1
|
Alkhawaja B, Al-Akayleh F, Al-Rubaye Z, AlDabet G, Bustami M, Smairat M, Agha ASAA, Nasereddin J, Qinna N, Michael A, Watts AG. Dissecting the stability of Atezolizumab with renewable amino acid-based ionic liquids: Colloidal stability and anticancer activity under thermal stress. Int J Biol Macromol 2024; 270:132208. [PMID: 38723835 DOI: 10.1016/j.ijbiomac.2024.132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monoclonal antibodies (mAbs) have revolutionised the biopharmaceutical market. Being proteinaceous, mAbs are prone to chemical and physical instabilities. Various approaches were attempted to stabilise proteins against degradation factors. Ionic liquids (ILs) and deep eutectic solvents (DESs) have been established as green solvents for ever-increasing pharmaceutical and biopharmaceutical applications. Hence, amino acid (AA)-based ILs, were used for the first time, for mAb stabilisation. Choline (Ch)-based DESs were also utilised for comparison purposes. The prepared ILs and DESs were utilised to stabilise Atezolizumab (Amab, anti-PDL-1 mAb). The formulations of Amab in ILs and DESs were incubated at room temperature, 45 or 55 °C. Following this, the structural stability of Amab was appraised. Interestingly, Ch-Valine retained favourable structural stability of Amab with minimal detected aggregation or degradation as confirmed by UV-visible spectroscopy and protein Mass Spectroscopy. The measured hydrodynamic diameter of Amab in Ch-Valine ranged from 10.40 to 11.65 nm. More interestingly, the anticancer activity of Amab was evaluated, and Ch-Valine was found to be optimum in retaining the activity of Amab when compared to other formulations, including the control Amab sample. Collectively, this study has spotlighted the advantages of adopting the Ch-AA ILs for the structural and functional stabilising of mAbs.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Zaid Al-Rubaye
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Ghayda' AlDabet
- University of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, Petra University, Amman 11196, Jordan
| | - Muna Bustami
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Maisa'a Smairat
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Ahmed S A A Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Jehad Nasereddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Nidal Qinna
- University of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, Petra University, Amman 11196, Jordan
| | - Andreas Michael
- Department of Life Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Andrew G Watts
- Department of Life Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
2
|
Kumar Mahato A, Pal S, Dey K, Reja A, Paul S, Shelke A, Ajithkumar TG, Das D, Banerjee R. Covalent Organic Framework Cladding on Peptide-Amphiphile-Based Biomimetic Catalysts. J Am Chem Soc 2023. [PMID: 37267597 DOI: 10.1021/jacs.3c03562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Peptide-based biomimetic catalysts are promising materials for efficient catalytic activity in various biochemical transformations. However, their lack of operational stability and fragile nature in non-aqueous media limit their practical applications. In this study, we have developed a cladding technique to stabilize biomimetic catalysts within porous covalent organic framework (COF) scaffolds. This methodology allows for the homogeneous distribution of peptide nanotubes inside the COF (TpAzo and TpDPP) backbone, creating strong noncovalent interactions that prevent leaching. We synthesized two different peptide-amphiphiles, C10FFVK and C10FFVR, with lysine (K) and arginine (R) at the C-termini, respectively, which formed nanotubular morphologies. The C10FFVK peptide-amphiphile nanotubes exhibit enzyme-like behavior and efficiently catalyze C-C bond cleavage in a buffer medium (pH 7.5). We produced nanotubular structures of TpAzo-C10FFVK and TpDPP-C10FFVK through COF cladding by using interfacial crystallization (IC). The peptide nanotubes encased in the COF catalyze C-C bond cleavage in a buffer medium as well as in different organic solvents (such as acetonitrile, acetone, and dichloromethane). The TpAzo-C10FFVK catalyst, being heterogeneous, is easily recoverable, enabling the reaction to be performed for multiple cycles. Additionally, the synthesis of TpAzo-C10FFVK thin films facilitates catalysis in flow. As control, we synthesized another peptide-amphiphile, C10FFVR, which also forms tubular assemblies. By depositing TpAzo COF crystallites on C10FFVR nanotubes through IC, we produced TpAzo-C10FFVR nanotubular structures that expectedly did not show catalysis, suggesting the critical role of the lysines in the TpAzo-C10FFVK.
Collapse
Affiliation(s)
- Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Sumit Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Kaushik Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Antara Reja
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ankita Shelke
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Thalasseril G Ajithkumar
- Central NMR Facility and Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
3
|
Hansen PE. A Spectroscopic Overview of Intramolecular Hydrogen Bonds of NH…O,S,N Type. Molecules 2021; 26:2409. [PMID: 33919132 PMCID: PMC8122615 DOI: 10.3390/molecules26092409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Intramolecular NH…O,S,N interactions in non-tautomeric systems are reviewed in a broad range of compounds covering a variety of NH donors and hydrogen bond acceptors. 1H chemical shifts of NH donors are good tools to study intramolecular hydrogen bonding. However in some cases they have to be corrected for ring current effects. Deuterium isotope effects on 13C and 15N chemical shifts and primary isotope effects are usually used to judge the strength of hydrogen bonds. Primary isotope effects are investigated in a new range of magnitudes. Isotope ratios of NH stretching frequencies, νNH/ND, are revisited. Hydrogen bond energies are reviewed and two-bond deuterium isotope effects on 13C chemical shifts are investigated as a possible means of estimating hydrogen bond energies.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Yu B, Pletka CC, Iwahara J. NMR Observation of Intermolecular Hydrogen Bonds between Protein Tyrosine Side-Chain OH and DNA Phosphate Groups. J Phys Chem B 2020; 124:1065-1070. [PMID: 31958014 PMCID: PMC7021563 DOI: 10.1021/acs.jpcb.9b10987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Channing C. Pletka
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
5
|
Batchelor M, Wolny M, Baker EG, Paci E, Kalverda AP, Peckham M. Dynamic ion pair behavior stabilizes single α-helices in proteins. J Biol Chem 2019; 294:3219-3234. [PMID: 30593502 PMCID: PMC6398138 DOI: 10.1074/jbc.ra118.006752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ion pairs are key stabilizing interactions between oppositely charged amino acid side chains in proteins. They are often depicted as single conformer salt bridges (hydrogen-bonded ion pairs) in crystal structures, but it is unclear how dynamic they are in solution. Ion pairs are thought to be particularly important in stabilizing single α-helix (SAH) domains in solution. These highly stable domains are rich in charged residues (such as Arg, Lys, and Glu) with potential ion pairs across adjacent turns of the helix. They provide a good model system to investigate how ion pairs can contribute to protein stability. Using NMR spectroscopy, small-angle X-ray light scattering (SAXS), and molecular dynamics simulations, we provide here experimental evidence that ion pairs exist in a SAH in murine myosin 7a (residues 858-935), but that they are not fixed or long lasting. In silico modeling revealed that the ion pairs within this α-helix exhibit dynamic behavior, rapidly forming and breaking and alternating between different partner residues. The low-energy helical state was compatible with a great variety of ion pair combinations. Flexible ion pair formation utilizing a subset of those available at any one time avoided the entropic penalty of fixing side chain conformations, which likely contributed to helix stability overall. These results indicate the dynamic nature of ion pairs in SAHs. More broadly, thermodynamic stability in other proteins is likely to benefit from the dynamic behavior of multi-option solvent-exposed ion pairs.
Collapse
Affiliation(s)
- Matthew Batchelor
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Marcin Wolny
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Emily G Baker
- the School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Emanuele Paci
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Arnout P Kalverda
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Michelle Peckham
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
6
|
Nguyen D, Chen C, Pettitt BM, Iwahara J. NMR Methods for Characterizing the Basic Side Chains of Proteins: Electrostatic Interactions, Hydrogen Bonds, and Conformational Dynamics. Methods Enzymol 2018; 615:285-332. [PMID: 30638532 DOI: 10.1016/bs.mie.2018.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NMR spectroscopy is a powerful tool for studying protein dynamics. Conventionally, NMR studies on protein dynamics have probed motions of protein backbone NH, side-chain aromatic, and CH3 groups. Recently, there has been remarkable progress in NMR methodologies that can characterize motions of cationic groups in protein side chains. These NMR methods allow investigations of the dynamics of positively charged lysine (Lys) and arginine (Arg) side chains and their hydrogen bonds as well as their electrostatic interactions important for protein function. Here, describing various practical aspects, we provide an overview of the NMR methods for dynamics studies of Lys and Arg side chains. Some example data on protein-DNA complexes are shown. We will also explain how molecular dynamics (MD) simulations can facilitate the interpretation of the NMR data on these basic side chains. Studies combining NMR and MD have revealed the highly dynamic nature of short-range electrostatic interactions via ion pairs, especially those involving Lys side chains.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Chuanying Chen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
7
|
Pazos IM, Ma J, Mukherjee D, Gai F. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils. J Phys Chem B 2018; 122:11023-11029. [PMID: 29883122 DOI: 10.1021/acs.jpcb.8b04642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While there are many studies on the subject of hydrogen-bonding dynamics in biological systems, few, if any, have investigated this fundamental process in amyloid fibrils. Herein, we seek to add insight into this topic by assessing the dynamics of a hydrogen bond buried in the dry interface of amyloid fibrils. To prepare a suitable model peptide system for this purpose, we introduce two mutations into the amyloid-forming Aβ16-22 peptide. The first one is a lysine analogue at position 19, which is used to help form structurally homogeneous fibrils, and the second one is an aspartic acid derivative (DM) at position 17, which is intended (1) to be used as a site-specific infrared probe and (2) to serve as a hydrogen-bond acceptor to lysine so that an inter-β-sheet hydrogen bond can be formed in the fibrils. Using both infrared spectroscopy and atomic force microscopy, we show that (1) this mutant peptide indeed forms well-defined fibrils, (2) when bulk solvent is removed, there is no detectable water present in the fibrils, (3) infrared results obtained with the DM probe are consistent with a protofibril structure that is composed of two antiparallel β-sheets stacked in a parallel fashion, leading to formation of the expected hydrogen bond. Using two-dimensional infrared spectroscopy, we further show that the dynamics of this hydrogen bond occur on a time scale of ∼2.3 ps, which is attributed to the rapid rotation of the -NH3+ group of lysine around its Cε-Nζ bond. Taken together, these results suggest that (1) DM is a useful infrared marker in facilitating structure determination of amyloid fibrils and (2) even in the tightly packed core of amyloid fibrils certain amino acid side chains can undergo ultrafast motions, hence contributing to the thermodynamic stability of the system.
Collapse
|
8
|
Nguyen D, Iwahara J. Impact of two-bond 15N- 15N scalar couplings on 15N transverse relaxation measurements for arginine side chains of proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 71:45-51. [PMID: 29845493 PMCID: PMC6020141 DOI: 10.1007/s10858-018-0189-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
NMR relaxation of arginine (Arg) 15Nε nuclei is useful for studying side-chain dynamics of proteins. In this work, we studied the impact of two geminal 15N-15N scalar couplings on measurements of transverse relaxation rates (R 2 ) for Arg side-chain 15Nε nuclei. For 12 Arg side chains of the DNA-binding domain of the Antp protein, we measured the geminal 15N-15N couplings ( 2 J NN ) of the 15Nε nuclei and found that the magnitudes of the 2 J NN coupling constants were virtually uniform with an average of 1.2 Hz. Our simulations, assuming ideal 180° rotations for all 15N nuclei, suggested that the two 2 J NN couplings of this magnitude could in principle cause significant modulation in signal intensities during the Carr-Purcell-Meiboom-Gill (CPMG) scheme for Arg 15Nε R 2 measurements. However, our experimental data show that the expected modulation via two 2 J NN couplings vanishes during the 15N CPMG scheme. This quenching of J modulation can be explained by the mechanism described in Dittmer and Bodenhausen (Chemphyschem 7:831-836, 2006). This effect allows for accurate measurements of R 2 relaxation rates for Arg side-chain 15Nε nuclei despite the presence of two 2 J NN couplings. Although the so-called recoupling conditions may cause overestimate of R 2 rates for very mobile Arg side chains, such conditions can readily be avoided through appropriate experimental settings.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-1068, USA.
| |
Collapse
|
9
|
Li J, Wang Y, An L, Chen J, Yao L. Direct Observation of CH/CH van der Waals Interactions in Proteins by NMR. J Am Chem Soc 2018; 140:3194-3197. [PMID: 29480712 DOI: 10.1021/jacs.7b13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
van der Waals interactions are important to protein stability and function. These interactions are usually identified empirically based on protein 3D structures. In this work, we performed a solution nuclear magnetic resonance (NMR) spectroscopy study of van der Waals interactions by detecting the through-space vdw JCC-coupling between protein aliphatic side chain groups. Specifically, vdw JCC-coupling values up to ∼0.5 Hz were obtained between the methyl and nearby aliphatic groups in protein GB3, providing direct experimental evidence for the van der Waals interactions. Quantum mechanical calculations suggest that the J-coupling is correlated with the exchange-repulsion term of van der Waals interaction. NMR detection of vdw JCC-coupling offers a new tool to characterize such interactions in proteins.
Collapse
Affiliation(s)
- Jingwen Li
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | | | | | | | | |
Collapse
|
10
|
Caba C, Ali Khan H, Auld J, Ushioda R, Araki K, Nagata K, Mutus B. Conserved Residues Lys 57 and Lys 401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation. Front Mol Biosci 2018. [PMID: 29541639 PMCID: PMC5835755 DOI: 10.3389/fmolb.2018.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Hyder Ali Khan
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Janeen Auld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Ryo Ushioda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
11
|
Rogacheva ON, Izmailov SA, Slipchenko LV, Skrynnikov NR. A new structural arrangement in proteins involving lysine NH 3+ group and carbonyl. Sci Rep 2017; 7:16402. [PMID: 29180642 PMCID: PMC5704018 DOI: 10.1038/s41598-017-16584-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 11/15/2022] Open
Abstract
Screening of the Protein Data Bank led to identification of a recurring structural motif where lysine NH3+ group interacts with backbone carbonyl. This interaction is characterized by linear atom arrangement, with carbonyl O atom positioned on the three-fold symmetry axis of the NH3+ group (angle Cε-Nζ-O close to 180°, distance Nζ-O ca. 2.7-3.0 Å). Typically, this linear arrangement coexists with three regular hydrogen bonds formed by lysine NH3+ group (angle Cε-Nζ-acceptor atom close to 109°, distance Nζ-acceptor atom ca. 2.7-3.0 Å). Our DFT calculations using polarizable continuum environment suggest that this newly identified linear interaction makes an appreciable contribution to protein’s energy balance, up to 2 kcal/mol. In the context of protein structure, linear interactions play a role in capping the C-termini of α-helices and 310-helices. Of note, linear interaction involving conserved lysine is consistently found in the P-loop of numerous NTPase domains, where it stabilizes the substrate-binding conformation of the P-loop. Linear interaction NH3+ – carbonyl represents an interesting example of ion-dipole interactions that has so far received little attention compared to ion-ion interactions (salt bridges) and dipole-dipole interactions (hydrogen bonds), but nevertheless represents a distinctive element of protein architecture.
Collapse
Affiliation(s)
- Olga N Rogacheva
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia.,Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Nguyen D, Hoffpauir ZA, Iwahara J. Internal Motions of Basic Side Chains of the Antennapedia Homeodomain in the Free and DNA-Bound States. Biochemistry 2017; 56:5866-5869. [PMID: 29045141 PMCID: PMC5682595 DOI: 10.1021/acs.biochem.7b00885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Basic side chains play crucial roles in protein-DNA interactions. In this study, using NMR spectroscopy, we investigated the dynamics of Arg and Lys side chains of the fruit fly Antennapedia homeodomain in the free state and in the complex with target DNA. We measured 15N relaxation for Arg and Lys side chains at two magnetic fields, from which generalized order parameters for the cationic groups were determined. Mobility of the R5 side chain, which makes hydrogen bonds with a thymine base in the DNA minor groove, was greatly dampened. Several Lys and Arg side chains that form intermolecular ion pairs with DNA phosphates were found to retain high mobility with the order parameter being <0.6 in the DNA-bound state. Interestingly, some of the interfacial cationic groups in the complex were more mobile than in the free protein. The retained or enhanced mobility of the Arg and Lys side chains in the complex should mitigate the overall loss of conformational entropy in the protein-DNA association and allow dynamic molecular recognition.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zoe A. Hoffpauir
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Nath B, Gupta A, Khan SA, Kumar S. Enhanced cytopathic effect of Japanese encephalitis virus strain SA14-14-2: Probable association of mutation in amino acid of its envelope protein. Microb Pathog 2017; 111:187-192. [PMID: 28867626 DOI: 10.1016/j.micpath.2017.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Japanese encephalitis (JE) is a mosquito-borne viral disease. It is a global public health concern since it causes an acute encephalitis syndrome (AES). A large number of JE/AES cases are reported to occur in areas with established or developing JE vaccination program. Partial vaccine coverage and emergence of new variants of Japanese encephalitis virus (JEV) might be playing an important role. The envelope protein (E) of JEV is a major antigenic determinant and responsible for immunogenic responses as well as membrane fusion and virion assembly. In the present study, we have characterized the JEV live attenuated vaccine strain SA14-14-2 in baby hamster kidney cells (BHK-21). The vaccine strain showed enhanced replication following its passage in BHK-21 cells. Nucleotide sequence analysis of the E protein gene of the cell-culture adapted vaccine strain showed an important point mutation. The mutation in the E protein gene was identical to its wild-type parent strain SA14. This study suggests the possibility of reversion mutation and exaltation of vaccine strains following adaptation in the host cells.
Collapse
Affiliation(s)
- Barnali Nath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ashutosh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Siraj A Khan
- Regional Medical Research Centre (ICMR), Northeastern Region, Dibrugarh 786001, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
14
|
Nguyen D, Lokesh GLR, Volk DE, Iwahara J. A Unique and Simple Approach to Improve Sensitivity in 15N-NMR Relaxation Measurements for NH₃⁺ Groups: Application to a Protein-DNA Complex. Molecules 2017; 22:molecules22081355. [PMID: 28809801 PMCID: PMC5602601 DOI: 10.3390/molecules22081355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
NMR spectroscopy is a powerful tool for research on protein dynamics. In the past decade, there has been significant progress in the development of NMR methods for studying charged side chains. In particular, NMR methods for lysine side-chain NH₃⁺ groups have been proven to be powerful for investigating the dynamics of hydrogen bonds or ion pairs that play important roles in biological processes. However, relatively low sensitivity has been a major practical issue in NMR experiments on NH₃⁺ groups. In this paper, we present a unique and simple approach to improve sensitivity in 15N relaxation measurements for NH₃⁺ groups. In this approach, the efficiency of coherence transfers for the desired components are maximized, whereas undesired anti-phase or multi-spin order components are purged through pulse schemes and rapid relaxation. For lysine side-chain NH₃⁺ groups of a protein-DNA complex, we compared the data obtained with the previous and new pulse sequences under the same conditions and confirmed that the 15N relaxation parameters were consistent for these datasets. While retaining accuracy in measuring 15N relaxation, our new pulse sequences for NH₃⁺ groups allowed an 82% increase in detection sensitivity of 15N longitudinal and transverse relaxation measurements.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
15
|
Chattopadhyay A, Esadze A, Roy S, Iwahara J. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups. J Phys Chem B 2016; 120:10679-10685. [PMID: 27685459 PMCID: PMC5386832 DOI: 10.1021/acs.jpcb.6b08137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear 15N-31P and 1H-31P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear 1H-15N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around 1H 14.3 ppm and 15N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the 1H-15N cross-peaks. Using heteronuclear 1H, 15N, and 31P NMR experiments, we observed the hydrogen-bond scalar couplings between the His 15Nδ1/1Hδ1 and DNA phosphate 31P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Sourav Roy
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
16
|
Zandarashvili L, Nguyen D, Anderson KM, White MA, Gorenstein DG, Iwahara J. Entropic Enhancement of Protein-DNA Affinity by Oxygen-to-Sulfur Substitution in DNA Phosphate. Biophys J 2016; 109:1026-37. [PMID: 26331260 DOI: 10.1016/j.bpj.2015.07.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022] Open
Abstract
Dithioation of DNA phosphate is known to enhance binding affinities, at least for some proteins. We mechanistically characterized this phenomenon for the Antennapedia homeodomain-DNA complex by integrated use of fluorescence, isothermal titration calorimetry, NMR spectroscopy, and x-ray crystallography. By fluorescence and isothermal titration calorimetry, we found that this affinity enhancement is entropy driven. By NMR, we investigated the ionic hydrogen bonds and internal motions of lysine side-chain NH3(+) groups involved in ion pairs with DNA. By x-ray crystallography, we compared the structures of the complexes with and without dithioation of the phosphate. Our NMR and x-ray data show that the lysine side chain in contact with the DNA phosphate becomes more dynamic upon dithioation. Our thermodynamic, structural, and dynamic investigations collectively suggest that the affinity enhancement by the oxygen-to-sulfur substitution in DNA phosphate is largely due to an entropic gain arising from mobilization of the intermolecular ion pair at the protein-DNA interface.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kurtis M Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mark A White
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - David G Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
17
|
Zandarashvili L, Esadze A, Iwahara J. NMR studies on the dynamics of hydrogen bonds and ion pairs involving lysine side chains of proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 93:37-80. [PMID: 24018322 DOI: 10.1016/b978-0-12-416596-0.00002-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Hydrogen bonds and ion pairs involving side chains play vital roles in protein functions such as molecular recognition and catalysis. Despite the wealth of structural information about hydrogen bonds and ion pairs at functionally crucial sites on proteins, the dynamics of these fundamental chemical interactions are not well understood largely due to the lack of suitable experimental tools in the past. NMR spectroscopy is a powerful tool for investigations of protein dynamics, but the vast majority of NMR methods had been applicable only to the backbone or methyl groups. Recently, a substantial progress has been made in the research on the dynamics of hydrogen bonds and ion pairs involving lysine side-chain NH3+ groups. Together with computational/theoretical approaches, the new NMR methods provide unique insights into the dynamics of hydrogen bonds and ion pairs involving lysine side chains. Here, the methodology and its applications are reviewed.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
18
|
Iwahara J, Esadze A, Zandarashvili L. Physicochemical Properties of Ion Pairs of Biological Macromolecules. Biomolecules 2015; 5:2435-63. [PMID: 26437440 PMCID: PMC4693242 DOI: 10.3390/biom5042435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022] Open
Abstract
Ion pairs (also known as salt bridges) of electrostatically interacting cationic and anionic moieties are important for proteins and nucleic acids to perform their function. Although numerous three-dimensional structures show ion pairs at functionally important sites of biological macromolecules and their complexes, the physicochemical properties of the ion pairs are not well understood. Crystal structures typically show a single state for each ion pair. However, recent studies have revealed the dynamic nature of the ion pairs of the biological macromolecules. Biomolecular ion pairs undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. This dynamic behavior is reasonable in light of the fundamental concepts that were established for small ions over the last century. In this review, we introduce the physicochemical concepts relevant to the ion pairs and provide an overview of the recent advancement in biophysical research on the ion pairs of biological macromolecules.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Alexandre Esadze
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
19
|
Chen C, Esadze A, Zandarashvili L, Nguyen D, Pettitt BM, Iwahara J. Dynamic Equilibria of Short-Range Electrostatic Interactions at Molecular Interfaces of Protein-DNA Complexes. J Phys Chem Lett 2015; 6:2733-2737. [PMID: 26207171 PMCID: PMC4507475 DOI: 10.1021/acs.jpclett.5b01134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 05/21/2023]
Abstract
Intermolecular ion pairs (salt bridges) are crucial for protein-DNA association. For two protein-DNA complexes, we demonstrate that the ion pairs of protein side-chain NH3+ and DNA phosphate groups undergo dynamic transitions between distinct states in which the charged moieties are either in direct contact or separated by water. While the crystal structures of the complexes show only the solvent-separated ion pair (SIP) state for some interfacial lysine side chains, our NMR hydrogen-bond scalar coupling data clearly indicate the presence of the contact ion pair (CIP) state for the same residues. The 0.6-μs molecular dynamics (MD) simulations confirm dynamic transitions between the CIP and SIP states. This behavior is consistent with our NMR order parameters and scalar coupling data for the lysine side chains. Using the MD trajectories, we also analyze the free energies of the CIP-SIP equilibria. This work illustrates the dynamic nature of short-range electrostatic interactions in DNA recognition by proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Junji Iwahara
- J.I.: [Phone] 409-747-1403; [E-mail] ; [Fax] 409-772-6334
| |
Collapse
|
20
|
Anderson KM, Nguyen D, Esadze A, Zandarashvili L, Gorenstein DG, Iwahara J. A chemical approach for site-specific identification of NMR signals from protein side-chain NH₃⁺ groups forming intermolecular ion pairs in protein-nucleic acid complexes. JOURNAL OF BIOMOLECULAR NMR 2015; 62:1-5. [PMID: 25690740 PMCID: PMC4433575 DOI: 10.1007/s10858-015-9909-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 05/21/2023]
Abstract
Protein-nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein-DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH3 (+) groups forming the intermolecular ion pairs. A characteristic change in their (1)H and (15)N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain (15)N and DNA phosphorodithiaote (31)P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein-RNA complexes as well.
Collapse
Affiliation(s)
- Kurtis M. Anderson
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Dan Nguyen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David G. Gorenstein
- Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
21
|
Biswal HS, Bhattacharyya S, Bhattacherjee A, Wategaonkar S. Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1022946] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Zandarashvili L, Iwahara J. Temperature dependence of internal motions of protein side-chain NH3(+) groups: insight into energy barriers for transient breakage of hydrogen bonds. Biochemistry 2014; 54:538-45. [PMID: 25489884 DOI: 10.1021/bi5012749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although charged side chains play important roles in protein function, their dynamic properties are not well understood. Nuclear magnetic resonance methods for investigating the dynamics of lysine side-chain NH3(+) groups were established recently. Using this methodology, we have studied the temperature dependence of the internal motions of the lysine side-chain NH3(+) groups that form ion pairs with DNA phosphate groups in the HoxD9 homeodomain-DNA complex. For these NH3(+) groups, we determined order parameters and correlation times for bond rotations and reorientations at 15, 22, 28, and 35 °C. The order parameters were found to be virtually constant in this temperature range. In contrast, the bond-rotation correlation times of the NH3(+) groups were found to depend strongly on temperature. On the basis of transition state theory, the energy barriers for NH3(+) rotations were analyzed and compared to those for CH3 rotations. Enthalpies of activation for NH3(+) rotations were found to be significantly higher than those for CH3 rotations, which can be attributed to the requirement of hydrogen bond breakage. However, entropies of activation substantially reduce the overall free energies of activation for NH3(+) rotations to a level comparable to those for CH3 rotations. This entropic reduction in energy barriers may accelerate molecular processes requiring hydrogen bond breakage and play a kinetically important role in protein function.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555-1068, United States
| | | |
Collapse
|
23
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
24
|
Esadze A, Zandarashvili L, Iwahara J. Effective strategy to assign ¹H- ¹⁵N heteronuclear correlation NMR signals from lysine side-chain NH3₃⁺ groups of proteins at low temperature. JOURNAL OF BIOMOLECULAR NMR 2014; 60:23-7. [PMID: 25129623 PMCID: PMC4160661 DOI: 10.1007/s10858-014-9854-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/06/2014] [Indexed: 05/15/2023]
Abstract
Recent studies have shown that lysine side-chain NH3(+) groups are excellent probes for NMR investigations of dynamics involving hydrogen bonds and ion pairs relevant to protein function. However, due to rapid hydrogen exchange, observation of (1)H-(15)N NMR cross peaks from lysine NH3(+) groups often requires use of a relatively low temperature, which renders difficulty in resonance assignment. Here we present an effective strategy to assign (1)H and (15)N resonances of NH3(+) groups at low temperatures. This strategy involves two new (1)H/(13)C/(15)N triple-resonance experiments for lysine side chains. Application to a protein-DNA complex is demonstrated.
Collapse
|
25
|
Ball KA, Wemmer DE, Head-Gordon T. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B 2014; 118:6405-16. [PMID: 24410358 PMCID: PMC4066902 DOI: 10.1021/jp410275y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) represent a new frontier in structural biology since the primary characteristic of IDPs is that structures need to be characterized as diverse ensembles of conformational substates. We compare two general but very different ways of combining NMR spectroscopy with theoretical methods to derive structural ensembles for the disease IDPs amyloid-β 1-40 and amyloid-β 1-42, which are associated with Alzheimer's Disease. We analyze the performance of de novo molecular dynamics and knowledge-based approaches for generating structural ensembles by assessing their ability to reproduce a range of NMR experimental observables. In addition to the comparison of computational methods, we also evaluate the relative value of different types of NMR data for refining or validating the IDP structural ensembles for these important disease peptides.
Collapse
Affiliation(s)
- K Aurelia Ball
- Graduate Group in Biophysics , Berkeley, California 94720, United States
| | | | | |
Collapse
|
26
|
Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 2013; 34:2135-45. [PMID: 23832629 DOI: 10.1002/jcc.23354] [Citation(s) in RCA: 2411] [Impact Index Per Article: 219.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 11/08/2022]
Abstract
Protein structure and dynamics can be characterized on the atomistic level with both nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations. Here, we quantify the ability of the recently presented CHARMM36 (C36) force field (FF) to reproduce various NMR observables using MD simulations. The studied NMR properties include backbone scalar couplings across hydrogen bonds, residual dipolar couplings (RDCs) and relaxation order parameter, as well as scalar couplings, RDCs, and order parameters for side-chain amino- and methyl-containing groups. It is shown that the C36 FF leads to better correlation with experimental data compared to the CHARMM22/CMAP FF and suggest using C36 in protein simulations. Although both CHARMM FFs contains the same nonbond parameters, our results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the χ1 and χ2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions. This highlights the importance of proper treatment of the internal covalent components in modeling nonbond interactions with molecular mechanics FFs.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn St., Baltimore, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
27
|
Anderson KM, Esadze A, Manoharan M, Brüschweiler R, Gorenstein DG, Iwahara J. Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc 2013; 135:3613-9. [PMID: 23406569 PMCID: PMC3721336 DOI: 10.1021/ja312314b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair dynamics in biological macromolecular systems. Absorption, infrared, and Raman spectroscopic methods were previously used to characterize dynamic properties of ion pairs, but these methods can be applied only to small compounds. Here, using NMR (15)N relaxation and hydrogen-bond scalar (15)N-(31)P J-couplings ((h3)J(NP)), we have investigated the dynamics of the ion pairs between lysine side-chain NH3(+) amino groups and DNA phosphate groups at the molecular interface of the HoxD9 homeodomain-DNA complex. We have determined the order parameters and the correlation times for C-N bond rotation and reorientation of the lysine NH3(+) groups. Our data indicate that the NH3(+) groups in the intermolecular ion pairs are highly dynamic at the protein-DNA interface, which should lower the entropic costs for protein-DNA association. Judging from the C-N bond-rotation correlation times along with experimental and quantum-chemically derived (h3)J(NP) hydrogen-bond scalar couplings, it seems that breakage of hydrogen bonds in the ion pairs occurs on a sub-nanosecond time scale. Interestingly, the oxygen-to-sulfur substitution in a DNA phosphate group was found to enhance the mobility of the NH3(+) group in the intermolecular ion pair. This can partially account for the affinity enhancement of the protein-DNA association by the oxygen-to-sulfur substitution, which is a previously observed but poorly understood phenomenon.
Collapse
Affiliation(s)
- Kurtis M. Anderson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mariappan Manoharan
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - Rafael Brüschweiler
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - David G. Gorenstein
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
28
|
Hydrogen bond strengths in phosphorylated and sulfated amino acid residues. PLoS One 2013; 8:e57804. [PMID: 23472106 PMCID: PMC3589483 DOI: 10.1371/journal.pone.0057804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/24/2013] [Indexed: 11/29/2022] Open
Abstract
Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer), we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr) and sulfotyrosine (sTyr) residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.
Collapse
|
29
|
Hattori Y, Furuita K, Ohki I, Ikegami T, Fukada H, Shirakawa M, Fujiwara T, Kojima C. Utilization of lysine ¹³C-methylation NMR for protein-protein interaction studies. JOURNAL OF BIOMOLECULAR NMR 2013; 55:19-31. [PMID: 23224986 DOI: 10.1007/s10858-012-9675-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/10/2012] [Indexed: 05/20/2023]
Abstract
Chemical modification is an easy way for stable isotope labeling of non-labeled proteins. The reductive (13)C-methylation of the amino group of the lysine side-chain by (13)C-formaldehyde is a post-modification and is applicable to most proteins since this chemical modification specifically and quickly proceeds under mild conditions such as 4 °C, pH 6.8, overnight. (13)C-methylation has been used for NMR to study the interactions between the methylated proteins and various molecules, such as small ligands, nucleic acids and peptides. Here we applied lysine (13)C-methylation NMR to monitor protein-protein interactions. The affinity and the intermolecular interaction sites of methylated ubiquitin with three ubiquitin-interacting proteins were successfully determined using chemical-shift perturbation experiments via the (1)H-(13)C HSQC spectra of the (13)C-methylated-lysine methyl groups. The lysine (13)C-methylation NMR results also emphasized the importance of the usage of side-chain signals to monitor the intermolecular interaction sites, and was applicable to studying samples with concentrations in the low sub-micromolar range.
Collapse
Affiliation(s)
- Yoshikazu Hattori
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nath N, Lokesh, Suryaprakash N. Measurement and applications of long-range heteronuclear scalar couplings: recent experimental and theoretical developments. Chemphyschem 2012; 13:645-60. [PMID: 22302693 DOI: 10.1002/cphc.201100748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/04/2011] [Indexed: 12/11/2022]
Abstract
The use of long-range heteronuclear couplings, in association with (1)H-(1)H scalar couplings and NOE restraints, has acquired growing importance for the determination of the relative stereochemistry, and structural and conformational information of organic and biological molecules. However, the routine use of such couplings is hindered by the inherent difficulties in their measurement. Prior to the advancement in experimental techniques, both long-range homo- and heteronuclear scalar couplings were not easily accessible, especially for very large molecules. The development of a large number of multidimensional NMR experimental methodologies has alleviated the complications associated with the measurement of couplings of smaller strengths. Subsequent application of these methods and the utilization of determined J-couplings for structure calculations have revolutionized this area of research. Problems in organic, inorganic and biophysical chemistry have also been solved by utilizing the short- and long-range heteronuclear couplings. In this minireview, we discuss the advantages and limitations of a number of experimental techniques reported in recent times for the measurement of long-range heteronuclear couplings and a few selected applications of such couplings. This includes the study of medium- to larger-sized molecules in a variety of applications, especially in the study of hydrogen bonding in biological systems. The utilization of these couplings in conjunction with theoretical calculations to arrive at conclusions on the hyperconjugation, configurational analysis and the effect of the electronegativity of the substituents is also discussed.
Collapse
Affiliation(s)
- Nilamoni Nath
- NMR Research Centre, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
31
|
Salvi N, Ulzega S, Ferrage F, Bodenhausen G. Time Scales of Slow Motions in Ubiquitin Explored by Heteronuclear Double Resonance. J Am Chem Soc 2012; 134:2481-4. [DOI: 10.1021/ja210238g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Nicola Salvi
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Simone Ulzega
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
| | - Fabien Ferrage
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| | - Geoffrey Bodenhausen
- Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences
et Ingénierie Chimiques, BCH, 1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75231
Paris Cedex 05, France
- Université Pierre et Marie Curie, Paris, France
- UMR 7203 Laboratoire des Biomolécules CNRS-UPMC-ENS, Paris, France
| |
Collapse
|