1
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2024; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
2
|
Wu Y, Lin T, Santos E, Ahn D, Marson R, Sarker P, Chen X, Gubbels F, Shephard NE, Mohler C, Wei T, Kuo TC, Chen Z. Molecular behavior of silicone adhesive at buried polymer interface studied by molecular dynamics simulation and sum frequency generation vibrational spectroscopy. SOFT MATTER 2024; 20:4765-4775. [PMID: 38841820 DOI: 10.1039/d4sm00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Silicones have excellent material properties and are used extensively in many applications, ranging from adhesives and lubricants to electrical insulation. To ensure strong adhesion of silicone adhesives to a wide variety of substrates, silane-based adhesion promotors are typically blended into the silicone adhesive formulation. However, little is known at the molecular level about the true silane adhesion promotion mechanism, which limits the ability to develop even more effective adhesion promoters. To understand the adhesion promotion mechanism of silane molecules at the molecular level, this study has used sum frequency generation vibrational spectroscopy (SFG) to determine the behavior of (3-glycidoxypropyl)trimethoxy silane (γ-GPS) at the buried interface between poly(ethylene terephthalate) (PET) and a bulk silicone adhesive. To complement and extend the SFG results, atomistic molecular dynamics (MD) simulations were applied to investigate molecular behavior and interfacial interaction of γ-GPS at the silicone/PET interface. Free energy computations were used to study the γ-GPS interaction in the sample system and determine the γ-GPS interfacial segregation mechanism. Both experiments and simulations consistently show that γ-GPS molecules prefer to segregate at the interface between PET and PDMS. The methoxy groups on γ-GPS molecules orient toward the PDMS polymer phase. The consistent picture of interfacial structure emerging from both simulation and experiment provides enhanced insight on how γ-GPS behaves in the silicone - PET system and illustrates why γ-GPS could improve the adhesion of silicone adhesive, leading to further understanding of silicone adhesion mechanisms useful in the design of silicone adhesives with improved performance.
Collapse
Affiliation(s)
- Yuchen Wu
- Department of Chemistry, University of Michigan, MI 48109, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, MI 48109, USA
| | - Ting Lin
- Department of Chemistry, University of Michigan, MI 48109, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, MI 48109, USA
| | | | - Dongchan Ahn
- The Dow Chemical Company, Midland, MI 48674, USA
| | - Ryan Marson
- The Dow Chemical Company, Midland, MI 48674, USA
| | - Pranab Sarker
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Xiaoyun Chen
- The Dow Chemical Company, Midland, MI 48674, USA
| | | | | | - Carol Mohler
- The Dow Chemical Company, Midland, MI 48674, USA
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Tzu-Chi Kuo
- The Dow Chemical Company, Midland, MI 48674, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, MI 48109, USA.
- Department of Macromolecular Science and Engineering, University of Michigan, MI 48109, USA
| |
Collapse
|
3
|
Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. BRAZ J BIOL 2024; 84:e250667. [DOI: 10.1590/1519-6984.25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
| | - A. Ali
- Shanghai Jiao Tong University, China
| | - X. Wei
- Shanghai Jiao Tong University, China
| | | | | | | | - Dongqing Wei
- Shanghai Jiao Tong University, China; Peng Cheng Laboratory, China
| |
Collapse
|
4
|
Rezaei S, Sefidbakht Y, Uskoković V. Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity. J Biomol Struct Dyn 2022; 40:4662-4681. [PMID: 33331243 PMCID: PMC7784839 DOI: 10.1080/07391102.2020.1860829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Here, we report on a computational comparison of the receptor-binding domains (RBDs) on the spike proteins of severe respiratory syndrome coronavirus-2 (SARS-CoV-2) and SARS-CoV in free forms and as complexes with angiotensin-converting enzyme 2 (ACE2) as their receptor in humans. The impact of 42 mutations discovered so far on the structure and thermodynamics of SARS-CoV-2 RBD was also assessed. The binding affinity of SARS-CoV-2 RBD for ACE2 is higher than that of SARS-CoV RBD. The binding of COVA2-04 antibody to SARS-CoV-2 RBD is more energetically favorable than the binding of COVA2-39, but also less favorable than the formation of SARS-CoV-2 RBD-ACE2 complex. The net charge, the dipole moment and hydrophilicity of SARS-CoV-2 RBD are higher than those of SARS-CoV RBD, producing lower solvation and surface free energies and thus lower stability. The structure of SARS-CoV-2 RBD is also more flexible and more open, with a larger solvent-accessible surface area than that of SARS-CoV RBD. Single-point mutations have a dramatic effect on distribution of charges, most prominently at the site of substitution and its immediate vicinity. These charge alterations alter the free energy landscape, while X→F mutations exhibit a stabilizing effect on the RBD structure through π stacking. F456 and W436 emerge as two key residues governing the stability and affinity of the spike protein for its ACE2 receptor. These analyses of the structural differences and the impact of mutations on different viral strains and members of the coronavirus genera are an essential aid in the development of effective therapeutic strategies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shokouh Rezaei
- Protein Research Center, Shahid Behesti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Behesti University, Tehran, Iran
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano, Irvine, CA, USA
| |
Collapse
|
5
|
Mitra D, Pal AK, Das Mohapatra PK. Intra-protein interactions of SARS-CoV-2 and SARS: a bioinformatic analysis for plausible explanation regarding stability, divergency, and severity. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:653-664. [PMID: 38624777 PMCID: PMC8935616 DOI: 10.1007/s43393-022-00091-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
The current nightmare for the whole world is COVID-19. The occurrence of concentrated pneumonia cases in Wuhan city, Hubei province of China, was first reported on December 30, 2019. SARS-CoV first disclosed in 2002 but had not outspread worldwide. After 18 years, in 2020, it reemerged and outspread worldwide as SARS-CoV-2 (COVID-19), as the most dangerous virus-creating disease in the world. Is it possible to create a favorable evolution within the short time (18 years)? If possible, then what are those properties or factors that are changed in SARS-CoV-2 to make it undefeated? What are the fundamental differences between SARS-CoV-2 and SARS? The study is one of the initiatives to find out all those queries. Here, four types of protein sequences from SARS-CoV-2 and SARS were retrieved from the database to study their physicochemical and structural properties. Results showed that charged residues are playing a pivotal role in SARS-CoV-2 evolution and contribute to the helix stabilization. The formation of the cyclic salt bridge and other intra-protein interactions specially network aromatic-aromatic interaction also play the crucial role in SAS-CoV-2. This comparative study will help to understand the evolution from SARS to SARS-CoV-2 and helpful in protein engineering.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB India
| | - Aditya K. Pal
- Department of Microbiology, Raiganj University, Raiganj, WB India
| | | |
Collapse
|
6
|
Al-Wahaibi LH, Abdalla M, Mary YS, Mary YS, Costa RA, Rana M, El-Emam AA, Hassan HM, Al-Shaalan NH. Spectroscopic, Solvation Effects and MD Simulation of an Adamantane-Carbohydrazide Derivative, a Potential Antiviral Agent. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | | | | | - Renyer Alves Costa
- Department of Chemistry, Federal University of Amazonas (DQ-UFAM), Manaus, Brazil
| | - Meenakshi Rana
- Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, India
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hanan M. Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa City, Mansoura, Egypt
| | - Nora H. Al-Shaalan
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Mou K, Abdalla M, Wei DQ, Khan MT, Lodhi MS, Darwish DB, Sharaf M, Tu X. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. INFORMATICS IN MEDICINE UNLOCKED 2021; 25:100675. [PMID: 34337139 PMCID: PMC8314890 DOI: 10.1016/j.imu.2021.100675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
Structural proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are potential drug targets due to their role in the virus life cycle. The envelope (E) protein is one of the structural proteins; plays a critical role in virulency. However, the emergence of mutations oftenly leads to drug resistance and may also play a vital role in virus stabilization and evolution. In this study, we aimed to identify mutations in E proteins that affect the protein stability. About 0.3 million complete whole genome sequences were analyzed to screen mutations in E protein. All these mutations were subjected to stability prediction using the DynaMut server. The most common mutations that were detected at the C-terminal domain, Ser68Phe, Pro71Ser, and Leu73Phe, were examined through molecular dynamics (MD) simulations for a 100ns period. The sequence analysis shows the existence of 259 mutations in E protein. Interestingly, 16 of them were detected in the DFLV amino acid (aa) motif (aa72-aa75) that binds the host PALS1 protein. The results of root mean square deviation, fluctuations, radius of gyration, and free energy landscape show that Ser68Phe, Pro71Ser, and Leu73Phe are exhibiting a more stabilizing effect. However, a more comprehensive experimental study may be required to see the effect on virus pathogenicity. Potential antiviral drugs, and vaccines may be developed used after screening the genomic variations for better management of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing, China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore, Pakistan, 58810
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, KM Defence Road, Lahore, Pakistan, 58810
| | - Doaa B Darwish
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Saudi Arabia
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Xudong Tu
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
8
|
Mitra D, Das Mohapatra PK. Discovery of Novel Cyclic Salt Bridge in Thermophilic Bacterial Protease and Study of its Sequence and Structure. Appl Biochem Biotechnol 2021; 193:1688-1700. [PMID: 33683551 DOI: 10.1007/s12010-021-03547-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
The plausible explanation behind the stability of thermophilic protein is still yet to be defined more clearly. Here, an in silico study has been undertaken by investigating the sequence and structure of protease from thermophilic (tPro) bacteria and mesophilic (mPro) bacteria. Results showed that charged and uncharged polar residues have higher abundance in tPro. In extreme environment, the tPro is stabilized by high number of isolated and network salt bridges. A novel cyclic salt bridge is also found in a structure of tPro. High number of metal ion-binding site also helps in protein stabilization of thermophilic protease. Aromatic-aromatic interactions also play a crucial role in tPro stabilization. Formation of long network aromatic-aromatic interactions also first time reported here. Finally, the present study provides a major insight with a newly identified cyclic salt bridge in the stability of the enzyme, which may be helpful for protein engineering. It is also used in industrial applications for human welfare.
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, WB, India
| | | |
Collapse
|
9
|
Aggarwal L, Biswas P. Hydration Thermodynamics of the N-Terminal FAD Mutants of Amyloid-β. J Chem Inf Model 2021; 61:298-310. [PMID: 33440932 DOI: 10.1021/acs.jcim.0c01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydration thermodynamics of amyloid-β (Aβ) and its pathogenic familial Alzheimer's disease (FAD) mutants such as A2V, Taiwan (D7H), Tottori (D7N), and English (H6R) and the protective A2T mutant is investigated by a combination of all-atom, explicit water molecular dynamics (MD) simulations and the three-dimensional reference interaction site model (3D-RISM) theory. The change in the hydration free energy on mutation is decomposed into the energetic and entropic components, which comprise electrostatic and nonelectrostatic contributions. An increase in the hydration free energy is observed for A2V, D7H, D7N, and H6R mutations that increase the aggregation propensity of Aβ and lead to an early onset of Alzheimer's disease, while a reverse trend is noted for the protective A2T mutation. An antiphase correlation is found between the change in the hydration energy and the internal energy of Aβ upon mutation. A residue-wise decomposition analysis shows that the change in the hydration free energy of Aβ on mutation is primarily due to the hydration/dehydration of the side-chain atoms of the negatively charged residues. The decrease in the hydration of the negatively charged residues on mutation may decrease the solubility of the mutant, which increases the observed aggregation propensity of the FAD mutants. Results obtained from the theory show an excellent match with the experimentally reported data.
Collapse
Affiliation(s)
- Leena Aggarwal
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
Khan MT, Ali S, Zeb MT, Kaushik AC, Malik SI, Wei DQ. Gibbs Free Energy Calculation of Mutation in PncA and RpsA Associated With Pyrazinamide Resistance. Front Mol Biosci 2020; 7:52. [PMID: 32328498 PMCID: PMC7160322 DOI: 10.3389/fmolb.2020.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
A central approach for better understanding the forces involved in maintaining protein structures is to investigate the protein folding and thermodynamic properties. The effect of the folding process is often disturbed in mutated states. To explore the dynamic properties behind mutations, molecular dynamic (MD) simulations have been widely performed, especially in unveiling the mechanism of drug failure behind mutation. When comparing wild type (WT) and mutants (MTs), the structural changes along with solvation free energy (SFE), and Gibbs free energy (GFE) are calculated after the MD simulation, to measure the effect of mutations on protein structure. Pyrazinamide (PZA) is one of the first-line drugs, effective against latent Mycobacterium tuberculosis isolates, affecting the global TB control program 2030. Resistance to this drug emerges due to mutations in pncA and rpsA genes, encoding pyrazinamidase (PZase) and ribosomal protein S1 (RpsA) respectively. The question of how the GFE may be a measure of PZase and RpsA stabilities, has been addressed in the current review. The GFE and SFE of MTs have been compared with WT, which were already found to be PZA-resistant. WT structures attained a more stable state in comparison with MTs. The physiological effect of a mutation in PZase and RpsA may be due to the difference in energies. This difference between WT and MTs, depicted through GFE plots, might be useful in predicting the stability and PZA-resistance behind mutation. This study provides useful information for better management of drug resistance, to control the global TB problem.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | | | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
11
|
Aguayo-Ortiz R, González-Navejas A, Palomino-Vizcaino G, Rodriguez-Meza O, Costas M, Quintanar L, Dominguez L. Thermodynamic Stability of Human γD-Crystallin Mutants Using Alchemical Free-Energy Calculations. J Phys Chem B 2019; 123:5671-5677. [PMID: 31199646 DOI: 10.1021/acs.jpcb.9b01818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γD-Crystallin (HγDC) is a key structural protein in the human lens, whose aggregation has been associated with the development of cataracts. Single-point mutations and post-translational modifications destabilize HγDC interactions, forming partially folded intermediates, where hydrophobic residues are exposed and thus triggering its aggregation. In this work, we used alchemical free-energy calculations to predict changes in thermodynamic stability (ΔΔG) of 10 alanine-scanning variants and 12 HγDC mutations associated with the development of congenital cataract. Our results show that W42R is the most destabilizing mutation in HγDC. This has been corroborated through experimental determination of ΔΔG employing differential scanning calorimetry. Calculations of hydration free energies from the HγDC WT and the W42R mutant suggested that the mutant has a higher aggregation propensity. Our combined theoretical and experimental results contribute to understand HγDC destabilization and aggregation mechanisms in age-onset cataracts.
Collapse
Affiliation(s)
| | | | - Giovanni Palomino-Vizcaino
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | | | | - Liliana Quintanar
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | |
Collapse
|
12
|
Lin Y, Im H, Diem LT, Ham S. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40. Biochem Biophys Res Commun 2019; 510:442-448. [PMID: 30722990 DOI: 10.1016/j.bbrc.2019.01.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/20/2023]
Abstract
The self-assembly of amyloid-beta (Aβ) proteins in aqueous extracellular environments is implicated in Alzheimer's disease. Among several alloforms of Aβ proteins differing in sequence length, the 42- and 40-residue forms (Aβ42 and Aβ40) are the most abundant ones in the human body. Although the only difference is the additional I41A42 residues in the C-terminus, Aβ42 exhibits more aggregation tendency and stronger neurotoxicity than Aβ40. Here, we investigate the molecular factors that confer more aggregation potential to Aβ42 than to Aβ40 based on molecular dynamics simulations combined with solvation thermodynamic analyses. It is observed that the most salient structural feature of Aβ42 relative to Aβ40 is the more enhanced β-sheet forming tendency, in particular in the C-terminal region. While such a structural characteristic of Aβ42 will certainly serve to facilitate the formation of aggregate species rich in β-sheet structure, we also detect its interesting thermodynamic consequence. Indeed, we find from the decomposition analysis that the C-terminal region substantially increases the solvation free energy (i.e., overall "hydrophobicity") of Aβ42, which is caused by the dehydration of the backbone moieties showing the enhanced tendency of forming the β-structure. Together with the two additional hydrophobic residues (I41A42), this leads to the higher solvation free energy of Aβ42, implying the larger water-mediated attraction toward the self-assembly. Thus, our computational results provide structural and thermodynamic grounds on why Aβ42 has more aggregation propensity than Aβ40 in aqueous environments.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Haeri Im
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Le Thi Diem
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea.
| |
Collapse
|
13
|
Arvidsson G, Wright APH. A Protein Intrinsic Disorder Approach for Characterising Differentially Expressed Genes in Transcriptome Data: Analysis of Cell-Adhesion Regulated Gene Expression in Lymphoma Cells. Int J Mol Sci 2018; 19:ijms19103101. [PMID: 30308971 PMCID: PMC6213395 DOI: 10.3390/ijms19103101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
Conformational protein properties are coupled to protein functionality and could provide a useful parameter for functional annotation of differentially expressed genes in transcriptome studies. The aim was to determine whether predicted intrinsic protein disorder was differentially associated with proteins encoded by genes that are differentially regulated in lymphoma cells upon interaction with stromal cells, an interaction that occurs in microenvironments, such as lymph nodes that are protective for lymphoma cells during chemotherapy. Intrinsic disorder protein properties were extracted from the Database of Disordered Protein Prediction (D²P²), which contains data from nine intrinsic disorder predictors. Proteins encoded by differentially regulated cell-adhesion regulated genes were enriched in intrinsically disordered regions (IDRs) compared to other genes both with regard to IDR number and length. The enrichment was further ascribed to down-regulated genes. Consistently, a higher proportion of proteins encoded by down-regulated genes contained at least one IDR or were completely disordered. We conclude that down-regulated genes in stromal cell-adherent lymphoma cells encode proteins that are characterized by elevated levels of intrinsically disordered conformation, indicating the importance of down-regulating functional mechanisms associated with intrinsically disordered proteins in these cells. Further, the approach provides a generally applicable and complementary alternative to classification of differentially regulated genes using gene ontology or pathway enrichment analysis.
Collapse
Affiliation(s)
- Gustav Arvidsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| | - Anthony P H Wright
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge SE 141 57, Sweden.
| |
Collapse
|
14
|
Kuhn AB, Kube S, Karow-Zwick AR, Seeliger D, Garidel P, Blech M, Schäfer LV. Improved Solution-State Properties of Monoclonal Antibodies by Targeted Mutations. J Phys Chem B 2017; 121:10818-10827. [DOI: 10.1021/acs.jpcb.7b09126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander B. Kuhn
- Theoretical
Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | - Lars V. Schäfer
- Theoretical
Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
15
|
Qiao Q, Qi R, Wei G, Huang X. Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Phys Chem Chem Phys 2016; 18:29892-29904. [DOI: 10.1039/c6cp05590g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dimerization pathways of the human islet amyloid polypeptide fragment are elucidated from extensive molecular dynamics simulations.
Collapse
Affiliation(s)
- Qin Qiao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- University of Science and Technology of China
- Hefei
- China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Xuhui Huang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Division of Biomedical Engineering
| |
Collapse
|
16
|
Livi L, Giuliani A, Rizzi A. Toward a multilevel representation of protein molecules: Comparative approaches to the aggregation/folding propensity problem. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2015.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Structural and Thermodynamic Characteristics of Amyloidogenic Intermediates of β-2-Microglobulin. Sci Rep 2015; 5:13631. [PMID: 26348154 PMCID: PMC4562173 DOI: 10.1038/srep13631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022] Open
Abstract
β-2-microglobulin (β2m) self-aggregates to form amyloid fibril in renal patients taking long-term dialysis treatment. Despite the extensive structural and mutation studies carried out so far, the molecular details on the factors that dictate amyloidogenic potential of β2m remain elusive. Here we report molecular dynamics simulations followed by the solvation thermodynamic analyses on the wild-type β2m and D76N, D59P, and W60C mutants at the native (N) and so-called aggregation-prone intermediate (IT) states, which are distinguished by the native cis- and non-native trans-Pro32 backbone conformations. Three major structural and thermodynamic characteristics of the IT-state relative to the N-state in β2m protein are detected that contribute to the increased amyloidogenic potential: (i) the disruption of the edge D-strand, (ii) the increased solvent-exposed hydrophobic interface, and (iii) the increased solvation free energy (less affinity toward solvent water). Mutation effects on these three factors are shown to exhibit a good correlation with the experimentally observed distinct amyloidogenic propensity of the D76N (+), D59P (+), and W60C (−) mutants (+/− for enhanced/decreased). Our analyses thus identify the structural and thermodynamic characteristics of the amyloidogenic intermediates, which will serve to uncover molecular mechanisms and driving forces in β2m amyloid fibril formation.
Collapse
|
18
|
Ratkova EL, Palmer DS, Fedorov MV. Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem Rev 2015; 115:6312-56. [PMID: 26073187 DOI: 10.1021/cr5000283] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ekaterina L Ratkova
- †G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia.,‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany
| | - David S Palmer
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,§Department of Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, United Kingdom
| | - Maxim V Fedorov
- ‡The Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig 04103, Germany.,∥Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
19
|
Chong SH, Ham S. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis. Acc Chem Res 2015; 48:956-65. [PMID: 25844814 DOI: 10.1021/acs.accounts.5b00032] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein aggregation in aqueous cellular environments is linked to diverse human diseases. Protein aggregation proceeds through a multistep process initiated by conformational transitions, called protein misfolding, of monomer species toward aggregation-prone structures. Various forms of aggregate species are generated through the association of misfolded monomers including soluble oligomers and amyloid fibrils. Elucidating the molecular mechanisms and driving forces involved in the misfolding and subsequent association has been a central issue for understanding and preventing protein aggregation diseases such as Alzheimer's, Parkinson's, and type II diabetes. In this Account, we provide a thermodynamic perspective of the misfolding and aggregation of the amyloid-beta (Aβ) protein implicated in Alzheimer's disease through the application of fluctuating thermodynamics. This approach "dissects" the conventional thermodynamic characterization of the end states into the one of the fluctuating processes connecting them, and enables one to analyze variations in the thermodynamic functions that occur during the course of protein conformational changes. The central quantity in this approach is the solvent-averaged effective energy, f = Eu + Gsolv, comprising the protein potential energy (Eu) and the solvation free energy (Gsolv), whose time variation reflects the protein dynamics on the free energy landscape. Protein configurational entropy is quantified by the magnitude of fluctuations in f. We find that misfolding of the Aβ monomer when released from a membrane environment to an aqueous phase is driven by favorable changes in protein potential energy and configurational entropy, but it is also accompanied by an unfavorable increase in solvation free energy. The subsequent dimerization of the misfolded Aβ monomers occurs in two steps. The first step, where two widely separated monomers come into contact distance, is driven by water-mediated attraction, that is, by a decrease in solvation free energy, harnessing the monomer solvation free energy earned during the misfolding. The second step, where a compact dimer structure is formed, is driven by direct protein-protein interactions, but again it is accompanied by an increase in solvation free energy. The increased solvation free energy of the dimer will function as the driving force to recruit another Aβ protein in the approach stage of subsequent oligomerizations. The fluctuating thermodynamics analysis of the misfolding and dimerization of the Aβ protein indicates that the interaction of the protein with surrounding water plays a critical role in protein aggregation. Such a water-centric perspective is further corroborated by demonstrating that, for a large number of Aβ mutants and mutants of other protein systems, the change in the experimental aggregation propensity upon mutation has a significant correlation with the protein solvation free energy change. We also find striking discrimination between the positively and negatively charged residues on the protein surface by surrounding water molecules, which is shown to play a crucial role in determining the protein aggregation propensity. We argue that the protein total charge dictates such striking behavior of the surrounding water molecules. Our results provide new insights for understanding and predicting the protein aggregation propensity, thereby offering novel design principles for producing aggregation-resistant proteins for biotherapeutics.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department
of Chemistry, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Korea
| | - Sihyun Ham
- Department
of Chemistry, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742, Korea
| |
Collapse
|
20
|
Chong SH, Ham S. Site-directed analysis on protein hydrophobicity. J Comput Chem 2014; 35:1364-70. [DOI: 10.1002/jcc.23631] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry; Sookmyung Women's University; Cheongpa-ro 47-gil 100, Yongsan-Ku Seoul 140-742 Korea
| | - Sihyun Ham
- Department of Chemistry; Sookmyung Women's University; Cheongpa-ro 47-gil 100, Yongsan-Ku Seoul 140-742 Korea
| |
Collapse
|
21
|
Chong SH, Ham S. Interaction with the surrounding water plays a key role in determining the aggregation propensity of proteins. Angew Chem Int Ed Engl 2014; 53:3961-4. [PMID: 24615814 DOI: 10.1002/anie.201309317] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/13/2013] [Indexed: 01/18/2023]
Abstract
Understanding the molecular determinants of the relative propensities of proteins to aggregate in a cellular environment is a central issue for treating protein-aggregation diseases and developing peptide-based therapeutics. Despite the expectation that protein aggregation can largely be attributed to direct protein-protein interactions, a crucial role the surrounding water in determining the aggregation propensity of proteins both in vitro and in vivo was identified. The overall protein hydrophobicity, defined solely by the hydration free energy of a protein in its monomeric state sampling its equilibrium structures, was shown to be the predominant determinant of protein aggregation propensity in aqueous solution. Striking discrimination of positively and negatively charged residues by the surrounding water was also found. This effect depends on the protein net charge and plays a crucial role in regulating the solubility of the protein. These results pave the way for the design of aggregation-resistant proteins as biotherapeutics.
Collapse
Affiliation(s)
- Song-Ho Chong
- Department of Chemistry, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul 140-742 (Korea) http://nbcc.sm.ac.kr
| | | |
Collapse
|
22
|
Chong SH, Ham S. Interaction with the Surrounding Water Plays a Key Role in Determining the Aggregation Propensity of Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Cui YL, Zheng QC, Zhang JL, Xue Q, Wang Y, Zhang HX. Molecular Dynamic Investigations of the Mutational Effects on Structural Characteristics and Tunnel Geometry in CYP17A1. J Chem Inf Model 2013; 53:3308-17. [DOI: 10.1021/ci400553w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ying-Lu Cui
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Qing-Chuan Zheng
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Ji-Long Zhang
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Qiao Xue
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yan Wang
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Hong-Xing Zhang
- State Key
Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130023, P. R. China
| |
Collapse
|
24
|
Insight into the structural stability of wild type and mutants of the tobacco etch virus protease with molecular dynamics simulations. J Mol Model 2013; 19:4865-75. [PMID: 24043540 DOI: 10.1007/s00894-013-1930-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/18/2013] [Indexed: 12/17/2022]
Abstract
The efficiency and high specificity of tobacco etch virus protease (TEVp) has made it widely used for cleavage of recombinant fusion proteins. However, TEVp suffers from a few intrinsic defects such as self-cleavage, poorly expressed in E. coli and less soluble. So some mutants were designed to improve it, such as S219V, T17S/N68D/I77V and L56V/S135G etc. MD simulations for the WT TEVp and its mutants were performed to explore the underlying dynamic effects of mutations on TEVp. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of TEVp, including the elongation of β-sheet, conversion of loop to helix and the flexibility of active core. Our present study indicates that the three mutants for TEVp can change their secondary structure and tend to form more helixes and sheets to improve stability. The study also helps us to understand the effects of some mutations on TEVp, provides us insights into the change of them at the atomic level and gives a potential rational method to design an improved protein.
Collapse
|
25
|
Chong SH, Ham S. Conformational Entropy of Intrinsically Disordered Protein. J Phys Chem B 2013; 117:5503-9. [DOI: 10.1021/jp401049h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Song-Ho Chong
- Department
of Chemistry, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul
140-742, Korea
| | - Sihyun Ham
- Department
of Chemistry, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-Ku, Seoul
140-742, Korea
| |
Collapse
|
26
|
Chong SH, Yim J, Ham S. Structural heterogeneity in familial Alzheimer's disease mutants of amyloid-beta peptides. MOLECULAR BIOSYSTEMS 2013; 9:997-1003. [DOI: 10.1039/c2mb25457c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Wang X, Kumar S, Buck PM, Singh SK. Impact of deglycosylation and thermal stress on conformational stability of a full length murine igG2a monoclonal antibody: Observations from molecular dynamics simulations. Proteins 2012; 81:443-60. [DOI: 10.1002/prot.24202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
|
28
|
Chong SH, Ham S. Aqueous interaction site integral-equation theory that exactly takes into account intramolecular correlations. J Chem Phys 2012; 137:154101. [DOI: 10.1063/1.4758072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
29
|
Hadi-Alijanvand H, Proctor EA, Goliaei B, Dokholyan NV, Moosavi-Movahedi AA. Thermal unfolding pathway of PHD2 catalytic domain in three different PHD2 species: computational approaches. PLoS One 2012; 7:e47061. [PMID: 23077544 PMCID: PMC3471951 DOI: 10.1371/journal.pone.0047061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/07/2012] [Indexed: 11/20/2022] Open
Abstract
Prolyl hydroxylase domain 2 containing protein (PHD2) is a key protein in regulation of angiogenesis and metastasis. In normoxic condition, PHD2 triggers the degradation of hypoxia-inducible factor 1 (HIF-1α) that induces the expression of hypoxia response genes. Therefore the correct function of PHD2 would inhibit angiogenesis and consequent metastasis of tumor cells in normoxic condition. PHD2 mutations were reported in some common cancers. However, high levels of HIF-1α protein were observed even in normoxic metastatic tumors with normal expression of wild type PHD2. PHD2 malfunctions due to protein misfolding may be the underlying reason of metastasis and invasion in such cases. In this study, we scrutinize the unfolding pathways of the PHD2 catalytic domain’s possible species and demonstrate the properties of their unfolding states by computational approaches. Our study introduces the possibility of aggregation disaster for the prominent species of PHD2 during its partial unfolding. This may justify PHD2 inability to regulate HIF-1α level in some normoxic tumor types.
Collapse
Affiliation(s)
| | - Elizabeth A. Proctor
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Nikolay V. Dokholyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Guo J, Ren H, Ning L, Liu H, Yao X. Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R. J Struct Biol 2012; 178:225-32. [DOI: 10.1016/j.jsb.2012.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/18/2022]
|
31
|
|
32
|
Impact of chemical heterogeneity on protein self-assembly in water. Proc Natl Acad Sci U S A 2012; 109:7636-41. [PMID: 22538814 DOI: 10.1073/pnas.1120646109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrophobicity is thought to underlie self-assembly in biological systems. However, the protein surface comprises hydrophobic and hydrophilic patches, and understanding the impact of such a chemical heterogeneity on protein self-assembly in water is of fundamental interest. Here, we report structural and thermodynamic investigations on the dimer formation of full-length amyloid-β proteins in water associated with Alzheimer's disease. Spontaneous dimerization process--from the individual diffusive regime at large separations, through the approach stage in which two proteins come close to each other, to the structural adjustment stage toward compact dimer formation--was captured in full atomic detail via unguided, explicit-water molecular dynamics simulations. The integral-equation theory of liquids was then applied to simulated protein structures to analyze hydration thermodynamic properties and the water-mediated interaction between proteins. We demonstrate that hydrophilic residues play a key role in initiating the dimerization process. A long-range hydration force of enthalpic origin acting on the hydrophilic residues provides the major thermodynamic force that drives two proteins to approach from a large separation to a contact distance. After two proteins make atomic contacts, the nature of the water-mediated interaction switches from a long-range enthalpic attraction to a short-range entropic one. The latter acts both on the hydrophobic and hydrophilic residues. Along with the direct protein-protein interactions that lead to the formation of intermonomer hydrogen bonds and van der Waals contacts, the water-mediated attraction of entropic origin brings about structural adjustment of constituent monomer proteins toward the formation of a compact dimer structure.
Collapse
|
33
|
Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: Insight from molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2012; 1820:116-23. [DOI: 10.1016/j.bbagen.2011.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/26/2011] [Accepted: 11/22/2011] [Indexed: 12/15/2022]
|
34
|
Chong SH, Park M, Ham S. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-β Protein in Water. J Chem Theory Comput 2012; 8:724-34. [DOI: 10.1021/ct200757a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Song-Ho Chong
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Mirae Park
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Sihyun Ham
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| |
Collapse
|
35
|
Chong SH, Ham S. Atomic-level investigations on the amyloid-β dimerization process and its driving forces in water. Phys Chem Chem Phys 2012; 14:1573-5. [DOI: 10.1039/c2cp23326f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|