1
|
Wang H, Fan S, Wen H, Huang Y, Gan H, Li B. Degradation mechanism and toxicity assessment of clofibric acid by Fe 2+/PS process in saline pharmaceutical wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39607805 DOI: 10.1080/09593330.2024.2433732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
A considerable effort has been made to exploring the oxidation of clofibric acid (CA) in advanced oxidation processes (AOPs). However, few studies are available on degradation mechanism and toxicity assessment of CA in saline pharmaceutical wastewater. Here the effect of chlorine on the degradation kinetics of CA by Fe2+/ persulfate (PS) process were studied. Oxidation efficiency, mineralisation, intermediate by-products, reactive oxygen species (ROS) and toxicity assessment were examined. Notably, a high removal efficiency (70.91%) but low mineralisation (20.99%) of CA were observed at pH 3.0 during the Fe2+/PS system. Furthermore, we found Cl- exerted a beneficial impact on CA degradation. However, the degree of CA mineralisation was relatively minor. Under high salinity (100 mM) condition, the primary reactive species within the Fe2+/PS system were SO 4 ⋅ - , OH·, Cl2/HClO, and Fe(IV). Several undesirable chlorinated by-products were formed. A reasonable degradation pathway was proposed. According to the ecological structure-activity relationship (ECOSAR) programme, some transformation products exhibited higher toxicity levels than CA itself in both acute and chronic toxicity assessment, especially in high-salinity environments. These findings elucidate an increased challenges and ecological risk for CA oxidation by Fe2+/PS treatment in saline pharmaceutical wastewater.
Collapse
Affiliation(s)
- Hongbin Wang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Siyi Fan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Hairong Wen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Ying Huang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province Ningbo, Ningbo, People's Republic of China
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| | - Bing Li
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
2
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
3
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Yang J, Tripodi GL, Derks MTGM, Seo MS, Lee YM, Southwell KW, Shearer J, Roithová J, Nam W. Generation, Spectroscopic Characterization, and Computational Analysis of a Six-Coordinate Cobalt(III)-Imidyl Complex with an Unusual S = 3/2 Ground State that Promotes N-Group and Hydrogen Atom-Transfer Reactions with Exogenous Substrates. J Am Chem Soc 2023; 145:26106-26121. [PMID: 37997643 PMCID: PMC11175169 DOI: 10.1021/jacs.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kβ XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Guilherme L. Tripodi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Max T. G. M. Derks
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kendal W. Southwell
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Gao Y, Smith JM. Enabling Nucleophilic Reactivity in High-Spin Fe(II) Imido Complexes: From Elementary Steps to Cooperative Catalysis. Acc Chem Res 2023; 56:3392-3403. [PMID: 37955993 DOI: 10.1021/acs.accounts.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ConspectusTransition metal complexes featuring an M═NR bond have received great attention as critical intermediates in the synthesis of nitrogen-containing compounds. In general, the properties of the imido ligand in these complexes are dependent on the nature of the metal center. Thus, the imido ligand tends to be nucleophilic in early transition metal complexes and electrophilic in late transition metal complexes. Nonetheless, the supporting ligand can have a dramatic effect on its reactivity. For example, there are sporadic examples of nucleophilic late transition metal imido complexes, often based on strongly donating supporting ligands. Building on these earlier works, in this Article, we show that the imido ligand in a low-coordinate high-spin bis(carbene)borate Fe(II) complex is able to access previously unknown reaction pathways, ultimately leading to new catalytic transformations. We first focus on the synthesis, characterization, and stoichiometric reactivity of a highly nucleophilic Fe(II) imido complex. The entry point for this system is the intermediate-spin three-coordinate Fe(III) imido complex, which is generated from the reaction of an Fe(I) synthon with an organic azide. Alkali metal reduction leads to a series of M+ (M = Li, Na, K) coordinated and charge-separated (M = K(18-C-6)) high-spin Fe(II) imido complexes, all of which have been isolated and fully characterized. Combined with the electronic structure calculations, these results reveal that the alkali ions moderately polarize the Fe═N bond according to K+ ≈ Na+ < Li+. As a result, the basicity of the imido ligand increases from the charged separated complex to K+, Na+, and Li+ coordinated complexes, as validated by intermolecular proton transfer equilibria. The impact of the counterion on imido ligand reactivity is demonstrated through protonation, alkylation, and hydrogen atom abstraction reactions. The counterion also directs the outcome of [2 + 2] reactions with benzophenone, where alkali coordination facilitates double bond metathesis. Building from here, we describe how the unusual nucleophilicity of the high-spin Fe(II) imido complex revealed in stoichiometric reactions can be extended to new catalytic transformations. For example, a [2 + 2] cycloaddition reaction serves as the basis for the catalytic guanylation of carbodiimides under mild conditions. More interestingly, this complex also exhibits the first ene-like reactivity of an M═NR bond in reactions with alkynes, nitriles, and alkenes. These transformations form the basis of catalytic alkyne and nitrile α-deuteration and pKa-dictated alkene transposition reactions, respectively. Mechanistic studies reveal the critical role of metal-ligand cooperativity in facilitating these catalytic transformations and suggest the new avenues for transition metal imido complexes in catalysis that extend beyond classical nitrene transfer chemistry.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
8
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
10
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Kaur S, Bera M, Santra A, Munshi S, Sterbinsky GE, Wu T, Moonshiram D, Paria S. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorg Chem 2022; 61:14252-14266. [PMID: 36041064 DOI: 10.1021/acs.inorgchem.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Effect of Brшnsted Acid on the Reactivity and Selectivity of the Oxoiron(V) Intermediates in C-H and C=C Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of HClO4 on the reactivity and selectivity of the catalyst systems 1,2/H2O2/AcOH, based on nonheme iron complexes of the PDP families, [(Me2OMePDP)FeIII(μ-OH)2FeIII(MeOMe2PDP)](OTf)4 (1) and [(NMe2PDP)FeIII(μ-OH)2FeIII(NMe2PDP](OTf)4 (2), toward oxidation of benzylideneacetone (bna), adamantane (ada), and (3aR)-(+)-sclareolide (S) has been studied. Adding HClO4 (2–10 equiv. vs. Fe) has been found to result in the simultaneous improvement of the observed catalytic efficiency (i.e., product yields) and the oxidation regio- or enantioselectivity. At the same time, HClO4 causes a threefold increase of the second-order rate constant for the reaction of the key oxygen-transferring intermediate [(Me2OMePDP)FeV=O(OAc)]2+ (1a), with cyclohexane at −70 °C. The effect of strong Brønsted acid on the catalytic reactivity is discussed in terms of the reversible protonation of the Fe=O moiety of the parent perferryl intermediates.
Collapse
|
13
|
Shao B, Dong H, Zhou G, Ma J, Sharma VK, Guan X. Degradation of Organic Contaminants by Reactive Iron/Manganese Species: Progress and Challenges. WATER RESEARCH 2022; 221:118765. [PMID: 35749920 DOI: 10.1016/j.watres.2022.118765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Many iron(II, III, VI)- and manganese(II, IV, VII)-based oxidation processes can generate reactive iron/manganese species (RFeS/RMnS, i.e., Fe(IV)/Fe(V) and Mn(III)/Mn(V)/Mn(VI)), which have mild and selective reactivity toward a wide range of organic contaminants, and thus have drawn significant attention. The reaction mechanisms of these processes are rather complicated due to the simultaneous involvement of multiple radical and/or nonradical species. As a result, the ambiguity in the occurrence of RFeS/RMnS and divergence in the degradation mechanisms of trace organic contaminants in the presence of RFeS/RMnS exist in literature. In order to improve the critical understanding of the RFeS/RMnS-mediated oxidation processes, the detection methods of RFeS/RMnS and their roles in the destruction of trace organic contaminants are reviewed with special attention to some specific problems related to the scavenger and probe selection and experimental results analysis potentially resulting in some questionable conclusions. Moreover, the influence of background constituents, such as organic matter and halides, on oxidation efficiency of RFeS/RMnS-mediated oxidation processes and formation of byproducts are discussed through their comparison with those in free radicals-dominated oxidation processes. Finally, the prospects of the RFeS/RMnS-mediated oxidation processes and the challenges for future applications are presented.
Collapse
Affiliation(s)
- Binbin Shao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Gongming Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jun Ma
- State Key Lab of Urban Water Resource and Environment (HIT), School of Environment, Harbin Institute of Technology, Harbin, PR China
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, United States
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
14
|
Gao Y, Pink M, Smith JM. Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. J Am Chem Soc 2022; 144:1786-1794. [DOI: 10.1021/jacs.1c11429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Chen MH, Li YS, Hsu NS, Lin KH, Wang YL, Wang ZC, Chang CF, Lin JP, Chang CY, Li TL. Structural and Mechanistic Bases for StnK3 and Its Mutant-Mediated Lewis-Acid-Dependent Epimerization and Retro-Aldol Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mei-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jin-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
16
|
Sharma VK, Feng M, Dionysiou DD, Zhou HC, Jinadatha C, Manoli K, Smith MF, Luque R, Ma X, Huang CH. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:30-47. [PMID: 34918915 DOI: 10.1021/acs.est.1c04616] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, Texas 76504-7451, United States
- College of Medicine, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Kyriakos Manoli
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mallory F Smith
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C_3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Shi H, Cheng L, Pan Y, Mak CK, Lau KC, Lau TC. Synergistic effects of CH 3CO 2H and Ca 2+ on C–H bond activation by MnO 4−. Chem Sci 2022; 13:11600-11606. [PMID: 36320399 PMCID: PMC9555569 DOI: 10.1039/d2sc03089f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of metal-oxo species with Lewis acids is of current interest. In this work, the effects of a weak Brønsted acid such as CH3CO2H and a weak Lewis acid such as Ca2+ on C–H bond activation by KMnO4 have been investigated. Although MnO4− is rather non-basic (pKa of MnO3(OH) = −2.25), it can be activated by AcOH or Ca2+ to oxidize cyclohexane at room temperature to give cyclohexanone as the major product. A synergistic effect occurs when both AcOH and Ca2+ are present; the relative rates for the oxidation of cyclohexane by MnO4−/AcOH, MnO4−/Ca2+ and MnO4−/AcOH/Ca2+ are 1 : 73 : 198. DFT calculations show that in the active intermediate of MnO4−/AcOH/Ca2+, MnO4− is H-bonded to 3 AcOH molecules, while Ca2+ is bonded to 3 AcOH molecules as well as to an oxo ligand of MnO4−. Our results also suggest that these synergistic activating effects of a weak Brønsted acid and a weak Lewis acid should be applicable to a variety of metal-oxo species. The activation of metal-oxo species with Lewis acids is of current interest.![]()
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Lin Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Yi Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Chi-Keung Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| |
Collapse
|
18
|
Gupta G, Bera M, Paul S, Paria S. Electrochemical Properties and Reactivity Study of [Mn V(O)(μ-OR-Lewis Acid)] Cores. Inorg Chem 2021; 60:18006-18016. [PMID: 34813300 DOI: 10.1021/acs.inorgchem.1c02601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mononuclear manganese(V) oxo complex of a bis(amidate)bis(alkoxide) ligand, (NMe4)[MnV(HMPAB)(O)] [2; H4HMPAB = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene], was synthesized and structurally characterized. A Mn-Oterm distance of 1.566(4) Å was observed in the solid-state structure of 2, consistent with the Mn≡O formulation. The reaction of redox-inactive metal ions (Mn+ = Li+, Ca2+, Mg2+, Y3+, and Sc3+) with 2 resulted in the formation of 2-Mn+ species, which were characterized by UV-vis, 1H NMR, cyclic voltammetry, and in situ IR spectroscopy. Theoretical calculations suggested that the alkoxide oxygen atoms of the ligand scaffold are energetically most favorable for coordinating the Mn+ ions in 2. Complex 2 revealed one-electron-reduction potential at -0.01 V versus ferrocenium/ferrocene, which shifted anodically upon coordination of Mn+ ions to 2, and such a shift became more prominent with stronger Lewis acids. The oxygen-atom transfer (OAT) reactivities of 2 and 2-Mn+ species with triphenylphosphine were compared, which exhibited a systematic increase of the reaction rate with increasing Lewis acidity of Mn+ ions, and a plot of log k2 versus Lewis acidity of Mn+ ions (ΔE) followed a linear relationship. It was observed that 2-Sc3+ was ca. 3200 times more reactive toward the OAT reaction compared to 2. Hammett analysis of 2 exhibited a V-shaped plot, indicating a change of the reaction mechanism upon going from electron-rich to electron-deficient Ar3P substrates. In contrast, 2-Ca2+ and 2-Sc3+ showed an electrophilic nature toward the OAT reaction, thus demonstrating the role of the Lewis acid in controlling the OAT mechanism. The hydrogen-atom abstraction reaction of 2 and 2-Mn+ adducts with 1-benzyl-1,4-dihydronicotinamide was investigated, and it was observed that the rate of reaction did not vary considerably with the Lewis acidity of Mn+ ions. On the basis of Eyring analysis of 2 and 2-Mn+ adducts, we hypothesized an entropy-controlled hydrogen-atom-transfer reaction for 2-Sc3+, which is different from the reaction mechanism of 2 and 2-Ca2+.
Collapse
Affiliation(s)
- Geetika Gupta
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, Kolkata 700009, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
19
|
Karmalkar DG, Seo MS, Lee YM, Kim Y, Lee E, Sarangi R, Fukuzumi S, Nam W. Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. Inorg Chem 2021; 60:16996-17007. [PMID: 34705465 DOI: 10.1021/acs.inorgchem.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of Lewis acidic metal ions and Brønsted acid at the metal-oxo group of high-valent metal-oxo complexes enhances their reactivities significantly in oxidation reactions. However, such a binding of Lewis acids and proton at the metal-oxo group has been questioned in several cases and remains to be clarified. Herein, we report the synthesis, characterization, and reactivity studies of a mononuclear manganese(IV)-oxo complex binding triflic acid, {[(dpaq)MnIV(O)]-HOTf}+ (1-HOTf). First, 1-HOTf was synthesized and characterized using various spectroscopic techniques, including resonance Raman (rRaman) and X-ray absorption spectroscopy/extended X-ray absorption fine structure. In particular, in rRaman experiments, we observed a linear correlation between the Mn-O stretching frequencies of 1-HOTf (e.g., νMn-O at ∼793 cm-1) and 1-Mn+ (Mn+ = Ca2+, Zn2+, Lu3+, Al3+, or Sc3+) and the Lewis acidities of H+ and Mn+ ions, suggesting that H+ and Mn+ bind at the metal-oxo moiety of [(dpaq)MnIV(O)]+. Interestingly, a single-crystal structure of 1-HOTf was obtained by X-ray diffraction analysis, but the structure was not an expected Mn(IV)-oxo complex but a Mn(IV)-hydroxide complex, [(dpaq)MnIV(OH)](OTf)2 (4), with a Mn-O bond distance of 1.8043(19) Å and a Mn-O stretch at 660 cm-1. More interestingly, 4 reverted to 1-HOTf upon dissolution, demonstrating that 1-HOTf and 4 are interconvertible depending on the physical states, such as 1-HOTf in solution and 4 in isolated solid. The reactivity of 1-HOTf was investigated in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions and then compared with those of 1-Mn+ complexes; an interesting correlation between the Mn-O stretching frequencies of 1-HOTf and 1-Mn+ and their reactivities in the OAT and HAT reactions is reported for the first time in this study.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
|
21
|
Di Berto Mancini M, Del Gelsomino A, Di Stefano S, Frateloreto F, Lapi A, Lanzalunga O, Olivo G, Sajeva S. Change of Selectivity in C-H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the N-hydroxyphthalimide HAT Mediator. ACS OMEGA 2021; 6:26428-26438. [PMID: 34661000 PMCID: PMC8515612 DOI: 10.1021/acsomega.1c03679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A kinetic analysis of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ and to the phthalimide N-oxyl radical (PINO) has been carried out. The results indicate that a higher activating effect of α-heteroatoms toward the HAT from C-H bonds is observed with the more electrophilic PINO radical. When the N-hydroxy precursor of PINO, N-hydroxyphthalimide (NHPI), is used as a HAT mediator in the oxidation promoted by [(N4Py)FeIV(O)]2+, significant differences in terms of selectivity have been found. Product studies of the competitive oxidations of primary and secondary aliphatic alcohols (1-decanol, cyclopentanol, and cyclohexanol) with alkylaromatics (ethylbenzene and diphenylmethane) demonstrated that it is possible to modify the selectivity of the oxidations promoted by [(N4Py)FeIV(O)]2+ in the presence of NHPI. In fact, alkylaromatic substrates are more reactive in the absence of the mediator while alcohols are preferably oxidized in the presence of NHPI.
Collapse
Affiliation(s)
- Marika Di Berto Mancini
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Del Gelsomino
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Federico Frateloreto
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
- CIRCC
Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Giorgio Olivo
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Sajeva
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| |
Collapse
|
22
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
23
|
Yan Q, Lian C, Huang K, Liang L, Yu H, Yin P, Zhang J, Xing M. Constructing an Acidic Microenvironment by MoS 2 in Heterogeneous Fenton Reaction for Pollutant Control. Angew Chem Int Ed Engl 2021; 60:17155-17163. [PMID: 34041830 DOI: 10.1002/anie.202105736] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Although Fenton or Fenton-like reactions have been widely used in the environment, biology, life science, and other fields, the sharp decrease in their activity under macroneutral conditions is still a large problem. This study reports a MoS2 cocatalytic heterogeneous Fenton (CoFe2 O4 /MoS2 ) system capable of sustainably degrading organic pollutants, such as phenol, in a macroneutral buffer solution. An acidic microenvironment in the slipping plane of CoFe2 O4 is successfully constructed by chemically bonding with MoS2 . This microenvironment is not affected by the surrounding pH, which ensures the stable circulation of Fe3+ /Fe2+ on the surface of CoFe2 O4 /MoS2 under neutral or even alkaline conditions. Additionally, CoFe2 O4 /MoS2 always exposes "fresh" active sites for the decomposition of H2 O2 and the generation of 1 O2 , effectively inhibiting the production of iron sludge and enhancing the remediation of organic pollutants, even in actual wastewater. This work not only experimentally verifies the existence of an acidic microenvironment on the surface of heterogeneous catalysts for the first time, but also eliminates the pH limitation of the Fenton reaction for pollutant remediation, thereby expanding the applicability of Fenton technology.
Collapse
Affiliation(s)
- Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haoran Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pengcheng Yin
- BCEG Environmental Remediation Co., LTD., NO.6 of Jingshun East St., Chaoyang Dist., Beijing, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
24
|
Yan Q, Lian C, Huang K, Liang L, Yu H, Yin P, Zhang J, Xing M. Constructing an Acidic Microenvironment by MoS
2
in Heterogeneous Fenton Reaction for Pollutant Control. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingyun Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Haoran Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Pengcheng Yin
- BCEG Environmental Remediation Co., LTD. NO.6 of Jingshun East St., Chaoyang Dist. Beijing China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
25
|
Roach S, Faponle AS, Satpathy JK, Sastri CV, de Visser SP. Substrate sulfoxidation by a biomimetic cytochrome P450 Compound I mimic: How do porphyrin and phthalocyanine equatorial ligands compare? J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01917-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Jana RD, Das A, Paine TK. Enhancing Chemo- and Stereoselectivity in C-H Bond Oxygenation with H 2O 2 by Nonheme High-Spin Iron Catalysts: The Role of Lewis Acid and Multimetal Centers. Inorg Chem 2021; 60:5969-5979. [PMID: 33784082 DOI: 10.1021/acs.inorgchem.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
27
|
Singh P, Stewart-Jones E, Denler MC, Jackson TA. Mechanistic insight into oxygen atom transfer reactions by mononuclear manganese(IV)-oxo adducts. Dalton Trans 2021; 50:3577-3585. [PMID: 33616141 PMCID: PMC8075156 DOI: 10.1039/d0dt04436a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo intermediates are well known to facilitate oxygen-atom transfer (OAT) reactions both in biological and synthetic systems. These reactions can occur by a single-step OAT mechanism or by a stepwise process initiated by rate-limiting electron transfer between the substrate and the metal-oxo unit. Several recent reports have demonstrated that changes in the metal reduction potential, caused by the addition of Brønsted or Lewis acids, cause a change in sulfoxidation mechanism of MnIV-oxo complexes from single-step OAT to the multistep process. In this work, we sought to determine if ca. 4000-fold rate variations observed for sulfoxidation reactions by a series of MnIV-oxo complexes supported by neutral, pentadentate ligands could arise from a change in sulfoxidation mechanism. We examined the basis for this rate variation by performing variable-temperature kinetic studies to determine activation parameters for the reactions of the MnIV-oxo complexes with thioanisole. These data reveal activation barriers predominantly controlled by activation enthalpy, with unexpectedly small contributions from the activation entropy. We also compared the reactivity of these MnIV-oxo complexes by a Hammett analysis using para-substituted thioanisole derivatives. Similar Hammett ρ values from this analysis suggest a common sulfoxidation mechanism for these complexes. Because the rates of oxidation of the para-substituted thioanisole derivatives by the MnIV-oxo adducts are much faster than that expected from the Marcus theory of outer-sphere electron-transfer, we conclude that these reactions proceed by a single-step OAT mechanism. Thus, large variations in sulfoxidation by this series of MnIV-oxo centers occur without a change in reaction mechanism.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Eleanor Stewart-Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
28
|
Karuppasamy P, Thiruppathi D, Sundar JV, Ganesan M, Rajendran T, Meena SS, Rajagopal S, Sivasubramanian VK, Rajapandian V. Insight into structural aspects and study of reaction kinetics of model [oxo(salen)iron(IV)] complexes with dipeptides. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Sharma N, Zou HB, Lee YM, Fukuzumi S, Nam W. A Mononuclear Non-Heme Manganese(III)-Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. J Am Chem Soc 2021; 143:1521-1528. [PMID: 33439643 DOI: 10.1021/jacs.0c11420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal-oxygen complexes, such as metal-oxo [M(O2-)], -hydroxo [M(OH-)], -peroxo [M(O22-)], -hydroperoxo [M(OOH-)], and -superoxo [M(O2•-)] species, are capable of conducting oxygen atom transfer (OAT) reactions with organic substrates, such as thioanisole (PhSMe) and triphenylphosphine (Ph3P). However, OAT of metal-aqua complexes, [M(OH2)]n+, has yet to be reported. We report herein OAT of a mononuclear non-heme Mn(III)-aqua complex, [(dpaq)MnIII(OH2)]2+ (1, dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate), to PhSMe and Ph3P derivatives for the first time; it is noted that no OAT occurs from the corresponding Mn(III)-hydroxo complex, [(dpaq)MnIII(OH)]+ (2), to the substrates. Mechanistic studies reveal that OAT reaction of 1 occurs via electron transfer from 4-methoxythioanisole to 1 to produce the 4-methoxythioanisole radical cation and [(dpaq)MnII(OH2)]+, followed by nucleophilic attack of H2O in [(dpaq)MnII(OH2)]+ to the 4-methoxythioanisole radical cation to produce an OH adduct radical, 2,4-(MeO)2C6H3S•(OH)Me, which disproportionates or undergoes electron transfer to 1 to yield methyl 4-methoxyphenyl sulfoxide. Formation of the thioanisole radical cation derivatives is detected by the stopped-flow transient absorption measurements in OAT from 1 to 2,4-dimethoxythioanisole and 3,4-dimethoxythioanisole, being compared with that in the photoinduced electron transfer oxidation of PhSMe derivatives, which are detected by laser-induced transient absorption measurements. Similarly, OAT from 1 to Ph3P occurs via electron transfer from Ph3P to 1, and the proton effect on the reaction rate has been discussed. The rate constants of electron transfer from electron donors, including PhSMe and Ph3P derivatives, to 1 are fitted well by the electron transfer driving force dependence of the rate constants predicted by the Marcus theory of outer-sphere electron transfer.
Collapse
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Huai-Bo Zou
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Bioengineering, Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Zhang X, Feng M, Luo C, Nesnas N, Huang CH, Sharma VK. Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe IV Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:623-633. [PMID: 33326216 DOI: 10.1021/acs.est.0c04674] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper investigated the oxidation of recalcitrant micropollutants [i.e., atenolol (ATL), flumequine, aspartame, and diatrizoic acid] by combining ferrate(VI) (FeVIO42-, FeVI) with a series of metal ions [i.e., Fe(III), Ca(II), Al(III), Sc(III), Co(II), and Ni(II)]. An addition of Fe(III) to FeVI enhanced the oxidation of micropollutants compared solely to FeVI. The enhanced oxidation of studied micropollutants increased with increasing [Fe(III)]/[FeVI] to 2.0. The complete conversion of phenyl methyl sulfoxide (PMSO), as a probe agent, to phenyl methyl sulfone (PMSO2) by the FeVI-Fe(III) system suggested that the highly reactive intermediate FeIV/FeV species causes the increased oxidation of all four micropollutants. A kinetic modeling of the oxidation of ATL demonstrated that the major species causing the increase in ATL removal was FeIV, which had an estimated rate constant as (6.3 ± 0.2) × 104 M-1 s-1, much higher than that of FeVI [(5.0 ± 0.4) × 10-1 M-1 s-1]. Mechanisms of the formed oxidation products of ATL by FeIV, which included aromatic and/or benzylic oxidation, are delineated. The presence of natural organic matter significantly inhibited the removal of four pollutants by the FeVI-Fe(III) system. The enhanced effect of the FeVI-Fe(III) system was also seen in the oxidation of the micropollutants in river water and lake water.
Collapse
Affiliation(s)
- Xianbing Zhang
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
- National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Nan'an District, Chongqing 400074, China
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Cong Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
31
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Trans 2021; 50:131-142. [DOI: 10.1039/d0dt03083j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined multivariate and theoretical analysis of coupled XAS/UV–Vis data was proven to be an innovative method to obtain direct structural and mechanistic evidence for bimolecular reactions in solution involving organic substrates.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Martini
- Dipartimento di Chimica
- Università degli Studi di Torino
- 10125 Torino
- Italy
- The Smart Materials Research Institute
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
32
|
Kim MS, Lee KM, Kim HH, Lee H, Kim DW, Kim JH, Lee C. Accelerated oxidation of microcystin-LR by Fe(II)-tetrapolyphosphate/oxygen in the presence of magnesium and calcium ions. WATER RESEARCH 2020; 184:116172. [PMID: 32688155 DOI: 10.1016/j.watres.2020.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/03/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Fe(II)-tetrapolyphosphate complexes are known to activate molecular oxygen (Fe(II)-TPP/O2) to produce reactive oxidants (most likely, Fe(IV)-TPP complexes) that are capable of degrading refractory organic contaminants in water. This study found that magnesium and calcium ions (Mg2+ and Ca2+) accelerate the degradation of micfrocystin-LR (MC-LR), the most toxic and abundant cyanotoxin, by the Fe(II)-TPP/O2 system. The addition of Mg2+ and Ca2+ increased the observed rate constant of MC-LR degradation by up to 4.3 and 14.8 folds, respectively. Mg2+ and Ca2+ accelerated the MC-LR degradation in the entire pH range, except for the alkaline region with pH > ca. 10. The addition of Mg2+ and Ca2+ also reshaped the pH-dependency of the MC-LR degradation, greatly increasing the rate of MC-LR degradation at neutral pH. It was found that Mg2+ and Ca2+ accelerate the reaction of Fe(II)-TPP complexes with oxygen, resulting in faster production of reactive oxidants. The findings from cyclic voltammetry and potentiometric titration suggest that Mg2+ and Ca2+ form ternary complexes with Fe(II)-TPP, which exhibit higher reactivity with oxygen. Due to the effects of Mg2+ and Ca2+, the rate of MC-LR degradation by the Fe(II)-TPP/O2 system was even higher in natural water than in deionized water.
Collapse
Affiliation(s)
- Min Sik Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Hak-Hyeon Kim
- Department of Civil and Environmental Engineering, University of Waterloo, ON, Canada
| | - Hongshin Lee
- Department of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dae Won Kim
- Central Research Institute, Techross Co., Busan 46758, Republic of Korea
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Xue SS, Li XX, Lee YM, Seo MS, Kim Y, Yanagisawa S, Kubo M, Jeon YK, Kim WS, Sarangi R, Kim SH, Fukuzumi S, Nam W. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. J Am Chem Soc 2020; 142:15305-15319. [PMID: 32786748 DOI: 10.1021/jacs.0c05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Young-Kyo Jeon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California 94025, United States
| | - Sun Hee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
34
|
Suzuki S, Ishida Y, Kameo H, Sakaki S, Kawaguchi H. Counterion Dependence of Dinitrogen Activation and Functionalization by a Diniobium Hydride Anion. Angew Chem Int Ed Engl 2020; 59:13444-13450. [PMID: 32352196 DOI: 10.1002/anie.202006039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 01/10/2023]
Abstract
We report the synthesis of anionic diniobium hydride complexes with a series of alkali metal cations (Li+ , Na+ , and K+ ) and the counterion dependence of their reactivity with N2 . Exposure of these complexes to N2 initially produces the corresponding side-on end-on N2 complexes, the fate of which depends on the nature of countercations. The lithium derivative undergoes stepwise migratory insertion of the hydride ligands onto the aryloxide units, yielding the end-on bridging N2 complex. For the potassium derivative, the N-N bond cleavage takes place along with H2 elimination to form the nitride complex. Treatment of the side-on end-on N2 complex with Me3 SiCl results in silylation of the terminal N atom and subsequent N-N bond cleavage along with H2 elimination, giving the nitride-imide-bridged diniobium complex.
Collapse
Affiliation(s)
- Shoi Suzuki
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yutaka Ishida
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hajime Kameo
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, 599-8531, Sakai, Osaka, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
35
|
Suzuki S, Ishida Y, Kameo H, Sakaki S, Kawaguchi H. Counterion Dependence of Dinitrogen Activation and Functionalization by a Diniobium Hydride Anion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shoi Suzuki
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Yutaka Ishida
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Hajime Kameo
- Department of Chemistry Graduate School of Science Osaka Prefecture University Gakuen-cho 1-1, Naka-ku 599-8531 Sakai Osaka Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry Kyoto University Takano-nishihiraki-cho 34-4, Sakyo-ku Kyoto 606-8103 Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
36
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
37
|
Oswald VF, Lee JL, Biswas S, Weitz AC, Mittra K, Fan R, Li J, Zhao J, Hu MY, Alp EE, Bominaar EL, Guo Y, Green MT, Hendrich MP, Borovik AS. Effects of Noncovalent Interactions on High-Spin Fe(IV)-Oxido Complexes. J Am Chem Soc 2020; 142:11804-11817. [PMID: 32489096 DOI: 10.1021/jacs.0c03085] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-valent nonheme FeIV-oxido species are key intermediates in biological oxidation, and their properties are proposed to be influenced by the unique microenvironments present in protein active sites. Microenvironments are regulated by noncovalent interactions, such as hydrogen bonds (H-bonds) and electrostatic interactions; however, there is little quantitative information about how these interactions affect crucial properties of high valent metal-oxido complexes. To address this knowledge gap, we introduced a series of FeIV-oxido complexes that have the same S = 2 spin ground state as those found in nature and then systematically probed the effects of noncovalent interactions on their electronic, structural, and vibrational properties. The key design feature that provides access to these complexes is the new tripodal ligand [poat]3-, which contains phosphinic amido groups. An important structural aspect of [FeIVpoat(O)]- is the inclusion of an auxiliary site capable of binding a Lewis acid (LAII); we used this unique feature to further modulate the electrostatic environment around the Fe-oxido unit. Experimentally, studies confirmed that H-bonds and LAII s can interact directly with the oxido ligand in FeIV-oxido complexes, which weakens the Fe═O bond and has an impact on the electronic structure. We found that relatively large vibrational changes in the Fe-oxido unit correlate with small structural changes that could be difficult to measure, especially within a protein active site. Our work demonstrates the important role of noncovalent interactions on the properties of metal complexes, and that these interactions need to be considered when developing effective oxidants.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Justin L Lee
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaustuv Mittra
- Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael T Green
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States.,Department of Molecular Biosciences and Biochemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
38
|
|
39
|
Roy L. Theoretical Identification of the Factors Governing the Reactivity of C-H Bond Activation by Non-Heme Iron(IV)-Oxo Complexes. Chempluschem 2020; 84:893-906. [PMID: 31943994 DOI: 10.1002/cplu.201900178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/30/2019] [Indexed: 11/06/2022]
Abstract
Selective functionalization of C-H bonds provides a straightforward approach to a large variety of well-defined derivatives. High-valent mononuclear iron(IV)-oxo complexes are proposed to carry out these C-H activation reactions in enzymes or in biomimetic syntheses. In this Minireview, we aim to highlight the features that delineate the distinct reactivity of non-heme oxo-iron(IV) motifs to cleave strong C-H bonds in hydrocarbons, primarily focusing on the hydrogen atom transfer (HAT) process. We describe how the structural and electronic properties of supporting ligands modulate the oxidative property of the iron(IV)-oxo complexes. Furthermore, we highlight the decisive role played by spin-state in these biomimetic reactions. We also discuss how tunneling and external perturbations like electric field influence the transfer of hydrogen atoms. Lastly, we emphasize how computations could work as a practical guide to sketch and develop synthetic models with greater efficacy.
Collapse
Affiliation(s)
- Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, Odisha, India
| |
Collapse
|
40
|
Taylor JW, Harman WH. CO scission and reductive coupling of organic carbonyls by a redox-active diboraanthracene. Chem Commun (Camb) 2020; 56:4480-4483. [PMID: 32201869 DOI: 10.1039/d0cc01142h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A gold-stabilized diboraanthracene mediates reductive transformations of carbonyls, including C–O and C–C bond formation, and deoxygenation of acetone to propene and hydroxide.
Collapse
Affiliation(s)
| | - W. Hill Harman
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
41
|
Devi T, Lee YM, Nam W, Fukuzumi S. Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 142:365-372. [DOI: 10.1021/jacs.9b11014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
42
|
Steen JD, Stepanovic S, Parvizian M, de Boer JW, Hage R, Chen J, Swart M, Gruden M, Browne WR. Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation. Inorg Chem 2019; 58:14924-14930. [PMID: 31625380 PMCID: PMC6832668 DOI: 10.1021/acs.inorgchem.9b02737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Lewis acid (LA) activation
by coordination to metal oxido species
has emerged as a new strategy in catalytic oxidations. Despite the
many reports of enhancement of performance in oxidation catalysis,
direct evidence for LA-catalyst interactions under catalytically relevant
conditions is lacking. Here, we show, using the oxidation of alkenes
with H2O2 and the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 (1), that Lewis acids commonly used to enhance catalytic activity,
e.g., Sc(OTf)3, in fact undergo hydrolysis with adventitious
water to release a strong Brønsted acid. The formation of Brønsted
acids in situ is demonstrated using a combination of resonance Raman,
UV/vis absorption spectroscopy, cyclic voltammetry, isotope labeling,
and DFT calculations. The involvement of Brønsted acids in LA
enhanced systems shown here holds implications for the conclusions
reached in regard to the relevance of direct LA-metal oxido interactions
under catalytic conditions. Lewis acid activation of oxidation
catalysts is proposed
to be through binding of the Lewis acids to metal-oxo species. The
activity of the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 in the oxidation of alkenes
with H2O2 appears to correlate with the strength
of the Lewis acid used for its activation. We show that the correlation
arises from the relative propensity of the Lewis acids to generate
Brønsted acids in situ.
Collapse
Affiliation(s)
- Jorn D Steen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Stepan Stepanovic
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Mahsa Parvizian
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Johannes W de Boer
- Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Ronald Hage
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,Catexel B.V. , BioPartner Center Leiden , Galileiweg 8 , 2333 BD Leiden , The Netherlands
| | - Juan Chen
- Department of Applied Chemistry, School of Science , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Marcel Swart
- IQCC & Departament de Química , Universitat de Girona , Campus Montilivi (Ciències) , 17003 Girona , Spain.,ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Maja Gruden
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering , University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
43
|
Sharma N, Lee YM, Li XX, Nam W, Fukuzumi S. Singly Unified Driving Force Dependence of Outer-Sphere Electron-Transfer Pathways of Nonheme Manganese(IV)−Oxo Complexes in the Absence and Presence of Lewis Acids. Inorg Chem 2019; 58:13761-13765. [DOI: 10.1021/acs.inorgchem.9b02403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
44
|
Barbieri A, Lanzalunga O, Lapi A, Di Stefano S. N-Hydroxyphthalimide: A Hydrogen Atom Transfer Mediator in Hydrocarbon Oxidations Promoted by Nonheme Iron(IV)-Oxo Complexes. J Org Chem 2019; 84:13549-13556. [PMID: 31532207 DOI: 10.1021/acs.joc.9b01813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxidation of a series of hydrocarbons by the nonheme iron(IV)-oxo complex [(N4Py)FeIV═O]2+ is efficiently mediated by N-hydroxyphthalimide. The increase of reactivity is associated to the oxidation of the mediator to the phthalimide N-oxyl radical, which efficiently abstracts a hydrogen atom from the substrates, regenerating the mediator in its reduced form.
Collapse
Affiliation(s)
- Alessia Barbieri
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Andrea Lapi
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica , Università di Roma "La Sapienza", Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione , P.le A. Moro , 5 I-00185 Rome , Italy
| |
Collapse
|
45
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee YM, Pushkar YN, Kim WS, Fukuzumi S, Nam W. A High-Valent Manganese(IV)-Oxo-Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019; 58:16124-16129. [PMID: 31489757 DOI: 10.1002/anie.201910032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/20/2022]
Abstract
A mononuclear nonheme manganese(IV)-oxo complex binding the Ce4+ ion, [(dpaq)MnIV (O)]+ -Ce4+ (1-Ce4+ ), was synthesized by reacting [(dpaq)MnIII (OH)]+ (2) with cerium ammonium nitrate (CAN). 1-Ce4+ was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI-MS, resonance Raman, XANES, and EXAFS, showing an Mn-O bond distance of 1.69 Å with a resonance Raman band at 675 cm-1 . Electron-transfer and oxygen atom transfer reactivities of 1-Ce4+ were found to be greater than those of MnIV (O) intermediates binding redox-inactive metal ions (1-Mn+ ). This study reports the first example of a redox-active Ce4+ ion-bound MnIV -oxo complex and its spectroscopic characterization and chemical properties.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Yulia N Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907, USA
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi, 468-0073, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
46
|
Karmalkar DG, Sankaralingam M, Seo MS, Ezhov R, Lee Y, Pushkar YN, Kim W, Fukuzumi S, Nam W. A High‐Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deepika G. Karmalkar
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | | | - Mi Sook Seo
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yulia N. Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern Ave. West Lafayette IN 47907 USA
| | - Won‐Suk Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468-0073 Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
47
|
Xue JW, Zeng M, Zhang S, Chen Z, Yin G. Lewis Acid Promoted Aerobic Oxidative Coupling of Thiols with Phosphonates by Simple Nickel(II) Catalyst: Substrate Scope and Mechanistic Studies. J Org Chem 2019; 84:4179-4190. [DOI: 10.1021/acs.joc.9b00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Wen Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Sicheng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
48
|
Lionetti D, Suseno S, Tsui EY, Lu L, Stich TA, Carsch KM, Nielsen RJ, Goddard WA, Britt RD, Agapie T. Effects of Lewis Acidic Metal Ions (M) on Oxygen-Atom Transfer Reactivity of Heterometallic Mn 3MO 4 Cubane and Fe 3MO(OH) and Mn 3MO(OH) Clusters. Inorg Chem 2019; 58:2336-2345. [PMID: 30730725 DOI: 10.1021/acs.inorgchem.8b02701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The modulation of the reactivity of metal oxo species by redox inactive metals has attracted much interest due to the observation of redox inactive metal effects on processes involving electron transfer both in nature (the oxygen-evolving complex of Photosystem II) and in heterogeneous catalysis (mixed-metal oxides). Studies of small-molecule models of these systems have revealed numerous instances of effects of redox inactive metals on electron- and group-transfer reactivity. However, the heterometallic species directly involved in these transformations have rarely been structurally characterized and are often generated in situ. We have previously reported the preparation and structural characterization of multiple series of heterometallic clusters based on Mn3 and Fe3 cores and described the effects of Lewis acidity of the heterometal incorporated in these complexes on cluster reduction potential. To determine the effects of Lewis acidity of redox inactive metals on group transfer reactivity in structurally well-defined complexes, we studied [Mn3MO4], [Mn3MO(OH)], and [Fe3MO(OH)] clusters in oxygen atom transfer (OAT) reactions with phosphine substrates. The qualitative rate of OAT correlates with the Lewis acidity of the redox inactive metal, confirming that Lewis acidic metal centers can affect the chemical reactivity of metal oxo species by modulating cluster electronics.
Collapse
Affiliation(s)
| | | | | | - Luo Lu
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Troy A Stich
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | | | | | | | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | | |
Collapse
|
49
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
50
|
Lee YM, Kim S, Ohkubo K, Kim KH, Nam W, Fukuzumi S. Unified Mechanism of Oxygen Atom Transfer and Hydrogen Atom Transfer Reactions with a Triflic Acid-Bound Nonheme Manganese(IV)-Oxo Complex via Outer-Sphere Electron Transfer. J Am Chem Soc 2019; 141:2614-2622. [PMID: 30646680 DOI: 10.1021/jacs.8b12935] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Outer-sphere electron transfer from styrene, thioanisole, and toluene derivatives to a triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complex, [(N4Py)MnIV(O)]2+-(HOTf)2 (N4Py = N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine), has been shown to be the rate-determining step of different types of redox reactions such as epoxidation, sulfoxidation, and hydroxylation of styrene, thioanisole, and toluene derivatives, respectively, by [(N4Py)MnIV(O)]2+-(HOTf)2. The rate constants of HOTf-promoted epoxidation of all styrene derivatives with [(N4Py)MnIV(O)]2+ and electron transfer from electron donors to [(N4Py)MnV(O)]2+ exhibit a remarkably unified correlation with the driving force of outer-sphere electron transfer in light of the Marcus theory of electron transfer. The same electron-transfer driving force dependence is observed in the oxygen atom transfer from [(N4Py)MnIV(O)]2+-(HOTf)2 to thioanisole derivatives as well as in the hydrogen atom transfer from toluene derivatives to [(N4Py)MnIV(O)]2+-(HOTf)2. Thus, mechanisms of oxygen atom transfer (epoxidation and sulfoxidation) reactions of styrene and thioanisole derivatives and hydrogen atom transfer (hydroxylation) reactions of toluene derivatives by [(N4Py)MnIV(O)]2+-(HOTf)2 have been unified for the first time as the same reaction pathway via outer-sphere electron transfer, followed by the fast bond-forming step, which exhibits the singly unified electron-transfer driving force dependence of the rate constants as outer-sphere electron-transfer reactions. In the case of the epoxidation of cis-stilbene by [(N4Py)MnIV(O)]2+-(HOTf)2, the isomerization of cis-stilbene radical cation to trans-stilbene radical cation occurs after outer-sphere electron transfer from cis-stilbene to [(N4Py)MnIV(O)]2+-(HOTf)2 to yield trans-stilbene oxide selectively, which is also taken as evidence for the occurrence of electron transfer in the acid-catalyzed epoxidation.
Collapse
Affiliation(s)
- Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Surin Kim
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Kyung-Ha Kim
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering , Meijo University , SENTAN, Japan Science and Technology Agency (JST), Nagoya , Aichi 468-0073 , Japan
| |
Collapse
|