1
|
Knappe GA, Gorman J, Bigley AN, Harvey SP, Bathe M. Heterovalent Click Reactions on DNA Origami. Bioconjug Chem 2025; 36:476-485. [PMID: 40042652 DOI: 10.1021/acs.bioconjchem.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nucleic acid nanoparticles (NANPs) fabricated by using the DNA origami method have broad utility in materials science and bioengineering. Their site-specific, heterovalent functionalization with secondary molecules such as proteins or fluorophores is a unique feature of this technology that drives its utility. Currently, however, there are few chemistries that enable fast, efficient covalent functionalization of NANPs with a broad conjugate scope and heterovalency. To address this need, we introduce synthetic methods to access inverse electron-demand Diels-Alder chemistry on NANPs. We demonstrate a broad conjugate scope, characterize application-relevant kinetics, and integrate this new chemistry with strain-promoted azide-alkyne cycloaddition chemistry to enable heterovalent click reactions on NANPs. We applied these chemistries to formulate a prototypical chemical countermeasure against chemical nerve agents. We envision this additional chemistry finding broad utility in the synthetic toolkit accessible to the nucleic acid nanotechnology community.
Collapse
Affiliation(s)
- Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew N Bigley
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, United States
| | - Steven P Harvey
- U.S. Army Edgewood Chemical Biological Center, RDCB-DRC-C, Aberdeen Providing Ground, Maryland 21010, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Yan L, Zhao Z, Liu Y, Hosseini SH, Li C, Huang Y, Saeb MR, Xiao H, Seidi F. The inverse electron demand diels-alder (IEDDA): A facile bioorthogonal click reaction for development of injectable polysaccharide-based hydrogels for biomedical applications. Carbohydr Polym 2025; 352:123142. [PMID: 39843051 DOI: 10.1016/j.carbpol.2024.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation. Within a few minutes, the interaction of aqueous solutions of tetrazine-polysaccharides with polysaccharide derivatives of dienophiles can form the hydrogel. The gelation time can be regulated by the structure of tetrazine/dienophile, degree of substitution, concentration of polysaccharide solutions, and temperature. The hydrogels are utilized in the fields of tissue engineering, cancer treatment, and wound healing. The embedding of stimuli-responsive functionalities within the hydrogel's architecture enhances the precision of its application for designated targets. This review begins by elucidating the principles of IEDDA and identifying the primary factors that influence the rate of cycloaddition. Subsequently, we discuss various strategies for integrating the reactants of IEDDA onto polysaccharides. Finally, the approaches for the fabrication of the relevant injectable hydrogels, their specific characteristics, and their implementation in different biomedical applications are elaborated.
Collapse
Affiliation(s)
- Linying Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhen Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Gao H, Pol M, Makara CA, Song J, Zhang H, Zou X, Benson JM, Burris DL, Fox JM, Jia X. Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes. Nat Protoc 2025; 20:727-778. [PMID: 39501109 PMCID: PMC11898115 DOI: 10.1038/s41596-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/21/2024] [Indexed: 03/12/2025]
Abstract
Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel-liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor's in science and engineering fields can successfully complete the protocol in 4-5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Colette A Makara
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Jamie M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Versteegen RM, Rossin R, Filot IAW, Hoeben FJM, van Onzen AHAM, Janssen HM, Robillard MS. Ortho-functionalized pyridinyl-tetrazines break the inverse correlation between click reactivity and cleavage yields in click-to-release chemistry. Commun Chem 2024; 7:302. [PMID: 39702778 DOI: 10.1038/s42004-024-01392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
The bioorthogonal tetrazine-triggered cleavage of trans-cyclooctene(TCO)-linked payloads has strong potential for widespread use in drug delivery and in particular in click-cleavable antibody-drug conjugates (ADCs). However, clinical translation is hampered by an inverse correlation between click reactivity and payload release yield, requiring high doses of less reactive tetrazines to drive in vivo TCO reactions and payload release to completion. Herein we report that the cause for the low release when using the highly reactive bis-(2-pyridinyl)-tetrazine is the stability of the initially formed 4,5-dihydropyridazine product, precluding tautomerization to the releasing 1,4-dihydropyridazine tautomer. We demonstrate that efficient tautomerization and payload elimination can be achieved by ortho-substituting bis-pyridinyl-tetrazines with hydrogen-bonding hydroxyl or amido groups, achieving a.o. release yields of 96% with 18-fold more reactive tetrazines. Applied to on-tumor activation of a click-cleavable ADC in mice, these tetrazines afforded near-quantitative ADC conversion at a ca. 10- to 20-fold lower dose than what was previously needed, resulting in a strong therapeutic response.
Collapse
Affiliation(s)
- Ron M Versteegen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Ivo A W Filot
- Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Freek J M Hoeben
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | | | - Henk M Janssen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Cai E, Chen Y, Zhang J, Li H, Li Y, Yan S, He Z, Yuan Q, Wang P. Imaging specific proteins in living cells with small unnatural amino acid attached Raman reporters. Analyst 2024; 149:5476-5481. [PMID: 39400195 DOI: 10.1039/d4an00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Fluorescence labeling via fluorescent proteins (FPs) or immunofluorescence has been routinely applied for microscopic imaging of specific proteins. However, due to these over-weight and oversized labels (e.g. GFP, 238 aa, 27 kDa, ∼4 nm in size), the potential physiological malfunctions of the target proteins are largely underestimated in living cells. Herein, for living cells, we report a small and minimally-invasive Raman reporter (about 2 aa and <1 kDa), which can be site-specifically introduced into proteins by genetic codon expansion. After a single unnatural amino acid (UAA) is precisely incorporated into the target protein, the strained alkyne can rapidly undergo copper-free Diels-Alder cycloaddition reactions with the tetrazine-functionalized Raman reporter, which features a fine vibrational spectrum in contrast to fluorescence. In our experimental results, the UAA-based Raman tag was successfully incorporated into vimentin, histone 3.3 and huntingtin (Htt74Q) proteins in living HeLa cells and further utilized for stimulated Raman imaging. The site-specific bioorthogonal fusion of small Raman tags with intracellular proteins will pave the way for minimally-invasive protein labeling and multi-color imaging in living cells.
Collapse
Affiliation(s)
- Erli Cai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Yage Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, China
| | | | - Yiran Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
- Changping Laboratory, Beijing 102206, China
| | - Shuai Yan
- Changping Laboratory, Beijing 102206, China
| | - Zhiyong He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China.
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ping Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
- Changping Laboratory, Beijing 102206, China
- Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| |
Collapse
|
6
|
Kao WS, Huang W, Zhang Y, Wen K, Meyer A, Escorihuela J, Laughlin ST. Redox-Activated Substrates for Enhancing Activatable Cyclopropene Bioorthogonal Reactions. Chembiochem 2024; 25:e202400304. [PMID: 39183177 DOI: 10.1002/cbic.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Bioorthogonal chemistry has become a mainstay in chemical biology and is making inroads in the clinic with recent advances in protein targeting and drug release. Since the field's beginning, a major focus has been on designing bioorthogonal reagents with good selectivity, reactivity, and stability in complex biological environments. More recently, chemists have imbued reagents with new functionalities like click-and-release or light/enzyme-controllable reactivity. We have previously developed a controllable cyclopropene-based bioorthogonal ligation, which has excellent stability in physiological conditions and can be triggered to react with tetrazines by exposure to enzymes, biologically significant small molecules, or light spanning the visual spectrum. Here, to improve reactivity and gain a better understanding of this system, we screened diene reaction partners for the cyclopropene. We found that a cyclopropene-quinone pair is 26 times faster than reactions with 1,2,4,5-tetrazines. Additionally, we showed that the reaction of the cyclopropene-quinone pair can be activated by two orthogonal mechanisms: caging group removal on the cyclopropene and oxidation/reduction of the quinone. Finally, we demonstrated that this caged cyclopropene-quinone can be used as an imaging tool to label the membranes of fixed, cultured cells.
Collapse
Affiliation(s)
- Wei-Siang Kao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Wei Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Yunlei Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Kangqiao Wen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Andrea Meyer
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY-11794, USA
| |
Collapse
|
7
|
Li Y, Su Y, Wang H, Xie Y, Wang X, Chang L, Jing Y, Zhang J, Ma JA, Jin H, Lou X, Peng Q, Liu T. Computation-Guided Discovery of Diazole Monosubstituted Tetrazines as Optimal Bioorthogonal Tools. J Am Chem Soc 2024; 146:26884-26896. [PMID: 39164893 DOI: 10.1021/jacs.4c07958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Monosubstituted tetrazines are important bioorthogonal reactive tools due to their rapid ligation with trans-cyclooctene. However, their application is limited by the reactivity-stability paradox in biological environments. In this study, we demonstrated that steric effects are crucial in resolving this paradox through theoretical methods and developed a simple synthetic route to validate our computational findings, leading to the discovery of 1,3-azole-4-yl and 1,2-azole-3-yl monosubstituted tetrazines as superior bioorthogonal tools. These new tetrazines surpass previous tetrazines in terms of high reactivities and elevated stabilities. The most stable tetrazine exhibits a reasonable stability (71% remaining after 24 h incubation in cell culture medium) and an exceptionally high reactivity (k2 > 104 M-1 s-1 toward trans-cyclooctene). Due to its good stability in biological systems, a noncanonical amino acid containing such a tetrazine side chain was genetically encoded into proteins site-specifically via an expanded genetic code. The encoded protein can be efficiently labeled using cyclopropane-fused trans-cyclooctene dyes in living mammalian cells with an ultrafast reaction rate exceeding 107 M-1 s-1, making it one of the fastest protein labeling reactions reported to date. Additionally, we showed its superiority through in vivo reactions in living mice, achieving an efficient local anchoring of proteins. These tetrazines are expected to be optimal bioorthogonal reactive tools within living systems.
Collapse
Affiliation(s)
- Yuxuan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yeyu Su
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Haoyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yuanzhe Xie
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liying Chang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yanbo Jing
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiayi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
8
|
Black M, Bhattacharyya S, Argent SP, Pilgrim BS. Structural Transformations of Metal-Organic Cages through Tetrazine-Alkene Reactivity. J Am Chem Soc 2024; 146. [PMID: 39236092 PMCID: PMC11487605 DOI: 10.1021/jacs.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The assembly of metal-organic cages is governed by metal ion coordination preferences and the geometries of the typically rigid and planar precursor ligands. PdnL2n cages are among the most structurally diverse, with subtle differences in the metal-ligand coordination vectors resulting in drastically different assemblies, however almost all rely on rigid aromatic linkers to avoid the formation of intractable mixtures. Here we exploit the inverse electron-demand Diels-Alder (IEDDA) reaction between tetrazine linker groups and alkene reagents to trigger structural changes induced by post-assembly modification. The structure of the 1,4-dihydropyridazine produced by IEDDA (often an afterthought in click chemistry) is crucial; its two sp3 centers increase flexibility and nonplanarity, drastically changing the range of accessible coordination vectors. This triggers an initial Pd4L8 tetrahedral cage to transform into different Pd2L4 lantern cages, with both the transformation extent (thermodynamics) and rate (kinetics) dependent on the alkene dienophile selected. With cyclopentene, the unsymmetrical 1,4-dihydropyridazine ligands undergo integrative sorting in the solid state, with both head-to-tail orientation and enantiomer selection, leading to a single isomer from the 39 possible. This preference is rationalized through entropy, symmetry, and hydrogen bonding. Subsequent oxidation of the 1,4-dihydropyridazine to the aromatic pyridazine rigidifies the ligands, restoring planarity. The oxidized ligands no longer fit in the lantern structure, inducing further structural transformations into Pd4L8 tetrahedra and Pd3L6 double-walled triangles. The concept of controllable addition of limited additional flexibility and then its removal through well-defined reactivity we envisage being of great interest for structural transformations of any class of supramolecular architecture.
Collapse
Affiliation(s)
- Martin
R. Black
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Soumalya Bhattacharyya
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ben S. Pilgrim
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
9
|
Tomarchio EG, Turnaturi R, Saccullo E, Patamia V, Floresta G, Zagni C, Rescifina A. Tetrazine-trans-cyclooctene ligation: Unveiling the chemistry and applications within the human body. Bioorg Chem 2024; 150:107573. [PMID: 38905885 DOI: 10.1016/j.bioorg.2024.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Bioorthogonal reactions have revolutionized chemical biology by enabling selective chemical transformations within living organisms and cells. This review comprehensively explores bioorthogonal chemistry, emphasizing inverse-electron-demand Diels-Alder (IEDDA) reactions between tetrazines and strained dienophiles and their crucial role in chemical biology and various applications within the human body. This highly reactive and selective reaction finds diverse applications, including cleaving antibody-drug conjugates, prodrugs, proteins, peptide antigens, and enzyme substrates. The versatility extends to hydrogel chemistry, which is crucial for biomedical applications, yet it faces challenges in achieving precise cellularization. In situ activation of cytotoxic compounds from injectable biopolymer belongs to the click-activated protodrugs against cancer (CAPAC) platform, an innovative approach to tumor-targeted prodrug delivery and activation. The CAPAC platform, relying on click chemistry between trans-cyclooctene (TCO) and tetrazine-modified biopolymers, exhibits modularity across diverse tumor characteristics, presenting a promising approach in anticancer therapeutics. The review highlights the importance of bioorthogonal reactions in developing radiopharmaceuticals for positron emission tomography (PET) imaging and theranostics, offering a promising avenue for diverse therapeutic applications.
Collapse
Affiliation(s)
- Elisabetta Grazia Tomarchio
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rita Turnaturi
- Institute of Cristallography CNR-IC, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Erika Saccullo
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy; Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
10
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. eLife 2024; 12:RP91012. [PMID: 39162616 PMCID: PMC11335347 DOI: 10.7554/elife.91012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Shauna C Otto
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Teresa M Swanson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Anthony Nhim
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Sara Carlson
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Marium Raza
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Ligia Araujo Naves
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| | - Eric N Senning
- Department of Neuroscience, University of Texas at AustinAustinUnited States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Sharona E Gordon
- University of Washington, Department of Physiology & BiophysicsSeattleUnited States
| |
Collapse
|
11
|
Chandankar SS, Kondhare D, Deshmukh S, Yang H, Leonard P, Seela F. 7-Deazapurine and Pyrimidine Nucleoside and Oligonucleotide Cycloadducts Formed by Inverse Diels-Alder Reactions with 3,6-Di(pyrid-2-yl)-1,2,4,5-tetrazine: Ethynylated and Vinylated Nucleobases for Functionalization and Impact of Pyridazine Adducts on DNA Base Pair Stability and Mismatch Discrimination. J Org Chem 2024; 89:11304-11322. [PMID: 39052894 DOI: 10.1021/acs.joc.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The manuscript reports on 7-deazapurine and pyrimidine nucleoside and oligonucleotide cycloadducts formed by the inverse electron demand Diels-Alder (iEDDA) reaction with 3,6-di(pyrid-2-yl)-1,2,4,5-tetrazine. Cycloadducts were constructed from ethynylated and vinylated nucleobases. Oligonucleotides were synthesized containing iEDDA modifications, and the impact on duplex stability was investigated. iEDDA reactions were performed on nucleoside triple bond side chains. Oxidation was not required in these cases as dihydropyridazine intermediates are not formed. In contrast, oxidation is necessary for reactions performed on alkenyl compounds. This was verified on 5-vinyl-2'-deoxyuridine. A diastereomeric mixture of 1,2-dihydropyridazine cycloadduct intermediates was isolated, characterized, and later oxidized. 12-mer oligonucleotides containing 1,2-pyridazine inverse Diels-Alder cycloadducts and their precursors were hybridized to short DNA duplexes. For that, a series of phosphoramidites was prepared. DNA duplexes with 7-functionalized 7-deazaadenines and 5-functionalized pyrimidines display high duplex stability when spacer units are present between nucleobases and pyridazine cycloadducts. A direct connectivity of the pyridazine moiety to nucleobases as reported for metabolic labeling of vinyl nucleosides reduced duplex stability strongly. Oligonucleotides bearing linkers with and without pyridazine cycloadducts attached to the 7-deazaadenine nucleobase significantly reduced mismatch formation with dC and dG.
Collapse
Affiliation(s)
- Somnath Shivaji Chandankar
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sushma Deshmukh
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
12
|
Šlachtová V, Motornov V, Beier P, Vrabel M. Bioorthogonal Cycloadditions of C3-Trifluoromethylated 1,2,4-Triazines with trans-Cyclooctenes. Chemistry 2024; 30:e202400839. [PMID: 38739300 DOI: 10.1002/chem.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
1,2,4-triazines are a valuable class of heterodienes that can be employed in inverse electron-demand Diels-Alder reactions. However, their broader application in bioorthogonal chemistry is limited due to their low reactivity. This article focuses on 3-(trifluoromethyl)-1,2,4-triazines, which can be efficiently prepared in a one-pot reaction from NH-1,2,3-triazoles. These triazines are highly reactive in reactions with strained cyclooctenes, giving second-order rate constants as high as 230 M-1 s-1. Despite their high reactivity, the compounds remain sufficiently stable under biologically relevant conditions. We show that some of the compounds are fluorogenic, a property of potential use in bioimaging. In addition, we demonstrate the successful application of the triazines in labeling model biomolecules. Our work shows that the reactivity of 1,2,4-triazines can be enhanced by the 3-CF3-substitution, which we consider an important step toward the wider use of this promising class of reagents.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| |
Collapse
|
13
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
15
|
Koh DS, Stratiievska A, Jana S, Otto SC, Swanson TM, Nhim A, Carlson S, Raza M, Naves LA, Senning EN, Mehl RA, Gordon SE. Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555449. [PMID: 37693391 PMCID: PMC10491195 DOI: 10.1101/2023.08.29.555449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ligands such as insulin, epidermal growth factor, platelet derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
Collapse
Affiliation(s)
- Duk-Su Koh
- University of Washington, Department of Physiology & Biophysics
| | | | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University
| | - Shauna C. Otto
- University of Washington, Department of Physiology & Biophysics
| | | | - Anthony Nhim
- University of Washington, Department of Physiology & Biophysics
| | - Sara Carlson
- University of Washington, Department of Physiology & Biophysics
| | - Marium Raza
- University of Washington, Department of Physiology & Biophysics
| | | | | | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University
| | | |
Collapse
|
16
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
17
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
18
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 PMCID: PMC11559631 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
19
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
Vu TT, Jo SH, Kim SH, Kim BK, Park SH, Lim KT. Injectable and Multifunctional Hydrogels Based on Poly( N-acryloyl glycinamide) and Alginate Derivatives for Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470564 DOI: 10.1021/acsami.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Chemotherapy is a conventional treatment that uses drugs to kill cancer cells; however, it may induce side effects and may be incompletely effective, leading to the risk of tumor recurrence. To address this issue, we developed novel injectable thermal/near-infrared (NIR)-responsive hydrogels to control drug release. The injectable hydrogel formulation was composed of biocompatible alginates, poly(N-acryloyl glycinamide) (PNAGA) copolymers with an upper critical solution temperature, and NIR-responsive cross-linkers containing coumarin groups, which were gelated through bioorthogonal inverse electron demand Diels-Alder reactions. The hydrogels exhibited quick gelation times (120-800 s) and high drug loading efficiencies (>90%). The hydrogels demonstrated a higher percentage of drug release at 37 °C than that at 25 °C due to the enhanced swelling behavior of temperature-responsive PNAGA moieties. Upon NIR irradiation, the hydrogels released most of the entrapped doxorubicin (DOX) (97%) owing to the cleavage of NIR-sensitive coumarin ester groups. The hydrogels displayed biocompatibility with normal cells, while induced antitumor activity toward cancer cells. DOX/hydrogels treated with NIR light inhibited tumor growth in nude mice bearing tumors. In addition, the injected hydrogels emitted red fluorescence upon excitation at a green wavelength, so that the drug delivery and hydrogel degradation in vivo could be tracked in the xenograft model.
Collapse
Affiliation(s)
- Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Seon-Hwa Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Byeong Kook Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
21
|
Svatunek D, Murnauer A, Tan Z, Houk KN, Lang K. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes. Chem Sci 2024; 15:2229-2235. [PMID: 38332832 PMCID: PMC10848739 DOI: 10.1039/d3sc05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Dibenzoannulated cyclooctynes have emerged as valuable compounds for bioorthogonal reactions. They are commonly used in combination with azides in strain-promoted 1,3-dipolar cycloadditions. They are typically, however, unreactive towards 3,6-disubstituted tetrazines in inverse electron-demand Diels-Alder cycloadditions. Recently a dibenzoannulated bicyclo[6.1.0]nonyne derivative (DMBO) with a cyclopropane fused to the cyclooctyne core was described, which showed surprising reactivity towards tetrazines. To elucidate the unusual reactivity of DMBO, we performed density functional theory calculations and revealed that a tub-like structure in the transition state results in a much lower activation barrier than in the absence of cyclopropane fusion. The same transition state geometry is found for different cycloalkanes fused to the cyclooctyne core albeit higher activation barriers are observed for increased ring sizes. This conformation is energetically unfavored for previously known dibenzoannulated cyclooctynes and allows tetrazines and azides to approach DMBO from the face rather than the edge, a trajectory that was hitherto not observed for this class of activated dieno- and dipolarophiles.
Collapse
Affiliation(s)
- Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Anton Murnauer
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Zhuoting Tan
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Kathrin Lang
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
22
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
23
|
Zhang Q, Kuang G, Wang L, Duan P, Sun W, Ye F. Designing Bioorthogonal Reactions for Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0251. [PMID: 38107023 PMCID: PMC10723801 DOI: 10.34133/research.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Bioorthogonal reactions are a class of chemical reactions that can be carried out in living organisms without interfering with other reactions, possessing high yield, high selectivity, and high efficiency. Since the first proposal of the conception by Professor Carolyn Bertozzi in 2003, bioorthogonal chemistry has attracted great attention and has been quickly developed. As an important chemical biology tool, bioorthogonal reactions have been applied broadly in biomedicine, including bio-labeling, nucleic acid functionalization, drug discovery, drug activation, synthesis of antibody-drug conjugates, and proteolysis-targeting chimeras. Given this, we summarized the basic knowledge, development history, research status, and prospects of bioorthogonal reactions and their biomedical applications. The main purpose of this paper is to furnish an overview of the intriguing bioorthogonal reactions in a variety of biomedical applications and to provide guidance for the design of novel reactions to enrich bioorthogonal chemistry toolkits.
Collapse
Affiliation(s)
- Qingfei Zhang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Gaizhen Kuang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Li Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weijian Sun
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangfu Ye
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202313063. [PMID: 38515866 PMCID: PMC10953330 DOI: 10.1002/ange.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 03/23/2024]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
25
|
Peschke F, Taladriz‐Sender A, Andrews MJ, Watson AJB, Burley GA. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules. Angew Chem Int Ed Engl 2023; 62:e202313063. [PMID: 37906440 PMCID: PMC10952886 DOI: 10.1002/anie.202313063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Collapse
Affiliation(s)
- Frederik Peschke
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Andrea Taladriz‐Sender
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| | - Matthew J. Andrews
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of Saint AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry & the Strathclyde Centre for Molecular BioscienceUniversity of Strathclyde295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
26
|
Levandowski BJ, Abularrage NS, Graham BJ, Raines RT. Computational study of an oxetane 4 H-pyrazole as a Diels-Alder diene. Tetrahedron Lett 2023; 130:154768. [PMID: 37860707 PMCID: PMC10584014 DOI: 10.1016/j.tetlet.2023.154768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
We combine the effects of spirocyclization and hyperconjugation to increase the Diels-Alder reactivity of the 4H-pyrazole scaffold. A density functional theory (DFT) investigation predicts that 4H-pyrazoles containing an oxetane functionality at the saturated center are extremely reactive despite having a relatively high-lying lowest unoccupied molecular orbital (LUMO) energy.
Collapse
Affiliation(s)
- Brian J. Levandowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Nile S. Abularrage
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Brian J. Graham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
27
|
Adhikari K, Dewulf J, Vangestel C, Van der Veken P, Stroobants S, Elvas F, Augustyns K. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS OMEGA 2023; 8:38252-38262. [PMID: 37867688 PMCID: PMC10586181 DOI: 10.1021/acsomega.3c04597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Background: The pretargeted imaging strategy using inverse electron demand Diels-Alder (IEDDA) cycloaddition between a trans-cyclooctene (TCO) and tetrazine (Tz) has emerged and rapidly grown as a promising concept to improve radionuclide imaging and therapy in oncology. This strategy has mostly relied on the use of radiolabeled Tz together with TCO-modified targeting vectors leading to a rapid growth of the number of available radiolabeled tetrazines, while only a few radiolabeled TCOs are currently reported. Here, we aim to develop novel and structurally diverse 18F-labeled cis-dioxolane-fused TCO (d-TCO) derivatives to further expand the bioorthogonal toolbox for in vivo ligation and evaluate their potential for positron emission tomography (PET) pretargeted imaging. Results: A small series of d-TCO derivatives were synthesized and tested for their reactivity against tetrazines, with all compounds showing fast reaction kinetics with tetrazines. A fluorescence-based pretargeted blocking study was developed to investigate the in vivo ligation of these compounds without labor-intensive prior radiochemical development. Two compounds showed excellent in vivo ligation results with blocking efficiencies of 95 and 97%. Two novel 18F-labeled d-TCO radiotracers were developed, from which [18F]MICA-214 showed good in vitro stability, favorable pharmacokinetics, and moderate in vivo stability. Micro-PET pretargeted imaging with [18F]MICA-214 in mice bearing LS174T tumors treated with tetrazine-modified CC49 monoclonal antibody (mAb) (CC49-Tz) showed significantly higher uptake in tumor tissue in the pretargeted group (CC49-Tz 2.16 ± 0.08% ID/mL) when compared to the control group with nonmodified mAb (CC49 1.34 ± 0.07% ID/mL). Conclusions: A diverse series of fast-reacting fluorinated d-TCOs were synthesized. A pretargeted blocking approach in tumor-bearing mice allowed the choice of a lead compound with fast reaction kinetics with Tz. A novel 18F-labeled d-TCO tracer was developed and used in a pretargeted PET imaging approach, allowing specific tumor visualization in a mouse model of colorectal cancer. Although further optimization of the radiotracer is needed to enhance the tumor-to-background ratios for pretargeted imaging, we anticipate that the 18F-labeled d-TCO will find use in studies where increased hydrophilicity and fast bioconjugation are required.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jonatan Dewulf
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | | | - Sigrid Stroobants
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Filipe Elvas
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
28
|
Sterrenberg VT, Stalling D, Knaack JIH, Soh TK, Bosse JB, Meier C. A TriPPPro-Nucleotide Reporter with Optimized Cell-Permeable Dyes for Metabolic Labeling of Cellular and Viral DNA in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202308271. [PMID: 37435767 DOI: 10.1002/anie.202308271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The metabolic labeling of nucleic acids in living cells is highly desirable to track the dynamics of nucleic acid metabolism in real-time and has the potential to provide novel insights into cellular biology as well as pathogen-host interactions. Catalyst-free inverse electron demand Diels-Alder reactions (iEDDA) with nucleosides carrying highly reactive moieties such as axial 2-trans-cyclooctene (2TCOa) would be an ideal tool to allow intracellular labeling of DNA. However, cellular kinase phosphorylation of the modified nucleosides is needed after cellular uptake as triphosphates are not membrane permeable. Unfortunately, the narrow substrate window of most endogenous kinases limits the use of highly reactive moieties. Here, we apply our TriPPPro (triphosphate pronucleotide) approach to directly deliver a highly reactive 2TCOa-modified 2'-deoxycytidine triphosphate reporter into living cells. We show that this nucleoside triphosphate is metabolically incorporated into de novo synthesized cellular and viral DNA and can be labeled with highly reactive and cell-permeable fluorescent dye-tetrazine conjugates via iEDDA to visualize DNA in living cells directly. Thus, we present the first comprehensive method for live-cell imaging of cellular and viral nucleic acids using a two-step labeling approach.
Collapse
Affiliation(s)
- Vincente T Sterrenberg
- Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Dörte Stalling
- CSSB Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, Hamburg, Germany
- Institute of Virology, Hannover Medical School (MHH), 30625, Hannover, Germany
- Leibniz Institute of Virology (LIV), 20251, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - J Iven H Knaack
- Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Timothy K Soh
- CSSB Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, Hamburg, Germany
- Institute of Virology, Hannover Medical School (MHH), 30625, Hannover, Germany
- Leibniz Institute of Virology (LIV), 20251, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Jens B Bosse
- CSSB Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, Hamburg, Germany
- Institute of Virology, Hannover Medical School (MHH), 30625, Hannover, Germany
- Leibniz Institute of Virology (LIV), 20251, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany
| | - Chris Meier
- Department of Chemistry, Faculty of Sciences, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| |
Collapse
|
29
|
Liu B, Ten Hoeve W, Versteegen RM, Rossin R, Kleijn LHJ, Robillard MS. A Concise Synthetic Approach to Highly Reactive Click-to-Release Trans-Cyclooctene Linkers. Chemistry 2023; 29:e202300755. [PMID: 37224460 DOI: 10.1002/chem.202300755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
An increase in the click-to-release reaction rate between cleavable trans-cyclooctenes (TCO) and tetrazines would be beneficial for drug delivery applications. In this work, we have developed a short and stereoselective synthesis route towards highly reactive sTCOs that serve as cleavable linkers, affording quantitative tetrazine-triggered payload release. In addition, the fivefold more reactive sTCO exhibited the same in vivo stability as current TCO linkers when used as antibody linkers in circulation in mice.
Collapse
Affiliation(s)
- Bing Liu
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | | | | | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Laurens H J Kleijn
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Pol M, Gao H, Zhang H, George OJ, Fox JM, Jia X. Dynamic modulation of matrix adhesiveness induces epithelial-to-mesenchymal transition in prostate cancer cells in 3D. Biomaterials 2023; 299:122180. [PMID: 37267701 PMCID: PMC10330660 DOI: 10.1016/j.biomaterials.2023.122180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Synthetic matrices with dynamic presentation of cell guidance cues are needed for the development of physiologically relevant in vitro tumor models. Towards the goal of mimicking prostate cancer progression and metastasis, we engineered a tunable hyaluronic acid-based hydrogel platform with protease degradable and cell adhesive properties employing bioorthogonal tetrazine ligation with strained alkenes. The synthetic matrix was first fabricated via a slow tetrazine-norbornene reaction, then temporally modified via a diffusion-controlled method using trans-cyclooctene, a fierce dienophile that reacts with tetrazine with an unusually fast rate. The encapsulated DU145 prostate cancer single cells spontaneously formed multicellular tumoroids after 7 days of culture. In situ modification of the synthetic matrix via covalent tagging of cell adhesive RGD peptide induced tumoroid decompaction and the development of cellular protrusions. RGD tagging did not compromise the overall cell viability, nor did it induce cell apoptosis. In response to increased matrix adhesiveness, DU145 cells dynamically loosen cell-cell adhesion and strengthen cell-matrix interactions to promote an invasive phenotype. Characterization of the 3D cultures by immunocytochemistry and gene expression analyses demonstrated that cells invaded into the matrix via a mesenchymal like migration, with upregulation of major mesenchymal markers, and down regulation of epithelial markers. The tumoroids formed cortactin positive invadopodia like structures, indicating active matrix remodeling. Overall, the engineered tumor model can be utilized to identify potential molecular targets and test pharmacological inhibitors, thereby accelerating the design of innovative strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Olivia J George
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
31
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultrafast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. J Am Chem Soc 2023; 145:14608-14620. [PMID: 37364003 PMCID: PMC10440187 DOI: 10.1021/jacs.3c00967] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Site-directed spin-labeling (SDSL)─in combination with double electron-electron resonance (DEER) spectroscopy─has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. DEER combined with in situ SDSL in live cells is challenging since current bioorthogonal labeling approaches are too slow to allow for complete labeling with low concentrations of spin label prior to loss of signal from cellular reduction. Here, we overcome this limitation by genetically encoding a novel family of small, tetrazine-bearing noncanonical amino acids (Tet-v4.0) at multiple sites in proteins expressed in Escherichia coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans-cyclooctene (sTCO)-functionalized nitroxides─including a gem-diethyl-substituted nitroxide with enhanced stability in cells─with rate constants that can exceed 106 M-1 s-1. The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro. Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and support assignment of the conformational state of an MBP mutant within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
32
|
Chang M, Gao F, Pontigon D, Gnawali G, Xu H, Wang W. Bioorthogonal PROTAC Prodrugs Enabled by On-Target Activation. J Am Chem Soc 2023; 145:14155-14163. [PMID: 37327395 PMCID: PMC11249063 DOI: 10.1021/jacs.3c05159] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although proteolysis targeting chimeras (PROTACs) have become promising therapeutic modalities, important concerns exist about the potential toxicity of the approach owing to uncontrolled degradation of proteins and undesirable ligase-mediated off-target effects. Precision manipulation of degradation activity of PROTACs could minimize potential toxicity and side effects. As a result, extensive efforts have been devoted to developing cancer biomarker activating prodrugs of PROTACs. In this investigation, we developed a bioorthogonal on-demand prodrug strategy (termed click-release "crPROTACs") that enables on-target activation of PROTAC prodrugs and release of PROTACs in cancer cells selectively. Inactive PROTAC prodrugs TCO-ARV-771 and TCO-DT2216 are rationally designed by conjugating a bioorthogonal trans-cyclooctenes (TCO) group into the ligand of the VHL E3 ubiquitin ligase. The tetrazine (Tz)-modified RGD peptide, c(RGDyK)-Tz, which targets integrin αvβ3 biomarker in cancer cells, serves as the activation component for click-release of the PROTAC prodrugs to achieve targeted degradation of proteins of interest (POIs) in cancer cells versus noncancerous normal cells. The results of studies accessing the viability of this strategy show that the PROTAC prodrugs are selectively activated in an integrin αvβ3-dependent manner to produce PROTACs, which degrade POIs in cancer cells. The crPROTAC strategy might be a general, abiotic approach to induce selective cancer cell death through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Devin Pontigon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
33
|
Chen J, Ji P, Gnawali G, Chang M, Gao F, Xu H, Wang W. Building bioorthogonal click-release capable artificial receptors on cancer cell surface for imaging, drug targeting and delivery. Acta Pharm Sin B 2023; 13:2736-2746. [PMID: 37425049 PMCID: PMC10326247 DOI: 10.1016/j.apsb.2022.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
The current targeting drug delivery mainly relies on cancer cell surface receptors. However, in many cases, binding affinities between protein receptors and homing ligands is relatively low and the expression level between cancer and normal cells is not significant. Distinct from conventional targeting strategies, we have developed a general cancer targeting platform by building artificial receptor on cancer cell surface via a chemical remodeling of cell surface glycans. A new tetrazine (Tz) functionalized chemical receptor has been designed and efficiently installed on cancer cell surface as "overexpressed" biomarker through a metabolic glycan engineering. Different from the reported bioconjugation for drug targeting, the tetrazine labeled cancer cells not only locally activate TCO-caged prodrugs but also release active drugs via the unique bioorthogonal Tz-TCO click-release reaction. The studies have demonstrated that the new drug targeting strategy enables local activation of prodrug, which ultimately leads to effective and safe cancer therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Peng Ji
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Feng Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, and University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
34
|
Li QH, Zhang GS, Wang F, Cen Y, Liu XL, Zhang JW, Wang YH, Lee AWM, Gao D, Lin GQ, Tian P. Nature-inspired catalytic asymmetric rearrangement of cyclopropylcarbinyl cation. SCIENCE ADVANCES 2023; 9:eadg1237. [PMID: 37163601 PMCID: PMC10171815 DOI: 10.1126/sciadv.adg1237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In nature, cyclopropylcarbinyl cation is often involved in cationic cascade reactions catalyzed by natural enzymes to produce a great number of structurally diverse natural substances. However, mimicking this natural process with artificial organic catalysts remains a daunting challenge in synthetic chemistry. We report a small molecule-catalyzed asymmetric rearrangement of cyclopropylcarbinyl cations, leading to a series of chiral homoallylic sulfide products with good to excellent yields and enantioselectivities (up to 99% enantiomeric excess). In the presence of a chiral SPINOL-derived N-triflyl phosphoramide catalyst, the dehydration of prochiral cyclopropylcarbinols occurs rapidly to generate symmetrical cyclopropylcarbinyl cations, which are subsequently trapped by thione-containing nucleophiles. A subgram-scale experiment and multiple downstream transformations of the sulfide products are further pursued to demonstrate the synthetic utility. Notably, a few heteroaromatic sulfone derivatives could serve as "covalent warhead" in the enzymatic inhibition of severe acute respiratory syndrome coronavirus 2 main protease.
Collapse
Affiliation(s)
- Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Xi-Liang Liu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Hui Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Albert W M Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
35
|
Ma B, Niu W, Guo J. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction. Bioorg Chem 2023; 132:106359. [PMID: 36642019 PMCID: PMC9957846 DOI: 10.1016/j.bioorg.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023]
Abstract
The inverse electron demand Diels-Alder (iEDDA) reaction between a tetrazine and a strained alkene has been widely explored as useful bioorthogonal chemistry for selective labeling of biomolecules. In this work, we exploit the slow reaction between a non-conjugated terminal alkene and a tetrazine, and apply this reaction to achieving a proximity-enhanced protein crosslinking. In one protein subunit, a terminal alkene-containing amino acid was site-specifically incorporated in response to an amber nonsense codon. In another protein subunit, a tetrazine moiety was introduced through the attachment to a cysteine residue. Fast protein crosslinking was achieved due to a large increase in effective molarity of the two reactants that were brought to close proximity by the two interacting protein subunits. Such a proximity-enhanced protein crosslinking is useful for the study of protein-protein interactions.
Collapse
Affiliation(s)
- Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
36
|
Jana S, Evans EGB, Jang HS, Zhang S, Zhang H, Rajca A, Gordon SE, Zagotta WN, Stoll S, Mehl RA. Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525763. [PMID: 36747808 PMCID: PMC9901033 DOI: 10.1101/2023.01.26.525763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in E. coli and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained trans -cyclooctene (sTCO)-functionalized nitroxides-including a gem -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 6 M -1 s -1 . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled in vitro . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP in vitro and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification. TOC
Collapse
Affiliation(s)
- Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
- Equal contributors
| | - Eric G B Evans
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
- Equal contributors
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Hui Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, United States
| | - Sharona E Gordon
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - William N Zagotta
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
37
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
38
|
Kuba W, Sohr B, Keppel P, Svatunek D, Humhal V, Stöger B, Goldeck M, Carlson JCT, Mikula H. Oxidative Desymmetrization Enables the Concise Synthesis of a trans-Cyclooctene Linker for Bioorthogonal Bond Cleavage. Chemistry 2023; 29:e202203069. [PMID: 36250260 PMCID: PMC10098836 DOI: 10.1002/chem.202203069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 11/27/2022]
Abstract
Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.
Collapse
Affiliation(s)
- Walter Kuba
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| | - Barbara Sohr
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| | - Patrick Keppel
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| | - Dennis Svatunek
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| | - Viktoria Humhal
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| | | | - Marion Goldeck
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
- Center for Anatomy and Cell BiologyMedical University of Vienna1090ViennaAustria
| | - Jonathan C. T. Carlson
- Center for Systems Biology & Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA 02114USA
| | - Hannes Mikula
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/1631060ViennaAustria
| |
Collapse
|
39
|
Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Chung KY, Halwachs KN, Lu P, Sun K, Silva HA, Rosales AM, Page ZA. Rapid hydrogel formation via tandem visible light photouncaging and bioorthogonal ligation. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101185. [PMID: 37496708 PMCID: PMC10370463 DOI: 10.1016/j.xcrp.2022.101185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The formation of benign polymer scaffolds in water using green-light-reactive photocages is described. These efforts pave an avenue toward the fabrication of synthetic scaffolds that can facilitate the study of cellular events for disease diagnosis and treatment. First, a series of boron dipyrromethene (BODIPY) photocages with nitrogen-containing nucleophiles were examined to determine structure-reactivity relationships, which resulted in a >1,000× increase in uncaging yield. Subsequently, photoinduced hydrogel formation in 90 wt % water was accomplished via biorthogonal carbonyl condensation using hydrophilic polymer scaffolds separately containing BODIPY photocages and ortho-phthalaldehyde (OPA) moieties. Spatiotemporal control is demonstrated with light on/off experiments to modulate gel stiffness and masking to provide <100 μm features. Biocompatability of the method was shown through pre-/post-crosslinking cell viability studies. Short term, these studies are anticipated to guide translation to emergent additive manufacturing technology, which, longer term, will enable the development of 3D cell cultures for tissue engineering applications.
Collapse
Affiliation(s)
- Kun-You Chung
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Kathleen N. Halwachs
- McKetta Department of Chemical Engineering, The University of Texas at Austin; Austin, TX 78712, USA
| | - Pengtao Lu
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Kaihong Sun
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Hope A. Silva
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Adrianne M. Rosales
- McKetta Department of Chemical Engineering, The University of Texas at Austin; Austin, TX 78712, USA
| | - Zachariah A. Page
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
- Lead contact
| |
Collapse
|
41
|
Song J, Gao H, Zhang H, George OJ, Hillman AS, Fox JM, Jia X. Matrix Adhesiveness Regulates Myofibroblast Differentiation from Vocal Fold Fibroblasts in a Bio-orthogonally Cross-linked Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51669-51682. [PMID: 36367478 PMCID: PMC10350853 DOI: 10.1021/acsami.2c13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Repeated mechanical and chemical insults cause an irreversible alteration of extracellular matrix (ECM) composition and properties, giving rise to vocal fold scarring that is refractory to treatment. Although it is well known that fibroblast activation to myofibroblast is the key to the development of the pathology, the lack of a physiologically relevant in vitro model of vocal folds impedes mechanistic investigations on how ECM cues promote myofibroblast differentiation. Herein, we describe a bio-orthogonally cross-linked hydrogel platform that recapitulates the alteration of matrix adhesiveness due to enhanced fibronectin deposition when vocal fold wound healing is initiated. The synthetic ECM (sECM) was established via the cycloaddition reaction of tetrazine (Tz) with slow (norbornene, Nb)- and fast (trans-cyclooctene, TCO)-reacting dienophiles. The relatively slow Tz-Nb ligation allowed the establishment of the covalent hydrogel network for 3D cell encapsulation, while the rapid and efficient Tz-TCO reaction enabled precise conjugation of the cell-adhesive RGDSP peptide in the hydrogel network. To mimic the dynamic changes of ECM composition during wound healing, RGDSP was conjugated to cell-laden hydrogel constructs via a diffusion-controlled bioorthognal ligation method 3 days post encapsulation. At a low RGDSP concentration (0.2 mM), fibroblasts residing in the hydrogel remained quiescent when maintained in transforming growth factor beta 1 (TGF-β1)-conditioned media. However, at a high concentration (2 mM), RGDSP potentiated TGF-β1-induced myofibroblast differentiation, as evidenced by the formation of an actin cytoskeleton network, including F-actin and alpha-smooth muscle actin. The RGDSP-driven fibroblast activation to myofibroblast was accompanied with an increase in the expression of wound healing-related genes, the secretion of profibrotic cytokines, and matrix contraction required for tissue remodeling. This work represents the first step toward the establishment of a 3D hydrogel-based cellular model for studying myofibroblast differentiation in a defined niche associated with vocal fold scarring.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Olivia J. George
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Ashlyn S. Hillman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph. M. Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA
| |
Collapse
|
42
|
Scinto SL, Reagle TR, Fox JM. Affinity Bioorthogonal Chemistry (ABC) Tags for Site-Selective Conjugation, On-Resin Protein-Protein Coupling, and Purification of Protein Conjugates. Angew Chem Int Ed Engl 2022; 61:e202207661. [PMID: 36058881 PMCID: PMC10029600 DOI: 10.1002/anie.202207661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The site-selective functionalization of proteins has broad application in chemical biology, but can be limited when mixtures result from incomplete conversion or the formation of protein containing side products. It is shown here that when proteins are covalently tagged with pyridyl-tetrazines, the nickel-iminodiacetate (Ni-IDA) resins commonly used for His-tags can be directly used for protein affinity purification. These Affinity Bioorthogonal Chemistry (ABC) tags serve a dual role by enabling affinity-based protein purification while maintaining rapid kinetics in bioorthogonal reactions. ABC-tagging works with a range of site-selective bioconjugation methods with proteins tagged at the C-terminus, N-terminus or at internal positions. ABC-tagged proteins can also be purified from complex mixtures including cell lysate. The combination of site-selective conjugation and clean-up with ABC-tagged proteins also allows for facile on-resin reactions to provide protein-protein conjugates.
Collapse
Affiliation(s)
- Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Tyler R Reagle
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| |
Collapse
|
43
|
Shankar M, Kalyani A, Anitha M, Siva Reddy A, Swamy KCK. Divergent Reactivity of Phosphorylated and Related Allenes: [4 + 2] Cycloaddition with 3,6-Diphenyltetrazine, Self-Addition Leading to Dimers and [Pd]-Complex Formation. J Org Chem 2022; 87:13683-13697. [PMID: 36197101 DOI: 10.1021/acs.joc.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorus-based naphthalenes are formed by self-dimerization-cum-cyclization of α-aryl allenylphosphonates or allenylphosphine oxides using catalytic Pd(OAc)2in the presence of PPh3 and Et3N . This reaction involves [4 + 2]-cycloaddition with the (β,γ) double bond of one allene as the dienophile; the double bonds at the α-aryl-(β',γ') group and (α,β)-carbons of the second allene act as the diene part. A subsequent proton shift also takes place. Upon treating allenylphosphine oxides with Pd(OAc)2 [stoichiometry 2:1] in the presence of PPh3/Ag2CO3, a [Pd]-complex is isolated and structurally characterized. This complex can be used as a catalyst for C-C bond-forming reactions of phosphorus-based allenes with 2-iodophenol. Densely substituted 3,6-diphenylpyridazines are conveniently obtained in excellent yields by a thermally induced regioselective Inverse Electron Demand Diels-Alder (IEDDA) reaction of allenes with 3,6-diphenyltetrazine, followed by a [1,3]-H shift.
Collapse
Affiliation(s)
- Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Adula Kalyani
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mandala Anitha
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Alla Siva Reddy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
44
|
Kondengadan SM, Bansal S, Yang C, Liu D, Fultz Z, Wang B. Click chemistry and drug delivery: A bird’s-eye view. Acta Pharm Sin B 2022; 13:1990-2016. [DOI: 10.1016/j.apsb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
|
45
|
Xie F, Jiang H, Jia X, Zhang J, Zhu Z, Du J, Tang Y. Bridgehead Alkene-Enabled Strain-Driven Bioorthogonal Reaction. Org Lett 2022; 24:5304-5308. [PMID: 35849354 DOI: 10.1021/acs.orglett.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report a novel bioorthogonal reaction that hinges on a bridgehead alkene (BHA)-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition. Readily accessible from natural product β-caryophyllene, the strained BHA displays high reactivity toward the IEDDA reaction while maintaining excellent biocompatibility. The developed IEDDA reaction has been applied to in vitro protein labeling and pretargeted live cell imaging.
Collapse
Affiliation(s)
- Fayang Xie
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangqian Jia
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhu Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Meyvacı E, Öztürk T. Modification of Poly(Styrene‐co‐Acrylonitrile) with Tetrazine by Inverse Electron Demand Diels‐Alder Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ergül Meyvacı
- Giresun University Department of Chemistry 28200 Giresun Turkey
| | - Temel Öztürk
- Giresun University Department of Chemistry 28200 Giresun Turkey
| |
Collapse
|
47
|
Xi Z, Kong H, Chen Y, Deng J, Xu W, Liang Y, Zhang Y. Metal- and Strain-Free Bioorthogonal Cycloaddition of o-Diones with Furan-2(3H)-one as Anionic Cycloaddend. Angew Chem Int Ed Engl 2022; 61:e202200239. [PMID: 35304810 DOI: 10.1002/anie.202200239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/18/2022]
Abstract
The development of new bioorthogonal reactions with mutual orthogonality to classic bioorthogonal reactions such as the strain-promoted azide-alkyne click reaction and the inverse-electron-demand Diels-Alder reaction is of great importance in providing chemical tools for multiplex labelling of live cells. Here we report the first anionic cycloaddend-promoted bioorthogonal cycloaddition reaction between phenanthrene-9,10-dione and furan-2(3H)-one derivatives, where the high polarity of water is exploited to stabilize the highly electron-rich anionic cycloaddend. The reaction is metal- and strain-free, which proceeds rapidly in aqueous solution and on live cells with a second-order rate constant up to 119 M-1 s-1 . The combined utilization of this reaction together with the two other widely used bioorthogonal reactions allows for mutually orthogonal labelling of three types of proteins or three groups of living cells in one batch without cross-talking. Such results highlight the great potential for multiplex labelling of different biomolecules in live cells.
Collapse
Affiliation(s)
- Ziwei Xi
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jiafang Deng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
48
|
Elucidation of the molecular mechanisms of 1,2,3,5- and 1,2,4,5-tetrazines with strained and electron-rich alkynes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|
50
|
Photoaffinity labeling and bioorthogonal ligation: Two critical tools for designing "Fish Hooks" to scout for target proteins. Bioorg Med Chem 2022; 62:116721. [PMID: 35358862 DOI: 10.1016/j.bmc.2022.116721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022]
Abstract
Small molecules remain an important category of therapeutic agents. Their binding to different proteins can lead to both desired and undesired biological effects. Identification of the proteins that a drug binds to has become an important step in drug development because it can lead to safer and more effective drugs. Parent bioactive molecules can be converted to appropriate probes that allow for visualization and identification of their target proteins. Typically, these probes are designed and synthesized utilizing some or all of five major tools; a photoactivatable group, a reporter tag, a linker, an affinity tag, and a bioorthogonal handle. This review covers two of the most challenging tools, photoactivation and bioorthogonal ligation. We provide a historical and theoretical background along with synthetic routes to prepare them. In addition, the review provides comparative analyses of the available tools that can assist decision making when designing such probes. A survey of most recent literature reports is included as well to identify recent trends in the field.
Collapse
|