constant forces, as well as the dynamics of vinculin binding to α-catenin at a constant force (< 5 pN) applied to the α-catenin protein.
Collapse
Affiliation(s)
- Shimin Le
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Jin Chen
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Sara Azimi
- Department of Physics, National University of Singapore, 117542, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore Department of Physics, National University of Singapore, 117542, Singapore Centre for Bioimaging Sciences, National University of Singapore, 117557, Singapore
| |
Collapse
|
39
|
Bongini L, Lombardi V, Bianco P. The transition mechanism of DNA overstretching: a microscopic view using molecular dynamics. J R Soc Interface 2015; 11:20140399. [PMID: 24920111 DOI: 10.1098/rsif.2014.0399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The overstretching transition in torsionally unconstrained DNA is studied by means of atomistic molecular dynamics simulations. The free-energy profile as a function of the length of the molecule is determined through the umbrella sampling technique providing both a thermodynamic and a structural characterization of the transition pathway. The zero-force free-energy profile is monotonic but, in accordance with recent experimental evidence, becomes two-state at high forces. A number of experimental results are satisfactorily predicted: (i) the entropic and enthalpic contributions to the free-energy difference between the basic (B) state and the extended (S) state; (ii) the longitudinal extension of the transition state and (iii) the enthalpic contribution to the transition barrier. A structural explanation of the experimental finding that overstretching is a cooperative reaction characterized by elementary units of approximately 22 base pairs is found in the average distance between adenine/thymine-rich regions along the molecule. The overstretched DNA adopts a highly dynamical and structurally disordered double-stranded conformation which is characterized by residual base pairing, formation of non-native intra-strand hydrogen bonds and effective hydrophobic screening of apolar regions.
Collapse
Affiliation(s)
- L Bongini
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - V Lombardi
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - P Bianco
- Laboratory of Physiology, Department of Biology, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
40
|
Zhang X, Qu Y, Chen H, Rouzina I, Zhang S, Doyle PS, Yan J. Interconversion between Three Overstretched DNA Structures. J Am Chem Soc 2014; 136:16073-80. [DOI: 10.1021/ja5090805] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xinghua Zhang
- BioSystems
and Micromechanics, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411,Singapore
| | - Yuanyuan Qu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre
for Bioimaging Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Hu Chen
- Mechanobiology
Institute, National University of Singapore, Singapore 117411,Singapore
- Department
of Physics, Xiamen University, Xiamen 361005, China
| | - Ioulia Rouzina
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shengli Zhang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Department
of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Patrick S. Doyle
- BioSystems
and Micromechanics, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jie Yan
- BioSystems
and Micromechanics, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411,Singapore
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre
for Bioimaging Sciences, National University of Singapore, Singapore 117546, Singapore
| |
Collapse
|
41
|
Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA. Proc Natl Acad Sci U S A 2014; 111:15408-13. [PMID: 25313077 DOI: 10.1073/pnas.1407197111] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force-torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed "P-RNA," and a highly underwound, left-handed state denoted "L-RNA." Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA: Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA-protein interactions at the single-molecule level.
Collapse
|
42
|
Bezrukavnikov S, Mashaghi A, van Wijk RJ, Gu C, Yang LJ, Gao YQ, Tans SJ. Trehalose facilitates DNA melting: a single-molecule optical tweezers study. SOFT MATTER 2014; 10:7269-77. [PMID: 25096217 DOI: 10.1039/c4sm01532k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Using optical tweezers, here we show that the overstretching transition force of double-stranded DNA (dsDNA) is lowered significantly by the addition of the disaccharide trehalose as well as certain polyol osmolytes. This effect is found to depend linearly on the logarithm of the trehalose concentration. We propose an entropic driving mechanism for the experimentally observed destabilization of dsDNA that is rooted in the higher affinity of the DNA bases for trehalose than for water, which promotes base exposure and DNA melting. Molecular dynamics simulation reveals the direct interaction of trehalose with nucleobases. Experiments with other osmolytes confirm that the extent of dsDNA destabilization is governed by the ratio between polar and apolar fractions of an osmolyte.
Collapse
|
43
|
Bosaeus N, El-Sagheer AH, Brown T, Åkerman B, Nordén B. Force-induced melting of DNA--evidence for peeling and internal melting from force spectra on short synthetic duplex sequences. Nucleic Acids Res 2014; 42:8083-91. [PMID: 24838568 PMCID: PMC4081069 DOI: 10.1093/nar/gku441] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Overstretching of DNA occurs at about 60-70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or both strands carry the tension, or a B-to-S transition into a longer, still base-paired conformation. We stretch sequence-designed oligonucleotides in an effort to isolate the three processes, focusing on force-induced melting. By introducing site-specific inter-strand cross-links in one or both ends of a 64 bp AT-rich duplex we could repeatedly follow the two melting processes at 5 mM and 1 M monovalent salt. We find that when one end is sealed the AT-rich sequence undergoes peeling exhibiting hysteresis at low and high salt. When both ends are sealed the AT sequence instead undergoes internal melting. Thirdly, the peeling melting is studied in a composite oligonucleotide where the same AT-rich sequence is concatenated to a GC-rich sequence known to undergo a B-to-S transition rather than melting. The construct then first melts in the AT-rich part followed at higher forces by a B-to-S transition in the GC-part, indicating that DNA overstretching modes are additive.
Collapse
Affiliation(s)
- Niklas Bosaeus
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| | - Afaf H El-Sagheer
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Björn Åkerman
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| | - Bengt Nordén
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg S41296, Sweden
| |
Collapse
|
44
|
Strzelecki J, Peplowski L, Lenartowski R, Nowak W, Balter A. Mechanical transition in a highly stretched and torsionally constrained DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:020701. [PMID: 25353406 DOI: 10.1103/physreve.89.020701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 06/04/2023]
Abstract
We show results of our high force (up to 1.8 nN) atomic force microscopy force spectroscopy measurements of a double stranded DNA. We have found that the force spectra of torsionally constrained molecules display a small plateau occurring at a force of approximately 1 nN. This transition is absent in molecules with rotational freedom. Based on all-atom molecular dynamics simulations, we suggest that this plateau is a result of reducing the diameter of a double helix through extreme stretching. The simulation suggests that the molecule is forced into a form resembling an underwound P-DNA, with bases protruding outside of the backbones. These results broaden our understanding of the fundamental aspects of DNA nanomechanics.
Collapse
Affiliation(s)
- Janusz Strzelecki
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| | - Robert Lenartowski
- Faculty of Biology and Environment Protection, Laboratory of Isotope and Instrumental Analysis, Lwowska 1, 87-100 Toruń, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| | - Aleksander Balter
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
45
|
Heller I, Hoekstra TP, King GA, Peterman EJG, Wuite GJL. Optical tweezers analysis of DNA-protein complexes. Chem Rev 2014; 114:3087-119. [PMID: 24443844 DOI: 10.1021/cr4003006] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Iddo Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam , De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Bongini L, Melli L, Lombardi V, Bianco P. Transient kinetics measured with force steps discriminate between double-stranded DNA elongation and melting and define the reaction energetics. Nucleic Acids Res 2013; 42:3436-49. [PMID: 24353317 PMCID: PMC3950695 DOI: 10.1093/nar/gkt1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Under a tension of ∼65 pN, double-stranded DNA undergoes an overstretching transition from its basic (B-form) conformation to a 1.7 times longer conformation whose nature is only recently starting to be understood. Here we provide a structural and thermodynamic characterization of the transition by recording the length transient following force steps imposed on the λ-phage DNA with different melting degrees and temperatures (10–25°C). The shortening transient following a 20–35 pN force drop from the overstretching force shows a sequence of fast shortenings of double-stranded extended (S-form) segments and pauses owing to reannealing of melted segments. The lengthening transients following a 2–35 pN stretch to the overstretching force show the kinetics of a two-state reaction and indicate that the whole 70% extension is a B-S transition that precedes and is independent of melting. The temperature dependence of the lengthening transient shows that the entropic contribution to the B-S transition is one-third of the entropy change of thermal melting, reinforcing the evidence for a double-stranded S-form that maintains a significant fraction of the interstrand bonds. The cooperativity of the unitary elongation (22 bp) is independent of temperature, suggesting that structural factors, such as the nucleic acid sequence, control the transition.
Collapse
Affiliation(s)
- Lorenzo Bongini
- Laboratorio di Fisiologia, Dipartimento di Biologia, Università degli Studi di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
47
|
Marko JF, Neukirch S. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062722. [PMID: 24483501 PMCID: PMC3936674 DOI: 10.1103/physreve.88.062722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 06/01/2023]
Abstract
We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ=-5 to +3.
Collapse
Affiliation(s)
- John F Marko
- Department of Physics and Astronomy and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Sébastien Neukirch
- CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France and UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| |
Collapse
|
48
|
Pupo AEB, Falo F, Fiasconaro A. DNA overstretching transition induced by melting in a dynamical mesoscopic model. J Chem Phys 2013; 139:095101. [DOI: 10.1063/1.4819263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
49
|
Romano F, Chakraborty D, Doye JPK, Ouldridge TE, Louis AA. Coarse-grained simulations of DNA overstretching. J Chem Phys 2013; 138:085101. [PMID: 23464177 DOI: 10.1063/1.4792252] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We use a recently developed coarse-grained model to simulate the overstretching of duplex DNA. Overstretching at 23 °C occurs at 74 pN in the model, about 6-7 pN higher than the experimental value at equivalent salt conditions. Furthermore, the model reproduces the temperature dependence of the overstretching force well. The mechanism of overstretching is always force-induced melting by unpeeling from the free ends. That we never see S-DNA (overstretched duplex DNA), even though there is clear experimental evidence for this mode of overstretching under certain conditions, suggests that S-DNA is not simply an unstacked but hydrogen-bonded duplex, but instead probably has a more exotic structure.
Collapse
Affiliation(s)
- Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Paik DH, Roskens VA, Perkins TT. Torsionally constrained DNA for single-molecule assays: an efficient, ligation-free method. Nucleic Acids Res 2013; 41:e179. [PMID: 23935118 PMCID: PMC3799452 DOI: 10.1093/nar/gkt699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Controlled twisting of individual, double-stranded DNA molecules provides a unique method to investigate the enzymes that alter DNA topology. Such twisting requires a single DNA molecule to be torsionally constrained. This constraint is achieved by anchoring the opposite ends of the DNA to two separate surfaces via multiple bonds. The traditional protocol for making such DNA involves a three-way ligation followed by gel purification, a laborious process that often leads to low yield both in the amount of DNA and the fraction of molecules that is torsionally constrained. We developed a simple ligation-free procedure for making torsionally constrained DNA via polymerase chain reaction (PCR). This PCR protocol used two 'megaprimers', 400-base-pair long double-stranded DNA that were labelled with either biotin or digoxigenin. We obtained a relatively high yield of gel-purified DNA (∼500 ng/100 µl of PCR reaction). The final construct in this PCR-based method contains only one labelled strand in contrast to the traditional construct in which both strands of the DNA are labelled. Nonetheless, we achieved a high yield (84%) of torsionally constrained DNA when measured using an optical-trap-based DNA-overstretching assay. This protocol significantly simplifies the application and adoption of torsionally constrained assays to a wide range of single-molecule systems.
Collapse
Affiliation(s)
- D Hern Paik
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|