1
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
2
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
3
|
Dong Y, Shu G, Wei Y, Pan J, Li D, Sun SK. Gram-Scale Synthesis of Renal-Clearable Tantalum Nanodots with High Water Solubility for Computed Tomography Imaging In Vivo. ACS NANO 2024; 18:25081-25095. [PMID: 39207307 DOI: 10.1021/acsnano.4c06705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tantalum (Ta) emerges as a promising element for advanced computed tomography (CT) imaging probes owing to its high X-ray attenuation coefficient and excellent biocompatibility. Nevertheless, the synthesis of renally clear Ta-based imaging probes through simple methods remains a significant challenge. Herein, we introduce a simple and gram-scale approach for the synthesis of renal-clearable Ta nanodots with high water solubility for CT imaging in vivo. The Ta nanodots, coordination polymers, are fabricated via coordination reactions involving Ta(OH)5, citric acid (CA), and hydrogen peroxide. The Ta nanodots exhibit an ultrasmall hydrodynamic diameter (2.8 nm), high water solubility (1.88 g/mL, 688 mg Ta/mL), superior X-ray absorption capacity, gram-scale production capability (>10 g in lab synthesis), renal-clearable ability, and good biocompatibility. The Ta nanodots possess superior CT imaging efficacy across diverse tube voltages, enabling highly sensitive gastrointestinal CT imaging, renal CT imaging, and CT angiography (CTA). Moreover, Ta nanodots maintain robust CT imaging capabilities even at high X-ray energies, and Ta nanodots-based spectral CT achieves metallic artifacts-minimized CTA. The proposed Ta nanodots present substantial potential as a potent CT imaging probe for diagnosing various diseases.
Collapse
Affiliation(s)
- Yanzhi Dong
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yibo Wei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
4
|
Abtahi M, Gheiratmand L, Dinesh A, Liu Y, Wong ECN, Cho H, Majonis D, Jackson HW, Mrkonjic M, Winnik MA. Testing a Nanoparticle Reagent for Imaging Mass Cytometry. Biomacromolecules 2024; 25:6115-6126. [PMID: 39189480 DOI: 10.1021/acs.biomac.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mass cytometry (MC), a powerful single-cell analysis technique, has limitations in detecting low-abundance biomarkers. Nanoparticle (NP) reagents offer the potential for enhancing sensitivity by carrying large numbers of heavy metal isotopes. Here, we report NP reporters for imaging mass cytometry (IMC) based on NaYF4:Yb3+/Er3+ NPs. A two-step ligand exchange was used to coat NP surfaces with either methoxy-PEG2K-neridronate (PEG-Ner) and/or poly(sulfobetaine methacrylate)-neridronate (PSBMA-Ner). Both modifications provided long-term colloidal stability in PBS buffer. IMC measurements on tonsil tissue showed that PSBMA-Ner or a 1:1 mixture of PSBMA-Ner + PEG-Ner effectively suppressed nonspecific binding (NSB) at 2 × 1010 NPs/mL, unlike PEG-Ner alone. However, breast cancer tissue samples showed increased NSB at titers above 2 × 1010 NPs/mL. Reduced NSB with mixed PEG-Ner and PSBMA-Ner coatings opens the door for using heterobifunctional PEGs for the development of NP conjugates with bioaffinity agents, enabling more sensitive and specific MC analyses.
Collapse
Affiliation(s)
- Mahtab Abtahi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ladan Gheiratmand
- Standard BioTools Canada Inc., Suite 400, 1380 Rodick Road, Markham, ON L3R 4G5, Canada
| | - Anuroopa Dinesh
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Edmond C N Wong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hyungjun Cho
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc., Suite 400, 1380 Rodick Road, Markham, ON L3R 4G5, Canada
| | - Hartland W Jackson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3A1, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Ontario Institute of Cancer Research, Toronto, ON M5G 1M1, Canada
| | - Miralem Mrkonjic
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
5
|
Cao X, Tang W, Gao H, Wang Y, Chen Y, Gao C, Zhao F, Su L. SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5162-5179. [PMID: 39296417 PMCID: PMC11407256 DOI: 10.1364/boe.531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024]
Abstract
Cone beam X-ray luminescence computed tomography (CB-XLCT) is an emerging imaging technique with potential for early 3D tumor detection. However, the reconstruction challenge due to low light absorption and high scattering in tissues makes it a difficult inverse problem. In this study, the online dictionary learning (ODL) method, combined with iterative reduction FISTA (IR-FISTA), has been utilized to achieve high-quality reconstruction. Our method integrates IR-FISTA for efficient and accurate sparse coding, followed by an online stochastic approximation for dictionary updates, effectively capturing the sparse features inherent to the problem. Additionally, a re-sparse step is introduced to enhance the sparsity of the solution, making it better suited for CB-XLCT reconstruction. Numerical simulations and in vivo experiments were conducted to assess the performance of the method. The SODL-IR-FISTA achieved the smallest location error of 0.325 mm in in vivo experiments, which is 58% and 45% of the IVTCG-L 1 (0.562 mm) and OMP-L 0 (0.721 mm), respectively. Additionally, it has the highest DICE similarity coefficient, which is 0.748. The results demonstrate that our approach outperforms traditional methods in terms of localization precision, shape restoration, robustness, and practicality in live subjects.
Collapse
Affiliation(s)
- Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Wenlong Tang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Huimin Gao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yifan Wang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yi Chen
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide SA 5005, Australia
| | - Chengyi Gao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
6
|
Wang Y, Wang H, Zhu Q, Chen Y, Su L, Yi H, Gao C, Cao X. SBL-LCGL: sparse Bayesian learning based on Laplace distribution for robust cone-beam x-ray luminescence computed tomography. Phys Med Biol 2024; 69:175020. [PMID: 39168153 DOI: 10.1088/1361-6560/ad7223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Objective. To address the quality and accuracy issues in the distribution of nanophosphors (NPs) using Cone-beam x-ray luminescence computed tomography (CB-XLCT) by proposing a novel reconstruction strategy.Approach. This paper introduces a sparse Bayesian learning reconstruction method termed SBL-LCGL, which is grounded in the Lipschitz continuous gradient condition and the Laplace prior to overcome the ill-posed inverse problem inherent in CB-XLCT.Main results. The SBL-LCGL method has demonstrated its effectiveness in capturing the sparse features of NPs and mitigating the computational complexity associated with matrix inversion. Both numerical simulation andin vivoexperiments confirm that the method yields satisfactory imaging results regarding the position and shape of the targets.Significance. The advancements presented in this work are expected to enhance the clinical applicability of CB-XLCT, contributing to its broader adoption in medical imaging and diagnostics.
Collapse
Affiliation(s)
- Yifan Wang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Haoyu Wang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Qiuquan Zhu
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Chengyi Gao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
7
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
8
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
9
|
Hu S, Hu K, Zhang Y, Shah SA, Zhao Z, Zuo Z, Lu S, Tang S, Zhu W, Fang L, Song F. Oxidation behavior and atomic structural transition of size-selected coalescence-resistant tantalum nanoclusters. NANOTECHNOLOGY 2024; 35:315603. [PMID: 38688256 DOI: 10.1088/1361-6528/ad4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Herein a series of size-selected TaN(N = 147, 309, 561, 923, 1415, 2057, 6525, 10 000, 20 000) clusters are generated using a gas-phase condensation cluster beam source equipped with a lateral time-of-flight mass-selector. Aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging reveals good thermal stability of TaNclusters in this study. The oxidation-induced amorphization is observed from AC-STEM imaging and further demonstrated through x-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The oxidized Ta predominantly exists in the +5 oxidation state and the maximum spontaneous oxidation depth of the Ta cluster is observed to be 5 nm under prolonged atmosphere exposure. Furthermore, the size-dependent sintering and crystallization processes of oxidized TaNclusters are observed with anin situheating technique, and eventually, ordered structures are restored. As the temperature reaches 1300 °C, a fraction of oxidized Ta309clusters exhibit decahedral and icosahedral structures. However, the five-fold symmetry structures are absent in larger clusters, instead, these clusters exhibit ordered structures resembling those of the crystalline Ta2O5films. Notably, the sintering and crystallization process occurs at temperatures significantly lower than the melting point of Ta and Ta2O5, and the ordered structures resulting from annealing remain well-preserved after six months of exposure to ambient conditions.
Collapse
Affiliation(s)
- Shengyong Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Kuojuei Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Yongxin Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Syed Adil Shah
- School of Biomedical Engineering, Health Science Centre, Shenzhen University Shenzhen, Guangdong 518060, People's Republic of China
| | - Zixiang Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Zewen Zuo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Siqi Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Sichen Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Wuwen Zhu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Liu Fang
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| |
Collapse
|
10
|
Karpov TE, Darwish A, Mitusova K, Postovalova AS, Akhmetova DR, Vlasova OL, Shipilovskikh SA, Timin AS. Controllable synthesis of barium carbonate nano- and microparticles for SPECT and CT imaging. J Mater Chem B 2024; 12:4232-4247. [PMID: 38601990 DOI: 10.1039/d3tb02480f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The design and synthesis of nano- and microcarriers for preclinical and clinical imaging are highly attractive due to their unique features, for example, multimodal properties. However, broad translation of these carriers into clinical practice is postponed due to the unknown biological reactivity of the new components used for their synthesis. Here, we have developed microcarriers (∼2-3 μm) and nanocarriers (<200 nm) made of barium carbonate (BaCO3) for multiple imaging applications in vivo. In general, barium in the developed carriers can be used for X-ray computed tomography, and the introduction of a diagnostic isotope (99mTc) into the BaCO3 structure enables in vivo visualization using single-photon emission computed tomography. The bioimaging has shown that the radiolabeled BaCO3 nano- and microcarriers had different biodistribution profiles and tumor accumulation efficiencies after intratumoral and intravenous injections. In particular, in the case of intratumoral injection, all the types of used carriers mostly remained in the tumors (>97%). For intravenous injection, BaCO3 microcarriers were mainly localized in the lung tissues. However, BaCO3 NPs were mainly accumulated in the liver. These results were supported by ex vivo fluorescence imaging, direct radiometry, and histological analysis. The BaCO3-based micro- and nanocarriers showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. This study provides a simple strategy for the design and fabrication of the BaCO3-based carriers for the development of dual bioimaging.
Collapse
Affiliation(s)
- Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Aya Darwish
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | - Alisa S Postovalova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
- ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Olga L Vlasova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| | | | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| |
Collapse
|
11
|
Zhao Z, Li H, Gao X. Microwave Encounters Ionic Liquid: Synergistic Mechanism, Synthesis and Emerging Applications. Chem Rev 2024; 124:2651-2698. [PMID: 38157216 DOI: 10.1021/acs.chemrev.3c00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Progress in microwave (MW) energy application technology has stimulated remarkable advances in manufacturing and high-quality applications of ionic liquids (ILs) that are generally used as novel media in chemical engineering. This Review focuses on an emerging technology via the combination of MW energy and the usage of ILs, termed microwave-assisted ionic liquid (MAIL) technology. In comparison to conventional routes that rely on heat transfer through media, the contactless and unique MW heating exploits the electromagnetic wave-ions interactions to deliver energy to IL molecules, accelerating the process of material synthesis, catalytic reactions, and so on. In addition to the inherent advantages of ILs, including outstanding solubility, and well-tuned thermophysical properties, MAIL technology has exhibited great potential in process intensification to meet the requirement of efficient, economic chemical production. Here we start with an introduction to principles of MW heating, highlighting fundamental mechanisms of MW induced process intensification based on ILs. Next, the synergies of MW energy and ILs employed in materials synthesis, as well as their merits, are documented. The emerging applications of MAIL technologies are summarized in the next sections, involving tumor therapy, organic catalysis, separations, and bioconversions. Finally, the current challenges and future opportunities of this emerging technology are discussed.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hong Li
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xin Gao
- School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
12
|
Jäntti J, Joenathan A, Fugazzola M, Tuppurainen J, Honkanen JTJ, Töyräs J, van Weeren R, Snyder BD, Grinstaff MW, Matikka H, Mäkelä JTA. Cationic tantalum oxide nanoparticle contrast agent for micro computed tomography reveals articular cartilage proteoglycan distribution and collagen architecture alterations. Osteoarthritis Cartilage 2024; 32:299-309. [PMID: 38061579 DOI: 10.1016/j.joca.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE Cationic tantalum oxide nanoparticles (Ta2O5-cNPs), as a newly introduced contrast agent for computed tomography of cartilage, offer quantitative evaluation of proteoglycan (PG) content and biomechanical properties. However, knowledge on the depth-wise impact of cartilage constituents on nanoparticle diffusion, particularly the influence of the collagen network, is lacking. In this study, we aim to establish the depth-dependent relationship between Ta2O5-cNP diffusion and cartilage constituents (PG content, collagen content and network architecture). METHODS Osteochondral samples (n = 30) were harvested from healthy equine stifle joints (N = 15) and the diffusion of 2.55 nm diameter cationic Ta2O5-cNPs into the cartilage was followed with micro computed tomography (µCT) imaging for up to 96 hours. The diffusion-related parameters, Ta2O5-cNP maximum partition (Pmax) and diffusion time constant, were compared against biomechanical and depth-wise structural properties. Biomechanics were assessed using stress-relaxation and sinusoidal loading protocols, whereas PG content, collagen content and collagen network architecture were determined using digital densitometry, Fourier-transform infrared spectroscopy and polarized light microscopy, respectively. RESULTS The Pmax correlates with the depth-wise distribution of PGs (bulk Spearman's ρ = 0.87, p < 0.001). More open collagen network architecture at the superficial zone enhances intake of Ta2O5-cNPs, but collagen content overall decreases the intake. The Pmax values correlate with the equilibrium modulus (ρ = 0.80, p < 0.001) of articular cartilage. CONCLUSION This study establishes the feasibility of Ta2O5-cNPs for the precise and comprehensive identification of biomechanical and structural changes in articular cartilage via contrast-enhanced µCT.
Collapse
Affiliation(s)
- Jiri Jäntti
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Anisha Joenathan
- Division of Materials Science, Boston University, Boston, MA, USA
| | - Maria Fugazzola
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Juuso Tuppurainen
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - René van Weeren
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Brian D Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Mark W Grinstaff
- Division of Materials Science, Boston University, Boston, MA, USA; Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA
| | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
14
|
Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance. Sci Prog 2024; 107:368504241228076. [PMID: 38332327 PMCID: PMC10854387 DOI: 10.1177/00368504241228076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
X-ray computed tomography (CT) and magnetic resonance (MR) imaging are essential tools in modern medical diagnosis and treatment. However, traditional contrast agents are inadequate in the diagnosis of various health conditions. Consequently, the development of targeted nano-contrast agents has become a crucial area of focus in the development of medical image-enhancing contrast agents. To fully understand the current development of nano-contrast agents, this review provides an overview of the preparation methods and research advancements in CT nano-contrast agents, MR nano-contrast agents, and CT/MR multimodal nano-contrast agents described in previous publications. Due to the physicochemical properties of nanomaterials, such as self-assembly and surface modifiability, these specific nano-contrast agents can greatly improve the targeting of lesions through various preparation methods and clearly highlight the distinction between lesions and normal tissues in both CT and MR. As a result, they have the potential to be used in the early stages of disease to improve diagnostic capacity and level in medical imaging.
Collapse
Affiliation(s)
- Jianjun Lai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, China
| | - Liting Chen
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Department of Radiation Oncology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
15
|
Ahmad MY, Liu S, Tegafaw T, Saidi AKAA, Zhao D, Liu Y, Nam SW, Chang Y, Lee GH. Heavy Metal-Based Nanoparticles as High-Performance X-ray Computed Tomography Contrast Agents. Pharmaceuticals (Basel) 2023; 16:1463. [PMID: 37895934 PMCID: PMC10609879 DOI: 10.3390/ph16101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
X-ray computed tomography (CT) contrast agents offer extremely valuable tools and techniques in diagnostics via contrast enhancements. Heavy metal-based nanoparticles (NPs) can provide high contrast in CT images due to the high density of heavy metal atoms with high X-ray attenuation coefficients that exceed that of iodine (I), which is currently used in hydrophilic organic CT contrast agents. Nontoxicity and colloidal stability are vital characteristics in designing heavy metal-based NPs as CT contrast agents. In addition, a small particle size is desirable for in vivo renal excretion. In vitro phantom imaging studies have been performed to obtain X-ray attenuation efficiency, which is a critical parameter for CT contrast agents, and the imaging performance of CT contrast agents has been demonstrated via in vivo experiments. In this review, we focus on the in vitro and in vivo studies of various heavy metal-based NPs in pure metallic or chemical forms, including Au, Pt, Pd, Ag, Ce, Gd, Dy, Ho, Yb, Ta, W, and Bi, and provide an outlook on their use as high-performance CT contrast agents.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea;
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea; (M.Y.A.); (S.L.); (T.T.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| |
Collapse
|
16
|
Rizzo R, Capozza M, Carrera C, Terreno E. Bi-HPDO3A as a novel contrast agent for X-ray computed tomography. Sci Rep 2023; 13:16747. [PMID: 37798332 PMCID: PMC10556142 DOI: 10.1038/s41598-023-43031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
A new bismuth-based CT agent was synthesized through a facile synthesis strategy. The in vitro stability, toxicity and CT performance were evaluated. The in vivo imaging performance was investigated using three different doses (0.5, 1.2 and 5 mmol/kg) and the result obtained at 1.2 mmol/kg was compared with the clinically approved CT agent iopamidol at the same dosage.
Collapse
Affiliation(s)
- Rebecca Rizzo
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, 10126, Turin, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
17
|
Kumar R, Huda MN, Habib A, Nafiujjaman M, Woo HJ, Kim T, Nurunnabi M. Carbon Coated Iron-Cobalt Nanoparticles for Magnetic Particle Imaging. ACS APPLIED BIO MATERIALS 2023; 6:3257-3265. [PMID: 37554053 PMCID: PMC10787597 DOI: 10.1021/acsabm.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging modality that provides direct and quantitative mapping of iron oxide tracers. To achieve high sensitivity and good spatial resolution images, a magnetic nanoparticle with a higher contrast intensity needs to be developed. Currently, a majority of MPIs being developed for potential clinical application are composed of iron oxide nanoparticles with a spherical shape. In this project, we intend to report development of high-performance carbon (C) coated iron-cobalt (FeCo) nanoparticles (FeCo/C) and investigate their feasibility as a MPI agent. We have synthesized FeCo/C through a facile and simple method at mild temperature that is safe, easy, and up-scalable. We studied the structural and functional relationships and biocompatibility of this MPI agent in vitro. However, to enhance the aqueous solubility and biocompatibility, the surface of FeCo/C was modified with polyethylene glycol (PEG). We found that variation in the ratio of Fe and Co plays a vital role in their physical properties and functionality. In vitro imaging confirms that the Fe3Co1/C nanoparticle has highly competitive MPI intensity compared to VivoTrax, a commercially available MPI agent. Confocal laser scanning microscopy imaging with Rhodamine B labeled FeCo/C displays cellular internalization by the A375 cancer cells. The in vitro toxicity analysis concludes that there is no significant toxicity of FeCo/C nanoparticles. Therefore, the newly developed MPI agent holds strong promise for biomedical imaging and could be further validated in vivo in small animals.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurul Huda
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States
| | - Ahsan Habib
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hyun-Joo Woo
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
18
|
García A, Cámara JA, Boullosa AM, Gustà MF, Mondragón L, Schwartz S, Casals E, Abasolo I, Bastús NG, Puntes V. Nanoceria as Safe Contrast Agents for X-ray CT Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2208. [PMID: 37570527 PMCID: PMC10421217 DOI: 10.3390/nano13152208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Cerium oxide nanoparticles (CeO2NPs) have exceptional catalytic properties, rendering them highly effective in removing excessive reactive oxygen species (ROS) from biological environments, which is crucial in safeguarding these environments against radiation-induced damage. Additionally, the Ce atom's high Z number makes it an ideal candidate for utilisation as an X-ray imaging contrast agent. We herein show how the injection of albumin-stabilised 5 nm CeO2NPs into mice revealed substantial enhancement in X-ray contrast, reaching up to a tenfold increase at significantly lower concentrations than commercial or other proposed contrast agents. Remarkably, these NPs exhibited prolonged residence time within the target organs. Thus, upon injection into the tail vein, they exhibited efficient uptake by the liver and spleen, with 85% of the injected dose (%ID) recovered after 7 days. In the case of intratumoral administration, 99% ID of CeO2NPs remained within the tumour throughout the 7-day observation period, allowing for observation of disease dynamics. Mass spectrometry (ICP-MS) elemental analysis confirmed X-ray CT imaging observations.
Collapse
Affiliation(s)
- Ana García
- Design and Pharmacokinetics of Nanoparticles, CIBBIM-Nanomedicine, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.G.); (L.M.)
| | - Juan Antonio Cámara
- Preclinical Imaging Platform, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
| | - Ana María Boullosa
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.M.B.); (I.A.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
| | - Muriel F. Gustà
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - Laura Mondragón
- Design and Pharmacokinetics of Nanoparticles, CIBBIM-Nanomedicine, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.G.); (L.M.)
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - Simó Schwartz
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.M.B.); (I.A.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
- Servei de Bioquímica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.M.B.); (I.A.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
- Servei de Bioquímica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Neus G. Bastús
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - Víctor Puntes
- Design and Pharmacokinetics of Nanoparticles, CIBBIM-Nanomedicine, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.G.); (L.M.)
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08034 Barcelona, Spain; (M.F.G.); (N.G.B.)
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats, (ICREA), P. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
19
|
Chen Y, Du M, Zhang G, Zhang J, Li K, Su L, Zhao F, Yi H, Cao X. Sparse reconstruction based on dictionary learning and group structure strategy for cone-beam X-ray luminescence computed tomography. OPTICS EXPRESS 2023; 31:24845-24861. [PMID: 37475302 DOI: 10.1364/oe.493797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
As a dual-modal imaging technology that has emerged in recent years, cone-beam X-ray luminescence computed tomography (CB-XLCT) has exhibited promise as a tool for the early three-dimensional detection of tumors in small animals. However, due to the challenges imposed by the low absorption and high scattering of light in tissues, the CB-XLCT reconstruction problem is a severely ill-conditioned inverse problem, rendering it difficult to obtain satisfactory reconstruction results. In this study, a strategy that utilizes dictionary learning and group structure (DLGS) is proposed to achieve satisfactory CB-XLCT reconstruction performance. The group structure is employed to account for the clustering of nanophosphors in specific regions within the organism, which can enhance the interrelation of elements in the same group. Furthermore, the dictionary learning strategy is implemented to effectively capture sparse features. The performance of the proposed method was evaluated through numerical simulations and in vivo experiments. The experimental results demonstrate that the proposed method achieves superior reconstruction performance in terms of location accuracy, target shape, robustness, dual-source resolution, and in vivo practicability.
Collapse
|
20
|
Li H, Fan R, Zou B, Yan J, Shi Q, Guo G. Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotechnology 2023; 21:73. [PMID: 36859311 PMCID: PMC9979438 DOI: 10.1186/s12951-023-01809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
....With the development of nanomedical technology, the application of various novel nanomaterials in the biomedical field has been greatly developed in recent years. MXenes, which are new inorganic nanomaterials with ultrathin atomic thickness, consist of layered transition metal carbides and nitrides or carbonitrides and have the general structural formula Mn+1XnTx (n = 1-3). Based on the unique structural features of MXenes, such as ultrathin atomic thickness and high specific surface area, and their excellent physicochemical properties, such as high photothermal conversion efficiency and antibacterial properties, MXenes have been widely applied in the biomedical field. This review systematically summarizes the application of MXene-based materials in biomedicine. The first section is a brief summary of their synthesis methods and surface modification strategies, which is followed by a focused overview and analysis of MXenes applications in biosensors, diagnosis, therapy, antibacterial agents, and implants, among other areas. We also review two popular research areas: wearable devices and immunotherapy. Finally, the difficulties and research progress in the clinical translation of MXene-based materials in biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiazhen Yan
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiwu Shi
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Pahuja M, De I, Ahmed Siddiqui S, Das S, Afshan M, Alam K, Riyajuddin S, Rani S, Ghosh R, Rani D, Gill K, Singh M, Ghosh K. Seamless Architecture of Porous Carbon Matrix Decorated with Ta2O5 Nanostructure-based Recyclable Photocatalytic Cartridge for Toxicity Remediation of Industrial Dye Effluents. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
22
|
Saidi AKAA, Ghazanfari A, Liu S, Tegafaw T, Ahmad MY, Zhao D, Liu Y, Yang SH, Hwang DW, Yang JU, Park JA, Jung JC, Nam SW, Chang Y, Lee GH. Facile Synthesis and X-ray Attenuation Properties of Ultrasmall Platinum Nanoparticles Grafted with Three Types of Hydrophilic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:806. [PMID: 36903686 PMCID: PMC10004834 DOI: 10.3390/nano13050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Ultrasmall platinum nanoparticles (Pt-NPs) grafted with three types of hydrophilic and biocompatible polymers, i.e., poly(acrylic acid), poly(acrylic acid-co-maleic acid), and poly(methyl vinyl ether-alt-maleic acid) were synthesized using a one-pot polyol method. Their physicochemical and X-ray attenuation properties were characterized. All polymer-coated Pt-NPs had an average particle diameter (davg) of 2.0 nm. Polymers grafted onto Pt-NP surfaces exhibited excellent colloidal stability (i.e., no precipitation after synthesis for >1.5 years) and low cellular toxicity. The X-ray attenuation power of the polymer-coated Pt-NPs in aqueous media was stronger than that of the commercial iodine contrast agent Ultravist at the same atomic concentration and considerably stronger at the same number density, confirming their potential as computed tomography contrast agents.
Collapse
Affiliation(s)
- Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Adibehalsadat Ghazanfari
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - So Hyeon Yang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Dong Wook Hwang
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Ji-ung Yang
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, Republic of Korea
| | - Jae Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Republic of Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| |
Collapse
|
23
|
Jiang Y, Li T, Yang J, Wang X, Song X, Chen G, Dai G, Li R, Yao C, Chen J, Chen C, Gong X, Yang L. Sustained intra-articular reactive oxygen species scavenging and alleviation of osteoarthritis by biocompatible amino-modified tantalum nanoparticles. Front Bioeng Biotechnol 2023; 11:1118850. [PMID: 36714006 PMCID: PMC9880278 DOI: 10.3389/fbioe.2023.1118850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Recent studies highlight the vital role of oxidative stress and reactive oxygen species (ROS) during progression of osteoarthritis (OA). Attenuating oxidative stress and reducing reactive oxygen species generation in joints represent reasonable strategies for the treatment of osteoarthritis. To address the potential question for clinical translation, and improve the biocompatibility and long-term performance of current antioxidants, the present study provided high biocompatible small positively charged tantalum nanoparticles (Ta-NH2 NPs) with sustained intra-articular catalase activity and first applied to osteoarthritis intervention. Our in vitro results showed that Ta-NH2 NPs were stable with good biocompatibility, and protected viability and hyaline-like phenotype in H2O2-challenged chondrocytes. In addition, the in vivo biodistribution data demonstrated a sustained retention of Ta-NH2 NPs in the joint cavity, particularly in articular cartilage without organ toxicity and abnormality in hemogram or blood biochemistry indexes. Finally, compared with catalase (CAT), Ta-NH2 NPs exhibited long-term therapeutic effect in monosodium iodoacetate (MIA) induced osteoarthritis model. This study preliminarily explored the potential of simply modified metal nanoparticles as effective reactive oxygen species scavenging agent for osteoarthritis intervention, and offered a novel strategy to achieve sustained reactive oxygen species suppression using biocompatible Ta-based nano-medicine in oxidative stress related diseases.
Collapse
Affiliation(s)
- Yunsheng Jiang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junjun Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gang Dai
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Yao
- Blood Transfusion Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Xiaoyuan Gong, ; Liu Yang,
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China,*Correspondence: Xiaoyuan Gong, ; Liu Yang,
| |
Collapse
|
24
|
Li B, Wang G, Tong Y, Zhang Y, Sun SK, Yu C. Noninvasive Gastrointestinal Tract Imaging Using BSA-Ag 2Te Quantum Dots as a CT/NIR-II Fluorescence Dual-Modal Imaging Probe in Vivo. ACS Biomater Sci Eng 2023; 9:449-457. [PMID: 36475590 DOI: 10.1021/acsbiomaterials.2c00886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of high-resolution computed tomography (CT) and the real-time sensitive second near-infrared window (NIR-II) fluorescence bioimaging can provide complementary information for the diagnosis, progression and prognosis of gastrointestinal disorders. Ag2Te quantum dots (QDs) are a kind of promising CT/NIR-II fluorescence dual-modal imaging probe due to their high atomic number and narrow bandgap. However, conventional Ag2Te QDs synthesized by oil phase approaches often suffer from complicated steps, harsh reaction conditions, and toxic organic solvents. Herein, we report the synthesis of bovine serum albumin (BSA)-Ag2Te QDs using a biomineralization approach for CT/NIR-II fluorescence dual-modal imaging of the gastrointestinal tract. The BSA-Ag2Te QDs are fabricated in a facile one-pot approach under mild conditions and exhibit homogeneous size, favorable monodispersity, admirable aqueous solubility, excellent X-ray attenuation properties, and outstanding NIR-II fluorescence performance. In vivo imaging experiments show that BSA-Ag2Te QDs can be used in gastrointestinal tract CT/NIR-II dual-modal imaging with high spatiotemporal resolution and sensitivity. In addition, in an intestinal obstruction mouse model, accurate lesion positioning and imaging-guided obstruction relief surgery are successfully realized based on BSA-Ag2Te QDs. Besides, BSA-Ag2Te QDs have outstanding biocompatibility in vitro and in vivo. This study presents a high-performance and biosafe CT/NIR-II fluorescence dual-modal imaging probe for visualizing the gastrointestinal tract in vivo.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Tong
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Yujie Zhang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
25
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
27
|
Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int J Mol Sci 2022; 23:ijms231810521. [PMID: 36142435 PMCID: PMC9505579 DOI: 10.3390/ijms231810521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The over-growth and coagulation of nanoparticles is prevented using capping agents by the production of stearic effect that plays a pivotal role in stabilizing the interface. This strategy of coating the nanoparticles’ surface with capping agents is an emerging trend in assembling multipurpose nanoparticles that is beneficial for improving their physicochemical and biological behavior. The enhancement of reactivity and negligible toxicity is the outcome. In this review article, an attempt has been made to introduce the significance of different capping agents in the preparation of nanoparticles. Most importantly, we have highlighted the recent progress, existing roadblocks, and upcoming opportunities of using surface modified nanoparticles in nanomedicine from the drug and gene delivery, bioimaging, and biosensing perspectives.
Collapse
|
28
|
Dong YC, Kumar A, Rosario-Berríos DN, Si-Mohamed S, Hsu JC, Nieves LM, Douek P, Noël PB, Cormode DP. Ytterbium Nanoparticle Contrast Agents for Conventional and Spectral Photon-Counting CT and Their Applications for Hydrogel Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39274-39284. [PMID: 35975982 PMCID: PMC9513702 DOI: 10.1021/acsami.2c12354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Significant work has been done to develop nanoparticle contrast agents for computed tomography (CT), with a focus on identifying safer and more effective formulations. Contrast agents for spectral photon-counting computed tomography (SPCCT), a fast-growing imaging modality derived from conventional CT, have also recently gained considerable attention. In this study, we explored the synthesis of ultrasmall ytterbium nanoparticles (YbNP) and demonstrated that, potentially, they can be used as conventional CT and SPCCT contrast agents. These nanoparticles were tested in vitro for their cytotoxicity and contrast-generating properties with a variety of imaging systems. When scanned with conventional CT and SPCCT at clinically relevant energies, YbNP are significantly more attenuating than gold nanoparticles (AuNP), the contrast agents that have been most well studied. Furthermore, YbNP were studied for their potential application for labeling and monitoring hydrogels. The presence of the YbNP payload in hydrogels allowed for hydrogel localization and tracking in vivo. Additionally, the in vivo imaging results revealed that YbNP generate higher contrast when compared to AuNP used as a label. In summary, this is the first research study to examine ultrasmall YbNP as conventional CT and SPCCT contrast agents, as well as using them in a hydrogel system to make it radiopaque. These findings underscore YbNP's utility as CT and SPCCT contrast agents, as well as their potential for tracking hydrogels in vivo.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ananyaa Kumar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Derick N Rosario-Berríos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Salim Si-Mohamed
- CREATIS, CNRS UMR 5220, INSERM U1206, INSA, University Claude Bernard Lyon 1, F69621 Lyon, France
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lenitza M Nieves
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Philippe Douek
- CREATIS, CNRS UMR 5220, INSERM U1206, INSA, University Claude Bernard Lyon 1, F69621 Lyon, France
| | - Peter B Noël
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
30
|
Shakeri M, Delavari H H, Montazerabadi A, Yourdkhani A. Hyaluronic acid-coated ultrasmall BiOI nanoparticles as a potentially targeted contrast agent for X-ray computed tomography. Int J Biol Macromol 2022; 217:668-676. [PMID: 35850269 DOI: 10.1016/j.ijbiomac.2022.07.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Commercial X-ray computed tomography (CT) contrast agents (CAs) are not appropriate for multicolor CT imaging and are limited due to a lack of tumor targeting. In this contribution, to favor the combination of high Z elements like bismuth and iodine for a broad range of X-ray photon energy, BiOI nanoparticles (NPs) are synthesized with hyaluronic acid (HA) coating to target the tumor cells with CD44 overexpression. The crystal structure of BiOI NPs is determined by X-ray powder diffraction, and the size of NPs is determined by a transmission electron microscope at about 14 ± 3 nm. The dynamic diameter of the NPs (DLS) in PBS buffer was measured at about 100 nm. Fourier transform infrared spectroscopy and thermal gravimetric analysis confirm the coating of BiOI NPs with HA. The stability of the NPs was also investigated via UV-vis spectroscopy. The immunocytochemistry process is performed to investigate the targeting ability of synthesized NPs on the human colon cancer cells with CD44 antigen. Finally, the X-ray attenuation of prepared HA-coated BiOI NPs is higher than Iohexol as the commercially available iodinated contrasting agent at the same concentrations, which can be administrated at much lower doses to achieve similar contrast to Iohexol.
Collapse
Affiliation(s)
- Mina Shakeri
- Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Hamid Delavari H
- Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| | - Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Yourdkhani
- Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| |
Collapse
|
31
|
Bai L, Yi W, Chen J, Wang B, Tian Y, Zhang P, Cheng X, Si J, Hou X, Hou J. Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25050-25064. [PMID: 35608833 DOI: 10.1021/acsami.2c01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 μg mL-1 and 75% at a dose of 25 μg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lei Bai
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenhui Yi
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Bojin Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yilong Tian
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xi'an, Shaanxi 712100, China
| | - Xin Cheng
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Hou
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
32
|
Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med 2022; 28:666-677. [PMID: 35440720 DOI: 10.1038/s41591-022-01746-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible.
Collapse
Affiliation(s)
- Rebecca C Fitzgerald
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
33
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| |
Collapse
|
34
|
Dai G, Zhang Y, Wang X, Wang X, Jia J, Jia F, Yang L, Yang C. Small-Molecule Bi-DOTA Complex for High-Performance CT and Spectral CT Bioimaging. Front Oncol 2022; 12:813955. [PMID: 35251983 PMCID: PMC8894608 DOI: 10.3389/fonc.2022.813955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Abstract
Objectives It is necessary to develop a high-performance and biocompatible contrast agent to accurately diagnose various diseases via in vivo computed tomography (CT) imaging. Here, we synthesized a small molecular Bi-DOTA complex as a high-performance contrast agent for in vitro and in vivo CT bioimaging. Materials and Methods In our study, Bi-DOTA was fabricated through a facile and one-pot synthesis strategy. The formed Bi-DOTA complex was characterized via different techniques. Furthermore, Bi-DOTA was used for in vitro and in vivo CT bioimaging to verify its X-ray attenuation ability, especially in vivo kidney imaging, gastrointestinal tract CT imaging, and spectral CT imaging. Results A small molecular Bi-DOTA complex with a molecular mass of 0.61 kDa was synthesized successfully, which exhibited outstanding dispersion, good biocompatibility, and superior X-ray attenuation ability. Meanwhile, we showed that the obtained contrast agent was quite biocompatible and safe in the given concentration range as confirmed by in vitro and in vivo cytotoxicity assay. Also, the proposed contrast agent can be rapidly excreted from the body via the urinary system, avoiding the potential side effects caused by long-term retention in vivo. Importantly, Bi-DOTA was successfully used in high-quality in vitro CT imaging, in vivo kidney imaging, gastrointestinal tract CT imaging, and spectral CT imaging. Conclusions These superiorities allowed Bi-DOTA to be used as an efficient CT contrast agent and laid down a new way of designing high-performance CT contrast agents with great clinical transformation potential.
Collapse
Affiliation(s)
- Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yu Zhang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Ximei Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Xingyu Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Juan Jia
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Fei Jia
- Department of Medical Imaging, Southwest Medical University, Luzhou, China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- *Correspondence: Lu Yang, ; Chunmei Yang,
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
- *Correspondence: Lu Yang, ; Chunmei Yang,
| |
Collapse
|
35
|
Xu S, Liu H, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022; 414:5121-5138. [PMID: 35165779 DOI: 10.1007/s00216-022-03945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immunoassay is one of the most important clinical techniques for disease/pathological diagnosis. Mass spectrometry (MS) has been a popular and powerful readout technique for immunoassays, generating the mass spectrometric immunoassays (MSIAs) with unbeatable channels for multiplexed detection. The sensitivity of MSIAs has been greatly improved with the development of mass labels from element labels to small-molecular labels. MSIAs are also expended from the representative element MS-based methods to the laser-based organic MS and latest ambient MS, improving in both technology and methodology. Various MSIAs present high potential for clinical applications, including the biomarker screening, the immunohistochemistry, and the advanced single-cell analysis. Here, we give an overall review of the development of MSIAs in recent years, highlighting the latest improvement of mass labels and MS techniques for clinical immunoassays.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Ko G, Choi JW, Shin K, Kim YG, Kang T, Kim D, Lee N, Kim H, Hyeon T. In Vivo Sol-Gel Reaction of Tantalum Alkoxide for Endovascular Embolization. Adv Healthc Mater 2022; 11:e2101908. [PMID: 34783195 DOI: 10.1002/adhm.202101908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Indexed: 12/08/2022]
Abstract
Liquid embolic agents are considered the most promising for various embolization procedures because they enable deep penetration. For realizing effective procedures, the delivery of liquid embolic agents should be guided under X-ray imaging systems and the solidification time should be optimized for the specific indication. The biocompatibility of embolic agents is also crucial because they remain in the vessel after embolization. In this study, new biocompatible embolic agents based on tantalum ethoxide is synthesized. Tantalum alkoxide liquid embolics (TALE) possess the radiopacity for fluoroscopy and can control the penetration depth by modifying the sol-gel kinetics. Furthermore, TALE can serve as drug carriers for synergistic treatment. Using these excellent characteristics, it is demonstrated that TALE agents can be used in various situations including the transarterial chemoembolization of hepatocellular carcinoma and embolotherapy of massive bleeding from the femoral artery.
Collapse
Affiliation(s)
- Giho Ko
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jin Woo Choi
- Department of Radiology Seoul National University Hospital Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- Department of Bionano Engineering and Bionanoetchnology Hanyang University Gyeonggi‐do 15588 Republic of Korea
| | - Nohyun Lee
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Advanced Materials Engineering Kookmin University Seoul 02707 Republic of Korea
| | - Hyo‐Cheol Kim
- Department of Radiology Seoul National University Hospital Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
37
|
Lei P, Chen H, Feng C, Yuan X, Xiong Z, Liu Y, Liao W. Noninvasive Visualization of Sub-5 mm Orthotopic Hepatic Tumors by a Nanoprobe-Mediated Positive and Reverse Contrast-Balanced Imaging Strategy. ACS NANO 2022; 16:897-909. [PMID: 35005889 DOI: 10.1021/acsnano.1c08477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Delineation of small malignant lesions and their vasculature enables early and accurate diagnosis of hepatocellular carcinoma (HCC). However, it remains challenging to identify these features simultaneously by noninvasive imaging technology. Reverse contrast imaging emerges as a powerful means to detect early-stage HCC by taking inspiration from the intrinsic liver phagocytosis toward exogenous agents to generate negative tumor-to-normal tissue signals. However, this mechanism conflicts with the signal-enhancing requirements for vasculature visualization. Here, we solve this conundrum by designing a positive and reverse contrast-balanced imaging strategy based on a multifunctional PEG-Ta2O5@CuS nanoprobe that combines advanced gemstone spectral computer tomography (GSCT) with photoacoustic (PA) imaging. The nanoprobe exhibits preferential accumulation in Kupffer cells and hepatocytes over tumor cells, and its spectral properties are well matched with GSCT, leading to the enhancement of reverse contrast signals that enable clear delineation of 2-4 mm orthotopic HCC lesions. Meanwhile, its strong PA imaging capability at the second near-infrared (NIR-II) window makes vascular evaluation accessible by monitoring the positive signal enhancement derived from the limited tumor accumulation of the nanoprobe. In addition, the nanoprobe enables NIR-II photohyperthermia for timely tumor ablation. Overall, this proposed strategy shows potential in early detection and theranostics of HCC for improved clinical outcomes.
Collapse
Affiliation(s)
- Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
38
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
39
|
Lawson T, Joenathan A, Patwa A, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Quantitative Contrast-Enhanced Computed Tomography of Ex Vivo Human Cartilage: Assessment of Biochemical Composition and Biomechanics. ACS NANO 2021; 15:19175-19184. [PMID: 34882411 DOI: 10.1021/acsnano.1c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle-based contrast agents, when used in concert with imaging modalities such as computed tomography (CT), enhance the visualization of tissues and boundary interfaces. However, the ability to determine the physiological state of the tissue via the quantitative assessment of biochemical or biomechanical properties remains elusive. We report the synthesis and characterization of tantalum oxide (Ta2O5) nanoparticle (NP) contrast agents for rapid, nondestructive, and quantitative contrast-enhanced computed tomography (CECT) to assess both the glycosaminoglycan (GAG) content and the biomechanical integrity of human metacarpal phalangeal joint (MCPJ) articular cartilage. Ta2O5 NPs 3-6 nm in diameter and coated with either nonionic poly(ethylene) glycol (PEG) or cationic trimethylammonium ligands readily diffuse into both healthy and osteoarthritic MCPJ cartilage. The CECT attenuation for the cationic and neutral NPs correlates with the glycosaminoglycan (GAG) content (R2 = 0.8975, p < 0.05 and 0.7054, respectively) and the equilibrium modulus (R2 = 0.8285, p < 0.05 and 0.9312, p < 0.05, respectively). The results highlight the importance of the surface charge and size in the design of NP agents for targeting and imaging articular cartilage. Further, nanoparticle CECT offers the visualization of both soft tissue and underlying bone unlike plain radiography, which is the standard for imaging bone in musculoskeletal diseases, and the ability to provide a real-time quantitative assessment of both hard and soft tissues to provide a comprehensive image of the disease stage, as demonstrated herein.
Collapse
Affiliation(s)
- Taylor Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Anisha Joenathan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Division of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Amit Patwa
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Chemistry, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, Boston, Massachusetts 02215 United States
| |
Collapse
|
40
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
42
|
Messerschmidt VL, Chintapula U, Kuriakose AE, Laboy S, Truong TTD, Kydd LA, Jaworski J, Pan Z, Sadek H, Nguyen KT, Lee J. Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules. Front Cardiovasc Med 2021; 8:707897. [PMID: 34651022 PMCID: PMC8507495 DOI: 10.3389/fcvm.2021.707897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.
Collapse
Affiliation(s)
- Victoria L Messerschmidt
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aneetta E Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samantha Laboy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - LeNaiya A Kydd
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Hashem Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
43
|
Yan Y, Yang C, Dai G, Zhang Y, Tu G, Li Y, Yang L, Shu J. Folic Acid-Conjugated CuFeSe 2 Nanoparticles for Targeted T2-Weighted Magnetic Resonance Imaging and Computed Tomography of Tumors In Vivo. Int J Nanomedicine 2021; 16:6429-6440. [PMID: 34556988 PMCID: PMC8455293 DOI: 10.2147/ijn.s320277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 01/11/2023] Open
Abstract
Background Development of new long-circulating contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI) of different biological systems still remains a great challenge. Here, we report the synthesis of folic acid (FA)-targeted CuFeSe2 nano-contrast agent for CT and MRI imaging in vitro and in vivo. Methods and Results In our study, CuFeSe2 was fabricated through a facile and green aqueous reaction and then further aminated through silanization. The amine-functionalized CuFeSe2-NH2 nanoparticles enable the covalent conjugation of folate-conjugated polyethylene glycol (FA-PEG-COOH) as a targeting ligand onto their surface, which could improve the dispersion and endue the targetability of nanoparticles, respectively. The formed multifunctional CuFeSe2-PEG-FA nanoparticles were characterized via different techniques, which exhibited outstanding dispersion, good biocompatibility and excellent FA-targeted capability. Meanwhile, the nanoparticles were quite safe in the given concentration range as confirmed by in vitro and in vivo toxicity assay. Importantly, CuFeSe2-PEG-FA nanoparticles were successfully applied in CT/MRI dual-modality imaging in vitro and in vivo, which showed a better imaging performance and targeted capability. Conclusion Therefore, the constructed CuFeSe2-PEG-FA nanoparticles have a great potential as an efficient contrast agent for dual-modality imaging of different biological systems.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Yu Zhang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Guojian Tu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Yuwei Li
- Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| |
Collapse
|
44
|
Xie J, Zhou Z, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Facile Fabrication of BiF 3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging. NANOSCALE RESEARCH LETTERS 2021; 16:131. [PMID: 34390420 PMCID: PMC8364619 DOI: 10.1186/s11671-021-03591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
X-ray computed tomography (CT) has been widely used in clinical practice, and contrast agents such as Iohexol are often used to enhance the contrast of CT imaging between normal and diseased tissue. However, such contrast agents can have some toxicity. Thus, new CT contrast agents are urgently needed. Owing to the high atomic number (Z = 83), low cost, good biological safety, and great X-ray attenuation property (5.74 cm2 kg-1 at 100 keV), bismuth has gained great interest from researchers in the field of nano-sized CT contrast agents. Here, we synthesized BiF3: Ln@PVP nanoparticles (NPs) with an average particle size of about 380 nm. After coating them with polyvinylpyrrolidone (PVP), the BiF3: Ln@PVP NPs possessed good stability and great biocompatibility. Meanwhile, compared with the clinical contrast agent Iohexol, BiF3: Ln@PVP NPs showed superior in vitro CT imaging contrast. Subsequently, after in situ injection with BiF3: Ln@PVP NPs, the CT value of the tumor site after the injection was significantly higher than that before the injection (the CT value of the pre-injection and post-injection was 48.9 HU and 194.58 HU, respectively). The morphology of the gastrointestinal (GI) tract can be clearly observed over time after oral administration of BiF3: Ln@PVP NPs. Finally, the BiF3: Ln@PVP NPs were completely discharged from the GI tract of mice within 48 h of oral administration with no obvious damage to the GI tract. In summary, our easily synthesized BiF3: Ln@PVP NPs can be used as a potential clinical contrast agent and may have broad application prospects in CT imaging.
Collapse
Affiliation(s)
- Jun Xie
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Zonglang Zhou
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China
| | - Sihan Ma
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China
| | - Yuqiang Chen
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
- The 174th Clinical College of People's Liberation Army, Anhui Medical University, Hefei, 230032, China.
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
45
|
Huang M, Gu Z, Zhang J, Zhang D, Zhang H, Yang Z, Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J Mater Chem B 2021; 9:5195-5220. [PMID: 34128039 DOI: 10.1039/d1tb00410g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioimaging and biosensing have garnered interest in early cancer diagnosis due to the ability of gaining in-depth insights into cellular functions and providing a wide range of diagnostic parameters. Emerging 2D materials of multielement MXenes and monoelement black phosphorous nanosheets (BPNSs) with unique intrinsic physicochemical properties such as a tunable bandgap and layer-dependent fluorescence, high carrier mobility and transport anisotropy, efficient fluorescence quenching capability, desirable light absorption and thermoelastic properties, and excellent biocompatibility and biosafety properties provide promising nano-platforms for bioimaging and biosensing applications. In view of the growing attention on the rising stars of the post-graphene age in the progress of bioimaging and biosensing, and their common feature characteristics as well as complementarity for constructing complexes, the main objective of this review is to reveal the recent advances in the design of MXene or BPNS based nanoplatforms in the field of bioimaging and biosensing. The preparation and surface functionalization methods, biosafety, and other important aspects of bioimaging and biosensing applications of MXenes and BPNSs have been assessed systematically, along with highlighting the main challenges in further biomedical application. The review not only focuses on the advancements in 2D materials for use in bioimaging and biosensing but also assesses the possibility of their future potential in bioapplications.
Collapse
Affiliation(s)
- Meina Huang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. and South China Normal University, Shanwei 516625, China
| | - Zhenyu Gu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jianguo Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dan Zhang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen 518060, China
| | - Zhigang Yang
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Junle Qu
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
46
|
Koshevaya E, Krivoshapkina E, Krivoshapkin P. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. J Mater Chem B 2021; 9:5008-5024. [PMID: 34113950 DOI: 10.1039/d1tb00570g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of new safe and effective contrast agents (CAs) is a crucial factor to increase the effectiveness of computed tomography (CT). For now, tantalum oxide-based nanoparticles (TaOx NPs) are among the most promising CAs for CT due to their superior properties: high X-ray attenuation coefficient, excellent biocompatibility, and easily modifiable surface chemistry. Compared to the commercially available analogs (iodine-based CAs), TaOx NPs provide better contrast performance, long-circulation, and high safety profiles (reduced exposure of X-rays and CA dosage). Among the investigated nanoparticulate CAs they afford higher cost-effectiveness (Au, Pt, Lu). TaOx NPs can also be easily modified to include other imaging or therapeutic modalities. This review aims to summarize the current state-of-the-art knowledge in the field of tantalum oxide-based CAs used for single or multimodal imaging and theranostic purposes. The design specification of TaOx NPs in terms of size, surface functionalization, composition, and their influence on the contrast performance, toxicity, and pharmacokinetics are discussed. Finally, the future opportunities and challenges of TaOx NPs used as CT CAs are addressed.
Collapse
Affiliation(s)
- Ekaterina Koshevaya
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar 167000, Russia and State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | | | | |
Collapse
|
47
|
Wu Y, Gu J, Zhang S, Gu Y, Ma J, Wang Y, Zhang LW, Wang Y. Iodinated BSA Nanoparticles for Macrophage-Mediated CT Imaging and Repair of Gastritis. Anal Chem 2021; 93:6414-6420. [PMID: 33843203 DOI: 10.1021/acs.analchem.0c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a specific and noninvasive technology for understanding gastritic response together with efficient therapy is an urgent clinical issue. Herein, we fabricated a novel iodinated bovine serum albumin (BSA) nanoparticle based on gastritic microenvironment for computed tomography (CT) imaging and repair of acute gastritis. Derived from the characteristic mucosa defect and inflammatory cell (e.g., macrophage and neutrophil) infiltration in acute gastritis, the pH-sensitive nanoparticles can sedimentate under acidic conditions and be uniformly distributed in the defected mucosal via the phagocytosis of inflammatory cells. Hence, enhanced CT images can clearly reveal the mucosal morphology in the nanoparticle-treated gastritic rat over a long time window comparison with nanoparticle-treated healthy rats and clinical small-molecule-treated gastritic rat. In addition, we have discovered that nanoparticles can repair the atrophic gastric mucosa to a normal state. This repair process mainly stems from inflammatory immune response caused by phagocytized nanoparticles, such as the polarization of proinflammatory macrophages (M1) to anti-inflammatory macrophages (M2). The biocompatible nanoparticles that avoid the inherent defects of the clinical small molecules have great potential for accurate diagnosis and treatment of gastritis in the early stage.
Collapse
Affiliation(s)
- Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Shaodian Zhang
- The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jie Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Koshevaya E, Nazarovskaia D, Simakov M, Belousov A, Morozov V, Gandalipov E, Krivoshapkina E, Krivoshapkin P. Surfactant-free tantalum oxide nanoparticles: synthesis, colloidal properties, and application as a contrast agent for computed tomography. J Mater Chem B 2021; 8:8337-8345. [PMID: 32794534 DOI: 10.1039/d0tb01204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the growing interest of the medical industry in biocompatible nanoparticles (NPs), the current synthetic methods should be adapted to appropriate demands (toxicity, scalability, etc.). Most applications require colloidal systems to be stable not only in water but also in vivo, which represents a major challenge. In this study, biocompatible Ta2O5 NPs were synthesized by a solvothermal method avoiding toxic reagents, and surfactant-free stable hydrosols were obtained and used for computed tomography (CT) imaging. The small hydrodynamic size (2 nm) and colloidal stability of primary NPs were studied by dynamic light scattering (DLS). The particles were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis to confirm their structure and purity. To develop a stable hydrosol preparation protocol, the influence of pH and ultrasonication duration on the stability of Ta2O5 sols was analyzed by DLS and microelectrophoresis. To enhance the understanding of NP behavior in vivo, sol stability in conditions close to physiological (NaCl solutions) was studied in a pH range of 3-9. Hydrosols prepared by the proposed protocol were stable for at least 6 months and exhibited negligible cytotoxicity. Ta2O5 NPs also showed high CT contrast both in theoretical calculations and in vivo (rat gastrointestinal tract).
Collapse
Affiliation(s)
- Ekaterina Koshevaya
- Institute of Chemistry of Federal Research Center "Komi Science Centre of the Ural Branch of the Russian Academy of Sciences", Syktyvkar 167000, Russia
| | | | - Matvey Simakov
- Veterinary Clinic Named after Ivan Fillmore, St. Petersburg 194358, Russia
| | - Alexandr Belousov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | - Vladimir Morozov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123182, Russia
| | | | | | | |
Collapse
|
49
|
Antifouling Strategies of Nanoparticles for Diagnostic and Therapeutic Application: A Systematic Review of the Literature. NANOMATERIALS 2021; 11:nano11030780. [PMID: 33803884 PMCID: PMC8003124 DOI: 10.3390/nano11030780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic tools. One of the main hurdle to their medical application and translation into the clinic is the fact that they accumulate in the spleen and liver due to opsonization and scavenging by the mononuclear phagocyte system. The “protein corona” controls the fate of NPs in vivo and becomes the interface with cells, influencing their physiological response like cellular uptake and targeting efficiency. For these reasons, the surface properties play a pivotal role in fouling and antifouling behavior of particles. Therefore, surface engineering of the nanocarriers is an extremely important issue for the design of useful diagnostic and therapeutic systems. In recent decades, a huge number of studies have proposed and developed different strategies to improve antifouling features and produce NPs as safe and performing as possible. However, it is not always easy to compare the various approaches and understand their advantages and disadvantages in terms of interaction with biological systems. Here, we propose a systematic study of literature with the aim of summarizing current knowledge on promising antifouling coatings to render NPs more biocompatible and performing for diagnostic and therapeutic purposes. Thirty-nine studies from 2009 were included and investigated. Our findings have shown that two main classes of non-fouling materials (i.e., pegylated and zwitterionic) are associated with NPs and their applications are discussed here highlighting pitfalls and challenges to develop biocompatible tools for diagnostic and therapeutic uses. In conclusion, although the complexity of biofouling strategies and the field is still young, the collective data selected in this review indicate that a careful tuning of surface moieties is a pivotal step to lead NPs through their future clinical applications.
Collapse
|
50
|
An F, Nurili F, Sayman H, Ozer Z, Cakiroglu H, Aras O, Ting R. One-Step, Rapid, 18F- 19F Isotopic Exchange Radiolabeling of Difluoro-dioxaborinins: Substituent Effect on Stability and In Vivo Applications. J Med Chem 2020; 63:12693-12706. [PMID: 32787084 PMCID: PMC8399557 DOI: 10.1021/acs.jmedchem.0c00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The β-diketone moiety is commonly present in many anticancer drugs, antibiotics, and natural products. We describe a general method for radiolabeling β-diketone-bearing molecules with fluoride-18. Radiolabeling was carried out via 18F-19F isotopic exchange on nonradioactive difluoro-dioxaborinins, which were generated by minimally modifying the β-diketone as a difluoroborate. Radiochemistry was one-step, rapid (<10 min), and high-yielding (>80%) and proceeded at room temperature to accommodate the half-life of F-18 (t1/2 = 110 min). High molar activities (7.4 Ci/μmol) were achieved with relatively low starting activities (16.4 mCi). It was found that substituents affected both the solvolytic stability and fluorescence properties of difluoro-dioxaborinins. An F-18 radiolabeled difluoro-dioxaborinin probe that was simultaneously fluorescent showed sufficient stability for in vivo positron emission tomography (PET)/fluorescence imaging in mice, rabbits, and patients. These findings will guide the design of probes with specific PET/fluorescence properties; the development of new PET/fluorescence dual-modality reporters; and accurate in vivo tracking of β-diketone molecules.
Collapse
Affiliation(s)
- Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, No.76 Yanta West Road, Xi’an, Shaanxi 710061, P. R. China
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| | - Fuad Nurili
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Haluk Sayman
- Department of Nuclear Medicine, Istanbul University, Cerrahpasa Medical Faculty, Fatih, Istanbul, 34303, Turkey
| | - Zahide Ozer
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| | - Huseyin Cakiroglu
- Medical and Experimental Research Center, Sakarya University Medical Faculty, Adapazari/Sakarya, 54290, Turkey
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY 10065, USA
| |
Collapse
|