1
|
Maulana MI, Jo TH, Lee HY, Lee C, Gyan-Barimah C, Shin CH, Yu JH, Lee KS, Back S, Yu JS. Cobalt Nitride-Implanted PtCo Intermetallic Nanocatalysts for Ultrahigh Fuel Cell Cathode Performance. J Am Chem Soc 2024. [PMID: 39470439 DOI: 10.1021/jacs.4c09514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Stable and active oxygen reduction electrocatalysts are essential for practical fuel cells. Herein, we report a novel class of highly ordered platinum-cobalt (Pt-Co) alloys embedded with cobalt nitride. The intermetallic core-shell catalyst demonstrates an initial mass activity of 0.88 A mgPt-1 at 0.9 V with 71% retention after 30,000 potential cycles of an aggressive square-wave accelerated durability test and loses only 9% of its electrochemical surface area, far exceeding the US Department of Energy 2025 targets, with unprecedented stability and only a minimal voltage loss under practical fuel cell operating conditions. We discover that regulating the atomic ordering in the core results in an optimal lattice configuration that accelerates the oxygen reduction kinetics. The presence of cobalt nitride decorated within PtCo superlattices guarantees a larger barrier to Co dissolution, leading to the excellent endurance of the electrocatalysts. This work brings up a transformative structural engineering strategy for rationally designing high-performing Pt-based catalysts with a unique atomic configuration for broad practical uses in energy conversion technology.
Collapse
Affiliation(s)
- Muhammad Irfansyah Maulana
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Tae Hwan Jo
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Ha-Young Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- UE Science, R7-507, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Caleb Gyan-Barimah
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Cheol-Hwan Shin
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeong-Hoon Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul 04107, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- UE Science, R7-507, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea
| |
Collapse
|
2
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Li JR, Liu MX, Liu X, Yu XH, Li QZ, Sun Q, Sun T, Cao S, Hou CC. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. SMALL METHODS 2024; 8:e2301249. [PMID: 38012517 DOI: 10.1002/smtd.202301249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) are gaining significant interest as an attractive substitute for traditional fuel cells, with higher energy density, lower environmental pollution, and better operation efficiency. However, the cathode reaction, i.e., the oxygen reduction reaction (ORR), is widely proved to be inefficient, and therefore an obstacle to the widespread development of PEMFCs. The requirement for affordable highly-efficient ORR catalysts is extremely urgent to be met, especially at fuel cell level. Unfortunately, most previous reports focus on the ORR performance at rotating disk electrodes (RDE) level instead of membrane electrode assembly (MEA) level, making it harder to evaluate ORR catalysts operating under real vehicle conditions. Obviously, it is extremely necessary to develop an in-depth understanding of the structure-activity relationship of highly-efficient ORR catalysts applied at MEA level. In this work, an overview of the latest advances in ORR catalysts is provided with an emphasis on their performance at MEA level, hoping to cover the novel and systemic insights for innovative and efficient ORR catalyst design and applications in PEMFCs.
Collapse
Affiliation(s)
- Jin-Rong Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ming-Xu Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiang-Hui Yu
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qin-Zhu Li
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Qi Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
4
|
Maity N, Mishra A, Barman S, Padhi SK, Panda BB, Jaseer EA, Javid M. Tuning Pd-to-Ag Ratio to Enhance the Synergistic Activity of Fly Ash-Supported Pd xAg y Bimetallic Nanoparticles. ACS OMEGA 2024; 9:1020-1028. [PMID: 38222517 PMCID: PMC10785790 DOI: 10.1021/acsomega.3c07246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Fly ash (FA)-supported bimetallic nanoparticles (PdxAgy/FA) with varying Pd:Ag ratios were prepared by coprecipitation of Pd and Ag involving in situ reduction of Pd(II) and Ag(I) salts in aqueous medium. All the supported nanoparticles were thoroughly characterized with the aid of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM)), and elemental analyses, which include inductively coupled plasma-optical emission spectroscopy (ICP-OES) and energy-dispersive X-ray spectroscopy (EDS). A gradual broadening and shifting of PXRD peaks, ascribable to Ag, to higher angles with an increase in the Pd:Ag ratio affirms the alloying of interface between Pd and Ag nanoparticles. The coexistence of Pd and Ag was further confirmed by EDS elemental mapping as well as by the presence of bimetallic lattices on the FA surface, as evident from the high-resolution TEM analysis. The dependency of crystallite size and average size of bimetallic nanoparticles on Ag loading (mol %) was elucidated with the help of a combination of PXRD and TEM studies. Based on XPS analysis, the charge transfer phenomenon between contacting Pd-Ag sites could be evident from the shifting of 3d core electron binding energy for both Pd and Ag compared with monometallic Pd and Ag nanoparticles. Following a pseudo-first-order reaction kinetics, all the nanocatalysts were able to efficiently reduce 4-nitrophenol into 4-aminophenol in aqueous NaBH4. The superior catalytic performance of the bimetallic nanocatalysts (PdxAgy/FA) over their monometallic (Pd100/FA and Ag100/FA) analogues has been demonstrated. Moreover, the tunable synergistic effect of the bimetallic systems has been explored in detail by varying the Pd:Ag mol ratio in a systematic manner which in turn allowed us to achieve an optimum reaction rate (k = 1.050 min-1) for the nitrophenol reduction using a Pd25Ag75/FA system. Most importantly, all the bimetallic nanocatalysts explored here exhibited excellent normalized rate constants (K ≈ 6000-15,000 min-1 mmol-1) compared with other supported bimetallic Pd-Ag nanocatalysts reported in the literature.
Collapse
Affiliation(s)
- Niladri Maity
- Interdisciplinary
Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Aman Mishra
- Artificial
Photosynthesis Laboratory, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Samir Barman
- Interdisciplinary
Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Sumanta Kumar Padhi
- Artificial
Photosynthesis Laboratory, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Binod Bihari Panda
- Department
of Chemistry, Indira Gandhi Institute of
Technology, Sarang, Dhenkanal, Odisha 759146, India
| | - E. A. Jaseer
- Interdisciplinary
Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Mohamed Javid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
6
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
7
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ou Z, An Z, Ma Z, Li N, Han Y, Yang G, Jiang Q, Chen Q, Chu W, Wang S, Yu T, Yang W. 3D Porous Graphene-like Carbons Encaged Single-Atom-Based Pt for Ultralow Loading and High-Performance Fuel Cells. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zuqiao Ou
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Zhao An
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhong Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
| | - Nan Li
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Yinuo Han
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Ganjun Yang
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Qike Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Qiang Chen
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Wenling Chu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Suli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
9
|
Qiu YP, Shi Q, Wang WZ, Xia SH, Dai H, Yin H, Yang ZQ, Wang P. Facile Synthesis of Highly Dispersed and Well-Alloyed Bimetallic Nanoparticles on Oxide Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106143. [PMID: 35199957 DOI: 10.1002/smll.202106143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Supported alloy catalysts play a pivotal role in many heterogeneous catalytic processes of socioeconomic and environmental importance. But the controlled synthesis of supported alloy nanoparticles with consistent composition and tight size distribution remains a challenging issue. Herein, a simple yet effective method for preparation of highly dispersed, homogeneously alloyed bimetallic nanoparticles on oxide supports is reported. This method is based on solid solution of metal cations in parent oxide and strong electrostatic adsorption of a secondary metal species onto the oxide surface. In the reductive annealing process, hydrogen spillover occurs from the surface metal with a higher reduction potential to the solute metal in solid solution, leading to metal exsolution and homogenous alloying of the metals on the oxide surface. The ceria-supported Ni-Pt alloy is chosen as a model catalyst and hydrazine monohydrate decomposition is chosen as a probe reaction to demonstrate this method, and particularly its advantages over the conventional impregnation and galvanic replacement methods. A systematic application of this method using different oxides and base-noble metal pairs further elucidates its applicability and generality.
Collapse
Affiliation(s)
- Yu-Ping Qiu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qing Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wei-Zhen Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Su-Hong Xia
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Hao Dai
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hui Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | | | - Ping Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
10
|
Ren S, Wu Z, Chen R, Zhang X, Zhou W. Highly Efficient Oxygen Reduction Reaction Electro-catalyzed by Ultra-small Pt@Mn Core-shell Nanoparticles. Chem Asian J 2022; 17:e202200473. [PMID: 35775316 DOI: 10.1002/asia.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Indexed: 11/07/2022]
Abstract
Electro-catalyzed oxygen reduction reaction (ORR), as the positive electrode reaction, is significant to the performance of fuel cells and metal-air batteries. Toward ORR, ultra-small Pt@Mn core-shell nanoparticles catalysts supported on Ketjen black are synthesized by a simple one-pot hydrothermal method. TEM results show that the Pt@Mn/C nanoparticles with an average size of 3~4 nm are uniformly distributed on the carbon surface. ORR performance of the electrocatalysts show that Pt@Mn/C exhibits better oxygen reduction activity than Pt/C (20 wt%) in a KOH solution. Methanol tolerance ability as well as the durability of the Pt@Mn/C is also superior to the performance of Pt/C, suggesting an enhanced ORR activity upon the introduction of Mn.
Collapse
Affiliation(s)
- Shiwen Ren
- Shanghai University, Department of Chemistry, CHINA
| | - Zhenyu Wu
- Shanghai University, Department of Chemistry, CHINA
| | - Rile Chen
- Shanghai University, Department of Chemistry, CHINA
| | | | - Wei Zhou
- Shanghai University, Department of Chemistry, Shangda Road 99, 200444, Shanghai, CHINA
| |
Collapse
|
11
|
Abstract
ConspectusProton-exchange membrane fuel cells (PEMFCs) are highly efficient energy storage and conversion devices. Thus, the platinum group metal (PGM)-based catalysts which are the dominant choice for the PEMFCs have received extensive interest during the past couple of decades. However, the drawbacks in the existing PGM-based catalysts (i.e., high cost, slow kinetics, poor stability, etc.) still limit their applications in fuel cells. The Pt-based core-shell catalysts potentially alleviate these issues through the low Pt loading with the associated low cost and the high corrosion resistance and further improve the oxygen reduction reaction's (ORR's) activity and stability. This Account focuses on the synthetic strategies, catalytic mechanisms, factors influencing enhanced ORR performance, and applications in PEMFCs for the Pt-based core-shell catalysts. We first highlight the synthetic strategies for Pt-based core-shell catalysts including the galvanic displacement of an underpotentially deposited non-noble metal monolayer, thermal annealing, and dealloying methods, which can be scaled-up to meet the requirements of fuel cell operations. Subsequently, catalytic mechanisms such as the self-healing mechanism in the Pt monolayer on Pd core catalysts, the pinning effect of nitrogen (N) dopants in N-doped PtNi core-shell catalysts, and the ligand effect of the ordered intermetallic structure in L10-Pt/CoPt core-shell catalysts and their synergistic effects in N-doped L10-PtNi catalysts are described in detail. The core-shell structure in the Pt-based catalysts have two main effects for enhanced ORR performance: (i) the interaction between Pt shells and core substrates can tune the electronic state of the surface Pt, thus boosting the ORR activity and stability, and (ii) the outer Pt shell with modest thickness can enhance the oxidation and dissolution resistance of the core, resulting in improved durability. We then review the recent attempts to optimize the ORR performance of the Pt-based core-shell catalysts by considering the shape, composition, surface orientation, and shell thickness. The factors influencing the ORR performance can be grouped into two categories: the effect of the core and the effect of the shell. In the former, PtM core-shell catalysts which use different non-PGM element cores (M) are summarized, and in the latter, Pt-based core-shell catalysts with different shell structures and compositions are described. The modifications of the core and/or shell structure can not only optimize the intermediate-binding energetics on the Pt surface through tuning the strain of the surface Pt, which increases the intrinsic activity and stability, but also offer a significantly decreased catalyst cost. Finally, we discuss the membrane electrode assembly performance of Pt-based core-shell catalysts in fuel cell cathodes and evaluate their potential in real PEMFCs for light-duty and heavy-duty vehicle applications. Even though some challenges to the activity and lifetime in the fuel cells remain, the Pt-based core-shell catalysts are expected to be promising for many practical PEMFC applications.
Collapse
Affiliation(s)
- Xueru Zhao
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
12
|
Shi W, Park AH, Kwon YU. Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Xiao D, Jiang Q, Xu C, Yang C, Yang L, He H, Huang H. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. J Colloid Interface Sci 2022; 616:781-790. [PMID: 35247815 DOI: 10.1016/j.jcis.2022.02.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g-1, a high mass activity of 1526.5 mA mg-1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.
Collapse
Affiliation(s)
- Di Xiao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Chenyu Xu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Cuizhen Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|
14
|
Ahn CY, Park JE, Kim S, Kim OH, Hwang W, Her M, Kang SY, Park S, Kwon OJ, Park HS, Cho YH, Sung YE. Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chem Rev 2021; 121:15075-15140. [PMID: 34677946 DOI: 10.1021/acs.chemrev.0c01337] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.
Collapse
Affiliation(s)
- Chi-Yeong Ahn
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ji Eun Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungjun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Ok-Hee Kim
- Department of Science, Republic of Korea Naval Academy, Jinhae-gu, Changwon 51704, South Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Min Her
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sun Young Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - SungBin Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Oh Joong Kwon
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, South Korea
| | - Hyun S Park
- Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yong-Hun Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,Department of Chemical Engineering, Kangwon National University, Samcheok 25913, South Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea.,School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
15
|
Shi F, Peng J, Li F, Qian N, Shan H, Tao P, Song C, Shang W, Deng T, Zhang H, Wu J. Design of Highly Durable Core-Shell Catalysts by Controlling Shell Distribution Guided by In-Situ Corrosion Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101511. [PMID: 34346100 DOI: 10.1002/adma.202101511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Most degradations in electrocatalysis are caused by corrosion in operation, for example the corrosion of the core in a core-shell electrocatalyst during the oxygen reduction reaction (ORR). Herein, according to the in-situ study on nanoscale corrosion kinetics via liquid cell transmission electron microscopy (LC-TEM) in the authors' previous work, they sequentially designed an optimized nanocube with the protection of more layers on the corners by adjusting the Pt atom distribution on corners and terraces. This modified nanocube (MNC) is much more corrosion resistant in the in-situ observation. Furthermore, in the practical electrochemical stability testing, the MNC catalyst also showed the best stability performance with the 0.37% and 9.01% loss in specific and mass activity after 30 000 cycles accelerated durability test (ADT). This work also demonstrates that how an in-situ study can guide the design of desired materials with improved properties and build a bridge between in-situ study and practical application.
Collapse
Affiliation(s)
- Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Ningkang Qian
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
- Hydrogen Science Research Center, Shanghai Jiao Tong University, Shanghai, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
16
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Yu Z, Xu S, Feng Y, Yang C, Yao Q, Shao Q, Li YF, Huang X. Phase-Controlled Synthesis of Pd-Se Nanocrystals for Phase-Dependent Oxygen Reduction Catalysis. NANO LETTERS 2021; 21:3805-3812. [PMID: 33878871 DOI: 10.1021/acs.nanolett.1c00147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Searching for highly efficient oxygen reduction reaction (ORR) electrocatalysts for fuel cell technology, in which the crystal structure plays a powerful role in regulating the electrocatalysis, is urgent yet challenging. Herein, we have explored the active and stable Pd-Se alloy electrocatalysts with controlled phase toward alkaline ORR. The phase-controlled Pd-Se nanoparticles (NPs) show interesting phase-dependent electrocatalytic performance, in which the Pd17Se15 NPs/C exhibits much better ORR performance than its counterpart, Pd7Se4 NPs/C, and the commercial Pd/C and Pt/C. Based on the detailed analysis, Pd in Pd17Se15 possesses more Se atom coordination and a higher valence state, thus providing a stronger capacity for the absorption of oxygenated species. DFT further reveals more charge transfer from the Pd17Se15 surface to the *OOH intermediate, which is the reason for the activity enhancement.
Collapse
Affiliation(s)
- Zhiyong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Shulin Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yonggang Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Chengyong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Qing Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Ya-Fei Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Yaqoob L, Noor T, Iqbal N. A comprehensive and critical review of the recent progress in electrocatalysts for the ethanol oxidation reaction. RSC Adv 2021; 11:16768-16804. [PMID: 35479139 PMCID: PMC9032615 DOI: 10.1039/d1ra01841h] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
The human craving for energy is continually mounting and becoming progressively difficult to gratify. At present, the world's massive energy demands are chiefly encountered by nonrenewable and benign fossil fuels. However, the development of dynamic energy cradles for a gradually thriving world to lessen fossil fuel reserve depletion and environmental concerns is currently a persistent issue for society. The discovery of copious nonconventional resources to fill the gap between energy requirements and supply is the extreme obligation of the modern era. A new emergent, clean, and robust alternative to fossil fuels is the fuel cell. Among the different types of fuel cells, the direct ethanol fuel cell (DEFCs) is an outstanding option for light-duty vehicles and portable devices. A critical tactic for obtaining sustainable energy sources is the production of highly proficient, economical and green catalysts for energy storage and conversion devices. To date, a broad range of research is available for using Pt and modified Pt-based electrocatalysts to augment the C2H5OH oxidation process. Pt-based nanocubes, nanorods, nanoflowers, and the hybrids of Pt with metal oxides such as Fe2O3, TiO2, SnO2, MnO, Cu2O, and ZnO, and with conducting polymers are extensively utilized in both acidic and basic media. Moreover, Pd-based materials, transition metal-based materials, as well as transition metal-based materials are also points of interest for researchers nowadays. This review article delivers a broad vision of the current progress of the EOR process concerning noble metals and transition metals-based materials.
Collapse
Affiliation(s)
- Lubna Yaqoob
- School of Natural Sciences (SNS), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan +92 51 9085 5121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan
| |
Collapse
|
19
|
McGuire SC, Ebrahim AM, Hurley N, Zhang L, Frenkel AI, Wong SS. Reconciling structure prediction of alloyed, ultrathin nanowires with spectroscopy. Chem Sci 2021; 12:7158-7173. [PMID: 34123343 PMCID: PMC8153242 DOI: 10.1039/d1sc00627d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023] Open
Abstract
A number of complementary, synergistic advances are reported herein. First, we describe the 'first-time' synthesis of ultrathin Ru2Co1 nanowires (NWs) possessing average diameters of 2.3 ± 0.5 nm using a modified surfactant-mediated protocol. Second, we utilize a combination of quantitative EDS, EDS mapping (along with accompanying line-scan profiles), and EXAFS spectroscopy results to probe the local atomic structure of not only novel Ru2Co1 NWs but also 'control' samples of analogous ultrathin Ru1Pt1, Au1Ag1, Pd1Pt1, and Pd1Pt9 NWs. We demonstrate that ultrathin NWs possess an atomic-level geometry that is fundamentally dependent upon their intrinsic chemical composition. In the case of the PdPt NW series, EDS mapping data are consistent with the formation of a homogeneous alloy, a finding further corroborated by EXAFS analysis. By contrast, EXAFS analysis results for both Ru1Pt1 and Ru2Co1 imply the generation of homophilic structures in which there is a strong tendency for the clustering of 'like' atoms; associated EDS results for Ru1Pt1 convey the same conclusion, namely the production of a heterogeneous structure. Conversely, EDS mapping data for Ru2Co1 suggests a uniform distribution of both elements. In the singular case of Au1Ag1, EDS mapping results are suggestive of a homogeneous alloy, whereas EXAFS analysis pointed to Ag segregation at the surface and an Au-rich core, within the context of a core-shell structure. These cumulative outcomes indicate that only a combined consideration of both EDS and EXAFS results can provide for an accurate representation of the local atomic structure of ultrathin NW motifs.
Collapse
Affiliation(s)
- Scott C McGuire
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| | - Amani M Ebrahim
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook New York 11794-2275 USA
| | - Nathaniel Hurley
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory Upton New York 11973 USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University Stony Brook New York 11794-2275 USA
- Chemistry Division, Brookhaven National Laboratory Upton New York 11973 USA
| | - Stanislaus S Wong
- Department of Chemistry, Stony Brook University Stony Brook New York 11794-3400 USA
| |
Collapse
|
20
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Top Curr Chem (Cham) 2021; 379:22. [PMID: 33890199 DOI: 10.1007/s41061-021-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
In recent years, bimetallic and trimetallic nanoparticles (NPs) have become attractive materials for many researchers especially in the field of catalysis due to their interesting physical and chemical properties. These unique properties arise mainly from simultaneous effects of two different metal atoms in their structure. In this review, recent theoretical studies on these NPs using molecular dynamics simulation are presented. Since investigation of thermodynamic stabilities of metallic NPs is a critical factor in their construction for catalytic applications, our focus in this review is on the thermal stability of bimetallic and trimetallic NPs. The melting behavior of these materials with different atomic arrangements including core-shell, three-shell, crown-jewel, ordered and disordered alloy, and Janus materials are discussed. Other factors including stress, strain, atomic radius, thermal expansion coefficient, cohesive energy, surface energy, size, composition, and morphology are described in detail, because these properties lead to complexity in the melting behavior of bimetallic and trimetallic NPs.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran.
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| |
Collapse
|
21
|
Huang JF, Sie JR, Zeng RH. Engineering sub-nano structures with highly jagged edges on the Pt surface of Pt/C electrocatalysts to promote oxygen reduction reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Salvatore KL, Deng K, Yue S, McGuire SC, Rodriguez JA, Wong SS. Optimized Microwave-Based Synthesis of Thermally Stable Inverse Catalytic Core-shell Motifs for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32591-32603. [PMID: 32657113 DOI: 10.1021/acsami.0c06430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational synthesis of Cu@TiO2 core@shell nanowire (NW) structures was thoroughly explored using a microwave-assisted method through the tuning of experimental parameters such as but not limited to (i) controlled variation in molar ratios, (ii) the effect of discrete Ti precursors, (iii) the method of addition of the precursors themselves, and (iv) time of irradiation. Uniform coatings were obtained using Cu/Ti molar ratios of 1:2, 1:1, 2:1, and 4:1, respectively. It should be noted that although relative molar precursor concentrations primarily determined the magnitude of the resulting shell size, the dependence was nonlinear. Moreover, additionally important reaction parameters, such as precursor identity, the means of addition of precursors, and the reaction time, were individually explored with the objective of creating a series of optimized reaction conditions. As compared with Cu NWs alone, it is evident that both of the Cu@TiO2 core-shell NW samples, regardless of pretreatment conditions, evinced much better catalytic performance, up to as much as 20 times greater activity as compared with standard Cu NWs. These results imply the significance of the Cu/TiO2 interface in terms of promoting CO2 hydrogenation, because TiO2 alone is known to be inert for this reaction. Furthermore, it is additionally notable that the N2 annealing pretreatment is crucial in terms of preserving the overall Cu@TiO2 core@shell structure. We also systematically analyzed and tracked the structural and chemical evolution of our catalysts before and after the CO2 reduction experiments. Indeed, we discovered that the core@shell wire motif was essentially maintained and conserved after this high-temperature reaction process, thereby accentuating the thermal stability and physical robustness of our as-prepared hierarchical motifs.
Collapse
Affiliation(s)
- Kenna L Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Kaixi Deng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
- Chemistry Department, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Shiyu Yue
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Scott C McGuire
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - José A Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
23
|
Ma Z, Cano ZP, Yu A, Chen Z, Jiang G, Fu X, Yang L, Wu T, Bai Z, Lu J. Enhancing Oxygen Reduction Activity of Pt‐based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Ma
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zachary P. Cano
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Aiping Yu
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Zhongwei Chen
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Xiaogang Fu
- Department of Chemical Engineering Waterloo Institute for Nanotechnology Waterloo Institute for Sustainable Energy University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Lin Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University Xinxiang 453007 China
| | - Tianpin Wu
- X-ray Science Division Advanced Photon Sources Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University Xinxiang 453007 China
| | - Jun Lu
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA
| |
Collapse
|
24
|
Ma Z, Cano ZP, Yu A, Chen Z, Jiang G, Fu X, Yang L, Wu T, Bai Z, Lu J. Enhancing Oxygen Reduction Activity of Pt-based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angew Chem Int Ed Engl 2020; 59:18334-18348. [PMID: 32271975 DOI: 10.1002/anie.202003654] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 11/06/2022]
Abstract
Pt-based electrocatalysts are considered as one of the most promising choices to facilitate the oxygen reduction reaction (ORR), and the key factor enabling their success is to reduce the required amount of platinum. Herein, we focus on illuminating both the theoretical mechanisms which enable enhanced and sustained ORR activity and the practical methods to achieve them in catalysts. The various multi-step pathways of ORR are firstly reviewed and the rate-determining steps based on the reaction intermediates and their binding energies are analyzed. We then explain the critical aspects of Pt-based electrocatalysts to tune oxygen reduction properties from the viewpoints of active sites exposure and altering the surface electronic structure, and further summarize representative research progress towards practically achieving these activity enhancements with a focus on platinum size reduction, shape control and core Pt elimination methods. We finally outline the remaining challenges and provide our perspectives with regard to further enhancing their activities.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zachary P Cano
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xiaogang Fu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology Waterloo, Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Tianpin Wu
- X-ray Science Division, Advanced Photon Sources, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
25
|
Peng X, Lu D, Qin Y, Li M, Guo Y, Guo S. Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30336-30342. [PMID: 32525299 DOI: 10.1021/acsami.0c05868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Pt bimetallic nanocrystals have become appealing in the electrocatalytic field by virtue of their synergy effects derived from the electronic coupling between two metals. Herein, a facile seed-mediated growth approach is reported for synthesis of Pt-on-Pd dendritic nanosheets (DNSs) through the growth of Pt branches on ultrathin Pd nanosheets (NSs). The as-obtained Pt-on-Pd DNSs exhibit superior catalytic activity toward both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR), with mass activities (MAs) 2.2 times higher for ORR and 3.4 times higher for MOR than commercial Pt/C catalysts. Moreover, these spatially separated Pt branches supported on 2D NSs also endow the Pt-on-Pd DNSs with impressive durability for ORR with only 18.9% loss in MA, whereas the Pt/C catalyst loses 50.0% after 10,000-cycle accelerated durability tests. This 2D DNS architecture can be extended to other 2D metallic NS substrates for constructing Pt-based electrocatalysts with excellent electrocatalytic performance.
Collapse
Affiliation(s)
- Xiuying Peng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Dongtao Lu
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yingnan Qin
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Miaomiao Li
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
26
|
Li P, Du C, Gao X, Zhuang Z, Xiang D, Zhang C, Chen W. Insights into the morphology and composition effects of one-dimensional CuPt nanostructures on the electrocatalytic activities and methanol oxidation mechanism by in situ FTIR. NANOSCALE 2020; 12:13688-13696. [PMID: 32573577 DOI: 10.1039/d0nr01095b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Morphology modulation and surface structure-controlled synthesis are two effective ways to tune the electrocatalytic activities of metal nanomaterials. Pt-based binary or ternary metal nanostructures have become a class of promising catalysts toward the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) for direct methanol fuel cells. Herein to reveal the morphology and surface structure effects of one-dimensional (1D) Pt-based nanostructures on their electrocatalytic properties, two types of 1D CuPt nanowires (CuPt NWs) and CuPt nanotubes (CuPt NTs) with tunable surface structures and compositions were fabricated using a convenient and easy strategy. It was found that among all the studied samples, CuPt2.22 NWs exhibited the highest efficiency catalytic performances for both the ORR and MOR in an acidic electrolyte. For the ORR, CuPt2.22 NWs exhibited an onset potential (Eonset) of 0.749 V and a half-wave potential (E1/2) of 0.577 V, which are more positive than those of the commercial Pt/C (0.668 V and 0.558 V). On the other hand, CuPt2.22 NWs show a specific activity of 20.76 mA cm-2 and a mass activity of 0.171 mA μgPt-1 for the MOR, which are 7.75 and 1.82 times, respectively, larger than those of Pt/C (2.679 mA cm-2 and 0.094 mA μgPt-1). Meanwhile, the reaction mechanism of the MOR on CuPt2.22 NWs was examined by in situ FTIR. From the enhanced IR absorption, the linear- and bridge-adsorbed CO intermediates can be determined during the methanol oxidation on CuPt2.22 NWs, from which the MOR proceeds through a dual reaction pathway. This work reveals that rationally tuning the electronic structures of 1D metal nanomaterials by well-controlling the composition and surface morphology on the nanoscale could greatly enhance the catalytic properties, which are very important for their application in fuel cells.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Luo L, Fu C, Yan X, Shen S, Yang F, Guo Y, Zhu F, Yang L, Zhang J. Promoting Effects of Au Submonolayer Shells on Structure-Designed Cu-Pd/Ir Nanospheres: Greatly Enhanced Activity and Durability for Alkaline Ethanol Electro-Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25961-25971. [PMID: 32395980 DOI: 10.1021/acsami.0c05605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rationally engineering the surface physicochemical properties of nanomaterials can improve their activity and durability for various electrocatalytic and energy conversion applications. Cu-Pd/Ir (CPI) nanospheres (NSs) anchored on N-doped porous graphene (NPG) [(CPI NSs/NPG)] have been recently demonstrated as a promising electrocatalyst for the alkaline ethanol oxidation reaction (EOR); to further enhance their electrocatalytic performance, the NPG-supported CPI NSs are coated with Au submonolayer (SML) shells (SMSs), through which their surface physicochemical properties can be tuned. CPI NSs/NPG is prepared by our previously developed method and possesses the special structures of composition-graded Cu1Pd1 and surface-doped Ir0.03. The Au SMSs with designed surface coverages are formed via an electrochemical technology involving incomplete Cu underpotential deposition (UPD) and Au3+ galvanic replacement. A distinctive volcano-type relation between the EOR electrocatalytic activity and the Au-SMS surface coverage for CPI@AuSML NSs/NPG is revealed, and the optimal CPI@Au1/6ML NSs/NPG greatly surpasses commercial Pd/C and CPI NSs/NPG in electrocatalytic activity and noble metal utilization. More importantly, its electrocatalytic durability in 1 h chronoamperometric and 500-cycle potential cycling degradation tests is also significantly improved. According to detailed physicochemical characterizations, electrochemical analyses, and density functional theory calculations, the promoting effects of the Au SMS for enhancing the EOR electrocatalytic activity and durability of CPI NSs/NPG can be mainly attributed to the greatly weakened carbonaceous intermediate bonding and properly increased surface oxidation potential. This work also proposes a versatile and effective strategy to tune the surface physicochemical properties of metal-based nanomaterials via incomplete UPD and metal-cation galvanic replacement for advancing their electrocatalytic and energy conversion performance.
Collapse
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yan
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Yang
- Key Laboratory for Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Guo N, Xue H, Bao A, Wang Z, Sun J, Song T, Ge X, Zhang W, Huang K, He F, Wang Q. Achieving Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process. Angew Chem Int Ed Engl 2020; 59:13778-13784. [PMID: 32329190 DOI: 10.1002/anie.202002394] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/29/2020] [Indexed: 11/06/2022]
Abstract
Vacancy defects of catalysts have been extensively studied and proven to be beneficial to various electrocatalytic reactions. Herein, an ultra-stable three-dimensional PtCu nanowire network (NNW) with ultrafine size, self-supporting rigid structure, and Cu vacancy defects has been developed. The vacancy defect-rich PtCu NNW exhibits an outstanding performance for the oxygen reduction reaction (ORR), with a mass activity 14.1 times higher than for the commercial Pt/C catalyst (20 %.wt, JM), which is currently the best performance. The mass activity of the PtCu NNW for methanol oxidation reaction (MOR) is 17.8 times higher than for the commercial Pt/C catalyst. Density-functional theory (DFT) calculations indicate that the introduction of Cu vacancies enhances the adsorption capacity of Pt atoms to the HO* intermediate and simultaneously weakens the adsorption for the O* intermediate. This work presents a facile strategy to assemble efficient electrocatalysts with abundant vacancy defects, at the same time, provides an insight into the ORR mechanism in acidic solution.
Collapse
Affiliation(s)
- Niankun Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Hui Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Amurisana Bao
- Hohhot Vacational College, Hohhot, 010051, P. R. China
| | - Zihong Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Tianshan Song
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Ge
- Key Laboratory of Mobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, P. R. China
| | - Wei Zhang
- Key Laboratory of Mobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Feng He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
29
|
Guo N, Xue H, Bao A, Wang Z, Sun J, Song T, Ge X, Zhang W, Huang K, He F, Wang Q. Achieving Superior Electrocatalytic Performance by Surface Copper Vacancy Defects during Electrochemical Etching Process. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niankun Guo
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| | - Hui Xue
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| | | | - Zihong Wang
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| | - Tianshan Song
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| | - Xin Ge
- Key Laboratory of Mobile Materials MOE School of Materials Science & Engineering Electron Microscopy Center Jilin University P. R. China
| | - Wei Zhang
- Key Laboratory of Mobile Materials MOE School of Materials Science & Engineering Electron Microscopy Center Jilin University P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130022 P. R. China
| | - Feng He
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qin Wang
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China
| |
Collapse
|
30
|
Chang F, Bai Z, Li M, Ren M, Liu T, Yang L, Zhong CJ, Lu J. Strain-Modulated Platinum-Palladium Nanowires for Oxygen Reduction Reaction. NANO LETTERS 2020; 20:2416-2422. [PMID: 32046493 DOI: 10.1021/acs.nanolett.9b05123] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalytic activity of alloy nanocatalytsts can be manipulated effectively by tuning their physical properties (ensemble, geometric, and ligand effects) to afford optimal surface structure and compositions for proton exchange membrane fuel cell (PEMFC) application. Herein, highly catalytic platinum-palladium nanowires (PtnPd100-n NWs) with a subtle lattice strain and Boerdijk-Coxeter helix type morphology are synthesized through a surfactant-free, thermal single phase solvent method. X-ray diffraction results show that PtnPd100-n NWs are exposed through the (111) facets and their shrinking or expanding lattice parameters can be modulated by the alloy compositions. Electrochemical results reveal that their high catalytic activity correlates with the lattice shrinking, facets, and bimetallic compositions, showing higher activity when the ratio of Pt and Pd is ∼78:22, which is further supported by DFT results. Compared to the nanoparticle type platinum-palladium alloyed catalysts with similar metal compositions (PtnPd100-n NPs), the PtnPd100-n NWs exhibit significantly improved electrocatalytic activity and stability for the oxygen reduction reaction. These findings open new strategies to design the highly active and stable alloy nanocatalysts with controllable compositions.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Mengyun Ren
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
31
|
Rani S, Byron C, Teplyakov AV. Formation of silica-supported platinum nanoparticles as a function of preparation conditions and boron impregnation. J Chem Phys 2020; 152:134701. [PMID: 32268738 DOI: 10.1063/1.5142503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Preparation of supported metal nanoparticles for catalytic applications often relies on an assumption that the initially prepared wet-impregnated support material is covered with approximately a monolayer of adsorbed species that are shaped into the target nanoparticulate material with a desired size distribution by utilizing appropriate post-treatments that often include calcination and reduction schemes. Here, the formation and evolution of surface nanoparticles were investigated for wet-chemistry deposition of platinum from trimethyl(methylcyclopentadienyl)platinum (IV) precursor onto flat silica supports to interrogate the factors influencing the initial stages of nanoparticle formation. The deposition was performed on silicon-based substrates, including hydroxylated silica (SiO2) and boron-impregnated hydroxylated silica (B/SiO2) surfaces. The deposition resulted in the immediate formation of Pt-containing nanoparticles, as confirmed by atomic force microscopy and x-ray photoelectron spectroscopy. The prepared substrates were later reduced at 550 °C under H2 gas environment. This reduction procedure resulted in the formation of metallic Pt particles. The reactivity of the precursor and dispersion of Pt nanoparticles on the OH-terminated silica surface were compared to those on the B-impregnated surface. The size distribution of the resulting nanoparticles as a function of surface preparation was evaluated, and density functional theory calculations were used to explain the differences between the two types of surfaces investigated.
Collapse
Affiliation(s)
- Sana Rani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Carly Byron
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Andrew V Teplyakov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
32
|
Wang Y, Liao J, Xie Z, Zhang K, Wu Y, Zuo P, Zhang W, Li J, Gao Z. Zeolite-Enhanced Sustainable Pd-Catalyzed C-C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11419-11427. [PMID: 32053339 DOI: 10.1021/acsami.9b18110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supported palladium catalysts have attracted significant attention for use in cross-coupling reactions due to their recyclability. However, the inevitable progressive loss of Pd that occurs in the catalytic process deactivates the catalysts, which hinders their sustainable application. Herein, we report a zeolite-enhanced sustainable Pd catalyst for C-C cross-coupling reactions. Zeolite does a good job of acting as a sink for Pd2+ ions. This catalyst exhibits an excellent homogeneous catalytic performance by releasing Pd species from zeolite. In addition, the Pd2+ ions were successfully recaptured in a controlled catalytic system by combining the uniform microporous structure and good adsorption features of zeolite. The release/capture mechanism of the Pd species guaranteed the high loading and high dispersion of Pd on the recycled catalyst. The 0.84%Pd@USY catalysts were reused at least 10 times in water without an appreciable reduction in activity. This study presents a new perspective toward the design of a highly efficient and sustainable supported metal catalyst.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiaping Liao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zunyuan Xie
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, P. R. China
| | - Ping Zuo
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
33
|
Nosheen F, Wasfi N, Aslam S, Anwar T, Hussain S, Hussain N, Shah SN, Shaheen N, Ashraf A, Zhu Y, Wang H, Ma J, Zhang Z, Hu W. Ultrathin Pd-based nanosheets: syntheses, properties and applications. NANOSCALE 2020; 12:4219-4237. [PMID: 32026907 DOI: 10.1039/c9nr09557h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) noble metal-based nanosheets (NSs) have received considerable interest in recent years due to their unique properties and widespread applications. Pd-based NSs, as a typical member of 2D noble metal-based NSs, have been most extensively studied. In this review, we first summarize the research progress on the synthesis of Pd-based NSs, including pure Pd NSs, Pd-based alloy NSs, Pd-based core-shell NSs and Pd-based hybrid NSs. The synthetic strategy and growth mechanism are systematically discussed. Then their properties and applications in catalysis, biotherapy, gas sensing and so on are introduced in detail. Finally, the challenges and opportunities towards the rational design and controlled synthesis of Pd-based NSs are proposed.
Collapse
Affiliation(s)
- Farhat Nosheen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ. Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. J Am Chem Soc 2020; 142:1287-1299. [PMID: 31885267 DOI: 10.1021/jacs.9b10239] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum-iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.4 A/mgPt, ∼20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)-body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.
Collapse
Affiliation(s)
- Zhijie Kong
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China.,Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Yazan Maswadeh
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Jorge A Vargas
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Shiyao Shan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Zhi-Peng Wu
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Haval Kareem
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Asher C Leff
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Dat T Tran
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Fangfang Chang
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Shan Yan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sanghyun Nam
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Xingfang Zhao
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jason M Lee
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jin Luo
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sarvjit Shastri
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Gang Yu
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Valeri Petkov
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Chuan-Jian Zhong
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| |
Collapse
|
35
|
Gong M, Zhu J, Liu M, Liu P, Deng Z, Shen T, Zhao T, Lin R, Lu Y, Yang S, Liang Z, Bak SM, Stavitski E, Wu Q, Adzic RR, Xin HL, Wang D. Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. NANOSCALE 2019; 11:20301-20306. [PMID: 31633704 DOI: 10.1039/c9nr04975d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational designing of catalysts to promote the sluggish kinetics of the cathode oxygen reduction reaction in proton exchange membrane fuel cells is still challenging, yet of crucial importance to its commercial application. In this work, on the basis of theoretical DFT calculations which suggest that order structured fct-phased PtFe (O-PtFe) with an atomic Pt shell exhibits superior electrocatalytic performance towards the ORR, the desired structure was prepared by using a scalable impregnation-reduction method. The as-prepared O-PtFe delivered enhanced activity (0.68 A mg-1Pt) and stability (73% activity retention after 10 000 potential cycles) compared with the corresponding disordered PtFe alloy (D-PtFe) and Pt. To confirm the excellent durability, in situ X-ray absorption fine structure spectroscopy was conducted to probe the local and electronic structure changes of O-PtFe during 10 000 cycle accelerated durability testing. We hope that this facile synthesis method and the in situ XAFS experiment could be readily adapted to other catalyst systems, facilitating the screening of highly efficient ORR catalysts for fuel cell application.
Collapse
Affiliation(s)
- Mingxing Gong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Zhu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Peifang Liu
- Analysis & testing center of Xinyang Normal University, Xinyang 464000, China
| | - Zhiping Deng
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tao Shen
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tonghui Zhao
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruoqian Lin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Yun Lu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shize Yang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Zhixiu Liang
- Chemistry Division, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Seong Min Bak
- Chemistry Division, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Radoslav R Adzic
- Chemistry Division, Brookhaven National Laboratory, Upton, 11973, NY, USA
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, 11973, NY, USA and Department of Physics and Astronomy, University of California, Irvine, 92697, CA, USA
| | - Deli Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
36
|
Sun Q, Gao F, Zhang Y, Wang C, Zhu X, Du Y. Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction. J Colloid Interface Sci 2019; 556:441-448. [DOI: 10.1016/j.jcis.2019.08.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
37
|
Bae HE, Park YD, Kim TH, Lim T, Kwon OJ. Carbon-caged palladium catalysts supported on carbon nanofibers for proton exchange membrane fuel cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wang Y, Zhang L, Yin K, Zhang J, Gao H, Liu N, Peng Z, Zhang Z. Nanoporous Iridium-Based Alloy Nanowires as Highly Efficient Electrocatalysts Toward Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39728-39736. [PMID: 31592630 DOI: 10.1021/acsami.9b09412] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Acidic proton exchange membrane water electrolysis is a prospective energy conversion technology for future hydrogen production. However, its wide application is limited by the excessive dependence of oxygen evolution reaction on precious metals at anode. To address this issue, herein, we report a class of IrM (M = Ni, Co, Fe) catalysts with diluted Ir content fabricated via a eutectic-directed self-templating strategy. Manipulated by the eutectic reaction and dealloying inheritance effect, the IrM catalysts show a unique network structure composed of intertwining nanoporous nanowires. The catalytic activities of IrM nanowires show a transition-metal-dependent feature, among which IrNi delivers the best activity with an exceptionally low overpotential to drive 10 mA cm-2 (283 mV) and a high mass activity at 1.53 V vs reversible hydrogen electrode (0.732 A mg-1). Such performance represents a major leap forward compared to that of commercial IrO2 and most of state-of-the-art Ir-based acidic catalysts toward oxygen evolution reaction. First-principles calculations indicate that the 3d transition-metal-dependent catalytic activity of IrM electrocatalysts is related to ligand effect, wherein the negative shift of Ir d-band center after alloying can effectively weaken the adsorption of reaction intermediates.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jingshi Road 17923 , Jinan 250061 , P. R. China
| | - Lei Zhang
- School of Chemistry, Physics and Mechanical Engineering , Queensland University of Technology , Gardens Point Campus , Brisbane , QLD 4001 , Australia
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education , Southeast University , Nanjing 210096 , P. R. China
| | - Jie Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jingshi Road 17923 , Jinan 250061 , P. R. China
| | - Hui Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jingshi Road 17923 , Jinan 250061 , P. R. China
| | - Na Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jingshi Road 17923 , Jinan 250061 , P. R. China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jingshi Road 17923 , Jinan 250061 , P. R. China
| |
Collapse
|
39
|
Xie C, Niu Z, Kim D, Li M, Yang P. Surface and Interface Control in Nanoparticle Catalysis. Chem Rev 2019; 120:1184-1249. [DOI: 10.1021/acs.chemrev.9b00220] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenlu Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhiqiang Niu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dohyung Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mufan Li
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Huang XY, Wang AJ, Zhang L, Zhang QL, Huang H, Feng JJ. A simple wet-chemical strategy for facile fabrication of hierarchical PdAu nanodentrites as excellent electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2019; 552:51-58. [DOI: 10.1016/j.jcis.2019.04.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
|
41
|
Jyoti Borah B, Saikia H, Goswami C, Kashyap Hazarika K, Yamada Y, Bharali P. Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as High‐Performance Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biraj Jyoti Borah
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Himadri Saikia
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Chiranjita Goswami
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | | | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering Graduate School of EngineeringOsaka City University 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Pankaj Bharali
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| |
Collapse
|
42
|
Hu X, Zhang Z, Zhang Y, Sun L, Tian H, Yang X. Synthesis of a Highly Active and Stable Pt/Co3
O4
Catalyst and Its Application for the Catalytic Combustion of Toluene. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900372] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuefeng Hu
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
- University of Chinese Academy of Sciences; 100190 Beijing China
| | - Zeshu Zhang
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
- University of Science and Technology of China; 230026 Hefei China
| | - Yibo Zhang
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
| | - Liwei Sun
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
- University of Science and Technology of China; 230026 Hefei China
| | - Heyuan Tian
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
- University of Science and Technology of China; 230026 Hefei China
| | - Xiangguang Yang
- State Key Laboratory of Rare Earth Resource Utilization; Jilin Province Key Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; 130022 Changchun China
- University of Science and Technology of China; 230026 Hefei China
| |
Collapse
|
43
|
Cu@Pt catalysts prepared by galvanic replacement of polyhedral copper nanoparticles for polymer electrolyte membrane fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Gong M, Deng Z, Xiao D, Han L, Zhao T, Lu Y, Shen T, Liu X, Lin R, Huang T, Zhou G, Xin H, Wang D. One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00603] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Dongdong Xiao
- Materials Science and Engineering Program & Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, United States
| | - Lili Han
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| | - Ruoqian Lin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ting Huang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program & Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, United States
| | - Huolin Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology. Wuhan, 430074, People’s Republic of China
| |
Collapse
|
45
|
Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem Rev 2019; 119:8972-9073. [DOI: 10.1021/acs.chemrev.8b00745] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Myung Jun Kim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin J. Wiley
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Pt–Ni Seed-Core-Frame Hierarchical Nanostructures and Their Conversion to Nanoframes for Enhanced Methanol Electro-Oxidation. Catalysts 2019. [DOI: 10.3390/catal9010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pt–Ni nanostructures are a class of important electrocatalysts for polymer electrolyte membrane fuel cells. This work reports a systematic study on the reaction mechanism of the formation of Pt–Ni seed-core-frame nanostructures via the seeded co-reduction method involving the Pt seeds and selective co-reduced deposition of Pt and Ni. The resultant structure consists of a branched Pt ultrafine seed coated with a pure Ni as rhombic dodecahedral core and selective deposition of Pt on the edges of the cores. Both the type of Pt precursor and the precursor ratio of Pt/Ni are critical factors to form the resulting shape of the seeds and eventually the morphology of the nanostructures. These complex hierarchical structures can be further graved into hollow Pt–Ni alloy nanoframes using acetic acid etching method. The larger surface area and higher number of low coordinate sites of the nanoframes facilitate the electrocatalytic activity and stability of Pt–Ni alloy for methanol oxidation as compared to their solid counterparts. This study elucidates the structural and compositional evolution of the complex nanoarchitectures and their effects on the electrocatalytic properties of the nanostructures.
Collapse
|
47
|
Ma R, He Y, Feng J, Hu ZY, Van Tendeloo G, Li D. A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock. J Catal 2019. [DOI: 10.1016/j.jcat.2018.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Zhang Z, Hu X, Zhang Y, Sun L, Tian H, Yang X. Ultrafine PdOx nanoparticles on spinel oxides by galvanic displacement for catalytic combustion of methane. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01766f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent catalytic activity of methane combustion over the Pd/NiCo2O4 is attributed to ultrafine Pd nanopariticles and a tight Pd-spinel interface obtained by galvanic displacement.
Collapse
Affiliation(s)
- Zeshu Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Jilin Province Key Laboratory of Green Chemistry and Process
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Xuefeng Hu
- University of Science and Technology of China
- Hefei 230026
- China
| | - Yibo Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Jilin Province Key Laboratory of Green Chemistry and Process
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Liwei Sun
- State Key Laboratory of Rare Earth Resource Utilization
- Jilin Province Key Laboratory of Green Chemistry and Process
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Heyuan Tian
- State Key Laboratory of Rare Earth Resource Utilization
- Jilin Province Key Laboratory of Green Chemistry and Process
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Xiangguang Yang
- State Key Laboratory of Rare Earth Resource Utilization
- Jilin Province Key Laboratory of Green Chemistry and Process
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| |
Collapse
|
49
|
Recent advances in one-dimensional nanostructures for energy electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63177-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Song Y, Xiang C, Bi C, Wu C, He H, Du W, Huang L, Tian H, Xia H. pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. NANOSCALE 2018; 10:22302-22311. [PMID: 30467565 DOI: 10.1039/c8nr07224h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the controlled epitaxial growth of ultrathin Pd shells of a few atomic layers (denoted as nL) on the surfaces of gold nanoparticle (Au NP) cores of different morphologies (trisoctahedral, cubic, and spherical shapes) in the presence of cetyltrimethylammonium chloride (CTAC) was achieved by regulating the pH value of the aqueous CTAC solution and finely tuning the amount of the Pd precursor. It was found that the critical shell thickness for epitaxial Pd growth at the optimal pH value was 4 atomic layers, taking {331}-faceted trisoctahedral (TOH) Au@PdnL NPs as an example, on the basis of the results of atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. Moreover, the resulting TOH Au@Pd1L NPs (100.9 m2 g-1, 13.2 A mgPd-1 and 13.1 mA cm-2) exhibited excellent electrocatalytic performance and long-term electrocatalytic activity for ethanol oxidation, around 4.8-fold, 66-fold, and 21.8-fold better than commercial Pd/C catalysts (31 m2 g-1, 0.2 A mgPd-1, and 0.6 mA cm-2). Furthermore, the resulting TOH Au@Pd1L NPs not only markedly enhance the chemical catalytic activity for the reduction of 4-nitrophenol (4-NP), but also allow the in situ surface-enhanced Raman spectroscopy (SERS) monitoring of the reaction process of the Pd-catalyzed reduction of 4-NTP. Thus, our work may provide a new way to fabricate core-shell (CS) bimetallic NPs with the merits of both metal outer shells (excellent catalytic performance in electrocatalysis and chemical catalysis) and Au NP cores (reaction process by in situ SERS monitoring).
Collapse
Affiliation(s)
- Yahui Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|