1
|
Yu J, Musgrave CB, Chen Q, Yang Y, Tian C, Hu X, Su G, Shin H, Ni W, Chen X, Ou P, Liu Y, Schweitzer NM, Meira DM, Dravid VP, Goddard WA, Xie K, Sargent EH. Ruthenium-Substituted Polyoxoanion Serves as Redox Shuttle and Intermediate Stabilizer in Selective Electrooxidation of Ethylene to Ethylene Glycol. J Am Chem Soc 2024. [PMID: 39537145 DOI: 10.1021/jacs.4c11891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(H2O)W11O39]}5-) achieves 82% faradaic efficiency in EG production at 100 mA/cm2 under ambient conditions. Via the union of in situ spectroscopic techniques, electrochemical studies, and density functional theory calculations, we find evidence of a two-step oxidation mechanism: Ru-POM first undergoes electrochemical oxidation to the high valent state, activating ethylene via partial oxidation and forming an intermediate complex; this intermediate complex then migrates to the anode where it undergoes further oxidation to produce EG. The Ru-POM-mediated electrocatalytic system reduces the projected energy consumption required in EG production, requiring 9 GJ per ton of EG (and accompanied by 0.04 ton H2 coproduction), compared to 20-30 GJ/ton in typical prior processes.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles Bruce Musgrave
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiucheng Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangcan Su
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heejong Shin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiyan Ni
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinqi Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Debora Motta Meira
- CLS@APS, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Ke Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Ren J, Wang B, Yin HQ, Zhang P, Wang XH, Quan Y, Yao S, Lu TB, Zhang ZM. Single Dispersion of Fe(H 2O) 2-Based Polyoxometalate on Polymeric Carbon Nitride for Biomimetic CH 4 Photooxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403101. [PMID: 38771974 DOI: 10.1002/adma.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Direct methane conversion to value-added oxygenates under mild conditions with in-depth mechanism investigation has attracted wide interest. Inspired by methane monooxygenase, the K9Na2Fe(H2O)2{[γ-SiW9O34Fe(H2O)]}2·25H2O polyoxometalate (Fe-POM) with well-defined Fe(H2O)2 sites is synthesized to clarify the key role of Fe species and their microenvironment toward CH4 photooxidation. The Fe-POM can efficiently drive the conversion of CH4 to HCOOH with a yield of 1570.0 µmol gPOM -1 and 95.8% selectivity at ambient conditions, much superior to that of [Fe(H2O)SiW11O39]5- with Fe(H2O) active site, [Fe2SiW10O38(OH)]2 14- and [P8W48O184Fe16(OH)28(H2O)4]20- with multinuclear Fe-OH-Fe active sites. Single-dispersion of Fe-POM on polymeric carbon nitride (PCN) is facilely achieved to provide single-cluster functionalized PCN with well-defined Fe(H2O)2 site, the HCOOH yield can be improved to 5981.3 µmol gPOM -1. Systemic investigations demonstrate that the (WO)4-Fe(H2O)2 can supply Fe═O active center for C-H activation via forming (WO)4-Fea-Ot···CH4 intermediate, similar to that for CH4 oxidation in the monooxygenase. This work highlights a promising and facile strategy for single dispersion of ≈1-2 Å metal center with precise coordination microenvironment by uniformly anchoring nanoscale molecular clusters, which provides a well-defined model for in-depth mechanism research.
Collapse
Affiliation(s)
- Jing Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hua-Qing Yin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Peng Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Xin-Hui Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China
| | - Shuang Yao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384, China
| |
Collapse
|
3
|
Tang W, Liu Y, Jin Y, Shi W, Sun J, Ma P, Niu J, Wang J. {Ru(C 6 H 6 )}-Decorating Heteropolymolybdate for Highly Activity Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde. Chemistry 2024; 30:e202302921. [PMID: 38183325 DOI: 10.1002/chem.202302921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
An unclassical structure of {Ru(C6 H6 )}-based polyoxometalate, Cs6 H4 [Te2 Mo12 O46 {Ru(C6 H6 )}] ⋅ 16.5H2 O (1), has been successfully constructed from {Te2 Mo12 O46 }-type heteropolymolybdate and {Ru(C6 H6 )} group, which structure type was discovered for the first time. Compound 1 not only possesses strong light-harvesting ability, but also exhibits high carrier separation efficiency and lower charge transfer resistance. Under visible light irradiation, compound 1 displayed excellent catalytic activity and circularity in the conversion of benzyl alcohol to benzaldehyde (yield=94 %; turnover number=500; turnover frequency=20.8 h-1 ). Finally, the electron paramagnetic resonance measurement and energy level matching analysis provide theoretical basis for the derivation of the reaction mechanism.
Collapse
Affiliation(s)
- Wei Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
- Puyang Institute of Technology, Henan University, Puyang, Henan, 457000, P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Weixia Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jialiang Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, (P. R., China
| |
Collapse
|
4
|
Lin L, Ma R, Jiang R, Lin S. Design of high performance nitrogen reduction electrocatalysts by doping defective polyoxometalate with a single atom promoter. Phys Chem Chem Phys 2024; 26:8494-8503. [PMID: 38411205 DOI: 10.1039/d3cp06077b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Single-atom catalysts (SACs) are emerging as promising candidates for electrochemical nitrogen reduction reaction (NRR). Previous studies have shown that the single-atom centers of SACs can not only serve as active sites, but also act as promoters to affect the catalytic properties. However, the use of single metal atoms as promoters in electrocatalysis has rarely been studied. In this work, the defective Keggin-type phosphomolybdic acid (PMA) is used as a substrate to support the single metal atoms. We aim to tune the electronic structures of the exposed molybdenum active sites on defective PMA by using these supported single atoms as promoters for efficient NRR. Firstly, the stability and N2 adsorption capacity were studied to screen for an effective catalyst capable of activating N2. Most of the SACs were found to have good stability and N2 adsorption capacity. Then, we compared the selectivity and NRR activity of the catalysts and found that catalysts with metal atom promoters have improved NRR selectivity and activity. Finally, electronic structure analysis was carried out to understand the promoting effect of the promoter on N2 activation and the activity of the NRR process. This work provides a new strategy for designing efficient catalysts for electrocatalytic reactions by introducing promoters.
Collapse
Affiliation(s)
- Linghui Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Ruijie Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Rong Jiang
- Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| |
Collapse
|
5
|
Chen W, Li H, Jin Y, Lei W, Bai Q, Ma P, Wang J, Niu J. Construction of Hexameric Ru-Substitution POMs to Improve Photocatalytic H 2 Evolution. Inorg Chem 2023; 62:18079-18086. [PMID: 37877470 DOI: 10.1021/acs.inorgchem.3c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Converting solar energy into storable hydrogen energy by employing green photocatalytic technology offers a reliable alternative for meeting the energy crisis. The polyoxometalates are a promising candidate for hydrogen production photocatalysts because of their unique electronic and structural properties and controllable design at the molecular level. Introducing noble metals was proven to be an effective method to greatly enhance the photocatalytic efficiency of polyoxometalates. Herein, two unprecedented compounds of hexameric Ru-POMs, Na4H10[As2RuIV2W11O18(OH)4(H2O)6{AsW8RuIVO31(OH)Cl}2(B-β-AsW9O33)4]·93H2O (1) and Na2H19[AsRuIII2W11O20(OH)2(H2O)6(RuIIICl3)(B-β-AsW9O33)6]·90H2O (2), were successfully self-assembled. The H2 evolution rates of 1 and 2 under optimal conditions were 3578.75 and 3027.69 μmol h-1 g-1 with TONs of 255 and 205, respectively. The stability of 1 was demonstrated by a series of characterizations. Besides, a possible photocatalytic mechanism was proposed.
Collapse
Affiliation(s)
- Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Yuzhen Jin
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Wenjing Lei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Qingyun Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan P. R. China
| |
Collapse
|
6
|
Thompson JA, González-Cabaleiro R, Vilà-Nadal L. Reducing Systematic Uncertainty in Computed Redox Potentials for Aqueous Transition-Metal-Substituted Polyoxotungstates. Inorg Chem 2023; 62:12260-12271. [PMID: 37489885 PMCID: PMC10410613 DOI: 10.1021/acs.inorgchem.3c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 07/26/2023]
Abstract
Polyoxometalates have attracted significant interest owing to their structural diversity, redox stability, and functionality at the nanoscale. In this work, density functional theory calculations have been employed to systematically study the accuracy of various exchange-correlation functionals in reproducing experimental redox potentials, U0Red in [PW11M(H2O)O39]q- M = Mn(III/II), Fe(III/II), Co(III/II), and Ru(III/II). U0Red calculations for [PW11M(H2O)O39]q- were calculated using a conductor-like screening model to neutralize the charge in the cluster. We explicitly located K+ counterions which induced positive shifting of potentials by > 500 mV. This approximation improved the reproduction of redox potentials for Kx[XW11M(H2O)O39]q-x M = Mn(III/II)/Co(III/II). However, uncertainties in U0Red for Kx[PW11M(H2O)O39]q-x M = Fe(III/II)/Ru(III/II) were observed because of the over-stabilization of the ion-pairs. Hybrid functionals exceeding 25% Hartree-Fock exchange are not recommended because of large uncertainties in ΔU0Red attributed to exaggerated proximity of the ion-pairs. Our results emphasize that understanding the nature of the electrode and electrolyte environment is essential to obtain a reasonable agreement between theoretical and experimental results.
Collapse
Affiliation(s)
- Jake A. Thompson
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Laia Vilà-Nadal
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
7
|
Khan S, Sengupta S, Khan MA, Sk MP, Naskar S. Electrocatalytic water oxidation by heteroleptic ruthenium complexes of 2,6-bis(benzimidazolyl)pyridine Scaffold: a mechanistic investigation. Dalton Trans 2023. [PMID: 37194336 DOI: 10.1039/d3dt00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three monomeric ruthenium complexes with anionic ligands [RuII(L)(L1)(DMSO)][ClO4] (1), [RuII(L)(L2)(DMSO)] [PF6] (2), and [RuII(L)(L3)(DMSO)][PF6] (3) [L = pyrazine carboxylate, L1 = 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine, L2 = 4,5-dmbimpy = 2,6-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)pyridine, L3 = 4-Fbimpy = 2,6-bis(5-fluoro-1H-benzo[d]imidazol-2-yl)pyridine, DMSO = dimethyl sulfoxide] as electrocatalysts for water oxidation are reported herein. The single crystal X-ray structure of the complexes reveals the presence of a DMSO molecule, which is supposed to be the labile group undergoing water exchange under the experimental condition of electrocatalysis. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) study shows the appearance of the catalytic wave for water oxidation at Ru(IV/V) oxidation. LSV, CV, and bulk electrolysis technique has been used to study the redox properties of the complexes and their electrocatalytic activity. A systematic variation on the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. Electrochemical and theoretical (density functional theory) studies support the O-O bond formation during water oxidation passes through water nucleophilic attack (WNA) for all the ruthenium complexes. At pH 1, the maximum turnover frequency (TOFmax) has been experimentally obtained as 17556.25 s-1, 31648.41 s-1, and 39.69 s-1 for complexes 1, 2, and 3, respectively, from the foot of wave analysis (FOWA). The high value of TOFmax for complex 2 indicates its efficiency as an electrocatalyst for water oxidation in a homogeneous medium.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla institute of Technology-Mesra, Ranchi, India
| | - Md Adnan Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | | | - Subhendu Naskar
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| |
Collapse
|
8
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
9
|
Zhao Y, Wan R, Li H, Zhao R, Chen W, Song H, Ma P, Niu J, Wang J. 183W Nuclear Magnetic Resonance and Photocatalysis Studies of Two Ruthenium-Decorated Isopolyoxometalates {Ru 2W 10} and {Ru 2W 13} via pH-Induced Assemblies. Inorg Chem 2022; 61:12097-12105. [DOI: 10.1021/acs.inorgchem.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Ruikun Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Haoming Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
10
|
Chemical and electrochemical water oxidation catalyzed by heteroleptic Ru(III) complexes of anionic 2,6 pyridine dicarboxylate ligand: Experimental and theoretical study. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Jiao J, Yan X, Xing S, Zhang T, Han Q. Design of a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic C(sp 3)-H Oxidation of Toluene. Inorg Chem 2022; 61:2421-2427. [PMID: 35076213 DOI: 10.1021/acs.inorgchem.1c03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A powerful and promising route for developing novel photocatalysts for light-driven toluene oxidation in water under mild conditions is presented. Herein, a novel polyoxometalate-based metal-organic framework (POMOF), {Co4W22-DPNDI}, is prepared by incorporating the unusual Co4-sandwiched POM anion [Co4(μ-OH)2(SiW11O39)2]10- ({Co4W22}) and the photoactive organic bridging link N,N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI) into a framework. {Co4W22} is a good candidate for photocatalytic water oxidation. DPNDI is easily excited to form the radical species DPNDI* in the presence of an electron donor, which is beneficial for activation of the inert O2. Anion···π interactions and covalent bonds between {Co4W22} and DPNDI facilitate electron-hole separation and electron transfer. {Co4W22-DPNDI} displays high catalytic activity for the activation of the C(sp3)-H bond of toluene using light as a driving force and inexpensive water as an oxygen source under mild conditions. In particular, the yield and selectivity are improved by replacing oxygen with water, which may be ascribed to the release of protons during the water oxidation process that facilitate the generation of •OH.
Collapse
Affiliation(s)
- Jiachen Jiao
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiaomei Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Songzhu Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
12
|
Ikeda K, Yoshizawa K, Shiota Y. Theoretical Investigation into Selective Benzene Hydroxylation by Ruthenium-Substituted Keggin-Type Polyoxometalates. Inorg Chem 2021; 61:10-14. [PMID: 34890508 DOI: 10.1021/acs.inorgchem.1c02605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzene hydroxylation catalyzed by ruthenium-substituted Keggin-type polyoxometalates [RuV(O)XW11O39]n- (RuVOX; X = Al, Ga, Si, Ge, P, As, S; heteroatoms; 3 ≤ n ≤ 6) is investigated using the density functional theory approach. As a possible side reaction, the water oxidation reaction is also considered. We found that the rate-determining step for water oxidation by RuVOX requires a higher activation free energy than the benzene hydroxylation reaction, suggesting that all of the RuVOX catalysts show high chemoselectivity toward benzene hydroxylation. Additionally, the heteroatom effect in benzene hydroxylation by RuVOX is discussed. The replacement of Si by X induces changes in the bond length of μ4O-X, resulting in a change in the activation free energy for benzene hydroxylation by RuVOX. Consequentially, RuVOS is expected to be the most effective catalyst among the (RuVOX) catalysts for the benzene hydroxylation reaction.
Collapse
Affiliation(s)
- Kei Ikeda
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Chen G, Chen ZW, Wang YM, He P, Liu C, Tong HX, Yi XY. Efficient Electrochemical Water Oxidation Mediated by Pyridylpyrrole-Carboxylate Ruthenium Complexes. Inorg Chem 2021; 60:15627-15634. [PMID: 34613720 DOI: 10.1021/acs.inorgchem.1c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spurred by the rapid growth of Ru-based complexes as molecular water oxidation catalysts (WOCs), we propose novel ruthenium(II) complexes bearing pyridylpyrrole-carboxylate (H2ppc) ligands as members of the WOC family. The structure of these complexes has 4-picoline (pic)/dimethyl sulfoxide (DMSO) in [Ru(ppc)(pic)2(dmso)] and pic/pic in [Ru(ppc)(pic)3] as axial ligands. Another ppc2- ligand and one pic ligand are located at the equatorial positions. [Ru(ppc)(pic)2(dmso)] behaves as a WOC as determined by electrochemical measurement and has an ultrahigh electrocatalytic current density of 8.17 mA cm-2 at 1.55 V (vs NHE) with a low onset potential of 0.352 V (vs NHE), a turnover number of 241, a turnover frequency of 203.39 s-1, and kcat of 16.34 s-1 under neutral conditions. The H2O/pic exchange of the complexes accompanied by oxidation of a ruthenium center is the initial step in the catalytic cycle. The cyclic voltametric measurements of [Ru(ppc)(pic)2(dmso)] at various scan rates, Pourbaix diagrams (plots of E vs pH), and kinetic studies suggested a water nucleophilic attack mechanism. HPO42- in a phosphate buffer solution is invoked in water oxidation as the proton acceptor.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ze-Wen Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuan-Mei Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
14
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
15
|
|
16
|
Zhang XP, Wang HY, Zheng H, Zhang W, Cao R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63681-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
18
|
Chen G, Fan T, Liu B, Xue M, Wei JJ, Kang SR, Tong HX, Yi XY. A Ru diphosphonato complex with a metal-metal bond for water oxidation. Dalton Trans 2021; 50:2018-2022. [PMID: 33554978 DOI: 10.1039/d0dt04150e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike [Ru2(μ-O2CCH3)4], the structurally analogous water-soluble RuII,III2 diphosphonato complex K3[Ru2(hedp)2(H2O)2] (K3·1) is only involved in stoichiometric water oxidation with a maximum 67% O2 yield under CAN/HNO3 solution (pH 1.0) for 2.5 h. The water oxidation mechanism and intermediate products were ascertained by UV-vis, ESI-MS and DFT calculation.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Meng Xue
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jing-Jing Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shi-Rui Kang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
19
|
Easy Ligand Activation in the Coordination Sphere of Ru inside the [PW 11O 39] 7- Backbone. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25081859. [PMID: 32316614 PMCID: PMC7221517 DOI: 10.3390/molecules25081859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
Irradiation of the Keggin-type [PW11O39{Ru(NO)}]4− (Ru-NO) polyoxometalate in CH3CN results in rapid NO ligand elimination with the formation of [PW11O39{RuIII(CH3CN)}]4− (Ru-CH3CN). This complex offers an easy entry into the Ru-based chemistry of the {PW11Ru} complex. Attempts to substitute N3− for CH3CN in the presence of an NaN3 excess lead a variety of products: (i) [PW11O39{RuIII(N3)}]4− (Ru-N3); (ii) [PW11O39{RuIII(N4HC-CH3)}]4− (Ru-Tz) as a click-reaction product; and (iii) [PW11O39{RuII(N2)}]5− (Ru-N2). UV-VIS, CV, and HR-ESI-MS techniques were used for the reaction monitoring and characterization of the products.
Collapse
|
20
|
Lu C, Fang R, Chen X. Single-Atom Catalytic Materials for Advanced Battery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906548. [PMID: 32162742 DOI: 10.1002/adma.201906548] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Advanced battery systems with high energy density have attracted enormous research enthusiasm with potential for portable electronics, electrical vehicles, and grid-scale systems. To enhance the performance of conversion-type batteries, various catalytic materials are developed, including metals and transition-metal dichalcogenides (TMDs). Metals are highly conductive with catalytic effects, but bulk structures with low surface area result in low atom utilization, and high chemical reactivity induces unfavorable dendrite effects. TMDs present chemical adsorption with active species and catalytic activity promotes conversion processes, suppressing shuttle effect and improving energy density. But they suffer from inferior conductivity compared with metal, and limited sites mainly concentrate on edges and defects. Single-atom materials with atomic sizes, good conductivity, and individual sites are promising candidates for advanced batteries because of a large atom utilization, unsaturated coordination, and unique electronic structure. Single-atom sites with high activity chemically trap intermediates to suppress shuttle effects and facilitate electron transfer and redox reactions for achieving high capacity, rate capability, and conversion efficiency. Herein, single-atom catalytic electrodes design for advanced battery systems is addressed. Major challenges and promising strategies concerning electrochemical reactions, theoretical model, and in situ characterization are discussed to shed light on future research of single-atom material-based energy systems.
Collapse
Affiliation(s)
- Chao Lu
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - Ruyue Fang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
21
|
Yang QQ, Jiang X, Yang B, Wang Y, Tung CH, Wu LZ. Amphiphilic Oxo-Bridged Ruthenium "Green Dimer" for Water Oxidation. iScience 2020; 23:100969. [PMID: 32200095 PMCID: PMC7090326 DOI: 10.1016/j.isci.2020.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 11/24/2022] Open
Abstract
In 1982, an oxo-bridged dinuclear ruthenium(III) complex, known as “blue dimer,” was discovered to be active for water oxidation. In this work, a new amphiphilic ruthenium “green dimer” 2, obtained from an amphiphilic mononuclear Ru(bda) (N-OTEG) (L1) (1; N-OTEG = 4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-pyridine; L1 = vinylpyridine) is reported. An array of mechanistic studies identifies “green dimer” 2 as a mixed valence of RuII-O-RuIII oxo-bridged structure. Bearing the same bda2- and amphiphilic axial ligands, monomer 1 and green dimer 2 can be reversibly converted by ascorbic acid and oxygen, respectively, in aqueous solution. More importantly, the oxo-bridged “green dimer” 2 was found to take water nucleophilic attack for oxygen evolution, in contrast to monomer 1 via radical coupling pathway for O-O bond formation. This is the first report of an amphiphilic oxo-bridged catalyst, which possesses a new oxygen evolution pathway of Ru-bda catalysts. Green dimer (RuII-O-RuIII), referring to “blue dimer” of RuIII-O-RuIII, is disclosed The first amphiphilic μ-oxido-bridged catalyst is reported active for water oxidation The oxo-bridged “green dimer” 2 takes water nucleophilic attack for O-O bond formation This is the first Ru-bda catalyst, which possesses a new oxygen evolution pathway
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
22
|
Amtawong J, Balcells D, Wilcoxen J, Handford RC, Biggins N, Nguyen AI, Britt RD, Tilley TD. Isolation and Study of Ruthenium-Cobalt Oxo Cubanes Bearing a High-Valent, Terminal Ru V-Oxo with Significant Oxyl Radical Character. J Am Chem Soc 2019; 141:19859-19869. [PMID: 31697896 DOI: 10.1021/jacs.9b10320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High-valent RuV-oxo intermediates have long been proposed in catalytic oxidation chemistry, but investigations into their electronic and chemical properties have been limited due to their reactive nature and rarity. The incorporation of Ru into the [Co3O4] subcluster via the single-step assembly reaction of CoII(OAc)2(H2O)4 (OAc = acetate), perruthenate (RuO4-), and pyridine (py) yielded an unprecedented Ru(O)Co3(μ3-O)4(OAc)4(py)3 cubane featuring an isolable, yet reactive, RuV-oxo moiety. EPR, ENDOR, and DFT studies reveal a valence-localized [RuV(S = 1/2)CoIII3(S = 0)O4] configuration and non-negligible covalency in the cubane core. Significant oxyl radical character in the RuV-oxo unit is experimentally demonstrated by radical coupling reactions between the oxo cubane and both 2,4,6-tri-tert-butylphenoxyl and trityl radicals. The oxo cubane oxidizes organic substrates and, notably, reacts with water to form an isolable μ-oxo bis-cubane complex [(py)3(OAc)4Co3(μ3-O)4Ru]-O-[RuCo3(μ3-O)4(OAc)4(py)3]. Redox activity of the RuV-oxo fragment is easily tuned by the electron-donating ability of the distal pyridyl ligand set at the Co sites demonstrating strong electronic communication throughout the entire cubane cluster. Natural bond orbital calculations reveal cooperative orbital interactions of the [Co3O4] unit in supporting the RuV-oxo moiety via a strong π-electron donation.
Collapse
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern, 0315 Oslo , Norway
| | - Jarett Wilcoxen
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Rex C Handford
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - Naomi Biggins
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - Andy I Nguyen
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - T Don Tilley
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
23
|
Su XF, Yan LK, Su ZM. Theoretical Insight into the Performance of Mn II/III-Monosubstituted Heteropolytungstates as Water Oxidation Catalysts. Inorg Chem 2019; 58:15751-15757. [PMID: 31710211 DOI: 10.1021/acs.inorgchem.9b01806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of MnII/III-monosubstituted heteropolytungstates [MnIII(H2O)GeW11O39]5- ([GT-MnIII-OH2]5-, where GT = GeW11O39) and [MnII(H2O)GeW11O39]6- ([GT-MnII-OH2]6-) as water oxidation catalysts at pH 9 was explored using density functional theory calculations. The counterion effect was fully considered, in which five and six Na+ ions were included in the calculations for water oxidation catalyzed by [GT-MnIII-OH2]5- and [GT-MnII-OH2]6-, respectively. The process of water oxidation catalysis was divided into three elemental stages: (i) oxidative activation, (ii) O-O bond formation, and (iii) O2 evolution. In the oxidative activation stage, two electrons and two protons are removed from [Na5-GT-MnIII-OH2] and three electrons and two protons are removed from [Na6-GT-MnII-OH2]. Therefore, the MnIV-O• species [Na5-GT-MnIV-O•] is obtained. Two mechanisms, (i) water nucleophilic attack and (ii) oxo-oxo coupling, were demonstrated to be competitive in O-O bond formation triggered from [Na5-GT-MnIV-O•]. In the last stage, the O2 molecule could be readily evolved from the peroxo or dinuclear species and the catalyst returns to the ground state after the coordination of a water molecule(s).
Collapse
Affiliation(s)
- Xiao-Fang Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Li-Kai Yan
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Zhong-Min Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| |
Collapse
|
24
|
Mukhacheva AA, Shmakova AA, Volchek VV, Romanova TE, Benassi E, Gushchin AL, Yanshole V, Sheven DG, Kompankov NB, Abramov PA, Sokolov MN. Reactions of [Ru(NO)Cl 5] 2- with pseudotrilacunary {XW 9O 33} 9- (X = As III, Sb III) anions. Dalton Trans 2019; 48:15989-15999. [PMID: 31595900 DOI: 10.1039/c9dt03328a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of [Ru(NO)Cl5]2- with pseudotrivacant B-α-[XW9O33]9- (X = AsIII, SbIII) at 160 °C result in the rearrangement of polyoxometalate backbones into {XM18} structures. In the case of arsenic, oxidation of AsIII to AsV takes place with the formation of a mixture of plenary and monosubstituted Dawson [As2W18O62]6- and [As2W17Ru(NO)O61]7- anions, of which the latter was isolated as Me2NH2+ (DMA-1a and DMA-1b) and Bu4N+ (Bu4N-1) salts and fully characterized. Both α1 and α2 isomers of [As2W17Ru(NO)O61]7- were present in the reaction mixture; pure [α2-As2W17Ru(NO)O61]7- was isolated as the Bu4N+ salt. In the case of antimony, [SbW9O33]9- is converted into a mixture of [SbW18O60]9- and [SbW17{Ru(NO)}O59]10-. The formation of trisubstituted [SbW15{Ru(NO)}3O57]12- as a minor byproduct was detected by HPLC-ICP-AES. The monosubstituted [SbW17{Ru(NO)}O59]10- anion was isolated as DMAH+ (DMA-2) and mixed inorganic cation (CsKNa-2) salts and characterized by XRD, HPLC-ICP-AES, EA and TGA techniques. X-ray analysis shows the presence of the {Ru(NO)}-group in the 6-membered ("equatorial") belt of the Sb-free hemisphere. The experimental findings were confirmed and interpreted by means of quantum chemical calculations.
Collapse
Affiliation(s)
- Anna A Mukhacheva
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| | - Alexandra A Shmakova
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Tamara E Romanova
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Enrico Benassi
- Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia. and Lanzhou Institute of Chemical Physics, CAS, 10 Tianshui Middle Rd, Chengguan Qu, Lanzhou Shi, Gansu Sheng 730000, People's Republic of China
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| | - Vadim Yanshole
- Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia. and International Tomography Center, Institutskaya str. 3a, 630090, Novosibirsk, Russia
| | - Dmitri G Sheven
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Nikolay B Kompankov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and South Ural State University, Chelyabinsk, 454080, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| |
Collapse
|
25
|
The syntheses and structures of a series of polyoxometalate-based metal-organic arsonates constructed from a dual-ligand strategy with organic arsenic acids and N-donor ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhang Q, Guan J. Mono-/Multinuclear Water Oxidation Catalysts. CHEMSUSCHEM 2019; 12:3209-3235. [PMID: 31077565 DOI: 10.1002/cssc.201900704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Water splitting, in which water molecules can be transformed into hydrogen and oxygen, is an appealing energy conversion and transformation strategy to address the environmental and energy crisis. The oxygen evolution reaction (OER) is dynamically slow, which limits energy conversion efficiency during the water-splitting process and requires high-efficiency water oxidation catalysts (WOCs) to overcome the OER energy barrier. It is generally accepted that multinuclear WOCs possess superior OER performances, as demonstrated by the CaMn4 O5 cluster in photosystem II (PSII), which can catalyze the OER efficiently with a very low overpotential. Inspired by the CaMn4 O5 cluster in PSII, some multinuclear WOCs were synthesized that could catalyze water oxidation. In addition, some mononuclear molecular WOCs also show high water oxidation activity. However, it cannot be excluded that the high activity arises from the formation of dimeric species. Recently, some mononuclear heterogeneous WOCs showed a high water oxidation activity, which testified that mononuclear active sites with suitable coordination surroundings could also catalyze water oxidation efficiently. This Review focuses on recent progress in the development of mono-/multinuclear homo- and heterogeneous catalysts for water oxidation. The active sites and possible catalytic mechanisms for water oxidation on the mono-/multinuclear WOCs are provided.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jingqi Guan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
27
|
Zahran ZN, Tsubonouchi Y, Mohamed EA, Yagi M. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis. CHEMSUSCHEM 2019; 12:1775-1793. [PMID: 30793506 DOI: 10.1002/cssc.201802795] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Catalytic water oxidation represents a bottleneck for developing artificial photosynthetic systems that store solar energy as renewable fuels. A variety of molecular water oxidation catalysts (WOCs) have been reported over the last two decades. In view of their applications in artificial photosynthesis devices, it is essential to immobilize molecular catalysts onto the surfaces of conducting/semiconducting supports for fabricating efficient and stable water oxidation anodes/photoanodes. Molecular WOC-based anodes are essential for developing photovoltaic artificial photosynthesis devices and, moreover, the performance of molecular WOC on anodes will provide important insight into designing extended molecular WOC-based photoanodes for photoelectrochemical (PEC) water oxidation. This Review concerns recent progress in the development of molecular WOC-based anodes over the last two decades and looks at the prospects for using such anodes in artificial photosynthesis.
Collapse
Affiliation(s)
- Zaki N Zahran
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
- Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yuta Tsubonouchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Eman A Mohamed
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| |
Collapse
|
28
|
Dong K, Ma P, Wu H, Wu Y, Niu J, Wang J. Cobalt- and Nickel-Containing Germanotungstates Based on Open Wells–Dawson Structure: Synthesis and Characterization of Tetrameric Anion. Inorg Chem 2019; 58:6000-6007. [DOI: 10.1021/acs.inorgchem.9b00315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaili Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Hechen Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yuke Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
29
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
30
|
Recent advances in photoinduced catalysis for water splitting and environmental applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Das S, Das K, Kübel C, Roy S. Light Driven Water Oxidation Coupled With C-N Coupling Reaction Using a Hybrid Cu-PW12
O40
Based Soft-Oxometalate. ChemistrySelect 2019. [DOI: 10.1002/slct.201803949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Santu Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Kousik Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Christian Kübel
- Institute of Nanotechnology INT) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Soumyajit Roy
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| |
Collapse
|
32
|
Fukuzumi S, Lee YM, Nam W. Kinetics and mechanisms of catalytic water oxidation. Dalton Trans 2019; 48:779-798. [PMID: 30560964 DOI: 10.1039/c8dt04341h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | |
Collapse
|
33
|
Liu Y, Han Y, Zhang Z, Zhang W, Lai W, Wang Y, Cao R. Low overpotential water oxidation at neutral pH catalyzed by a copper(ii) porphyrin. Chem Sci 2019; 10:2613-2622. [PMID: 30996977 PMCID: PMC6419937 DOI: 10.1039/c8sc04529a] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Low-overpotential water oxidation catalyzed by copper(ii) porphyrin to produce O2 in neutral aqueous solution and H2O2 in acidic solution.
Low overpotential water oxidation under mild conditions is required for new energy conversion technologies with potential application prospects. Extensive studies on molecular catalysis have been performed to gain fundamental knowledge for the rational designing of cheap, efficient and robust catalysts. We herein report a water-soluble CuII complex of tetrakis(4-N-methylpyridyl)porphyrin (1), which catalyzes the oxygen evolution reaction (OER) in neutral aqueous solutions with small overpotentials: the onset potential of the catalytic water oxidation wave measured at current density j = 0.10 mA cm–2 is 1.13 V versus a normal hydrogen electrode (NHE), which corresponds to an onset overpotential of 310 mV. Constant potential electrolysis of 1 at neutral pH and at 1.30 V versus NHE displayed a substantial and stable current for O2 evolution with a faradaic efficiency of >93%. More importantly, in addition to the 4e water oxidation to O2 at neutral pH, 1 can catalyze the 2e water oxidation to H2O2 in acidic solutions. The produced H2O2 is detected by rotating ring–disk electrode measurements and by the sodium iodide method after bulk electrolysis at pH 3.0. This work presents an efficient and robust Cu-based catalyst for water oxidation in both neutral and acidic solutions. The observation of H2O2 during water oxidation catalysis is rare and will provide new insights into the water oxidation mechanism.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yongzhen Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zongyao Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Wenzhen Lai
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China.,Institute of Drug Discovery Technology , Ningbo University , Ningbo 315211 , China
| | - Rui Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China . .,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
34
|
Zhai XL, Liu J, Hu LY, Bao JC, Lan YQ. Polyoxometalate-Decorated g-C3
N4
-Wrapping Snowflake-Like CdS Nanocrystal for Enhanced Photocatalytic Hydrogen Evolution. Chemistry 2018; 24:15930-15936. [DOI: 10.1002/chem.201803621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Xue-Li Zhai
- Jiangsu Collaborative Innovation Center, of Biomedical Functional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Center, of Biomedical Functional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Ling-Yun Hu
- Jiangsu Collaborative Innovation Center, of Biomedical Functional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Jian-Chun Bao
- Jiangsu Collaborative Innovation Center, of Biomedical Functional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Center, of Biomedical Functional Materials; School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| |
Collapse
|
35
|
Matias TA, Parussulo AL, Benavides PA, Guimarães RR, Dourado AH, Nakamura M, de Torresi SIC, Bertotti M, Araki K. Polymeric binuclear ruthenium complex as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Kärkäs MD, Li YY, Siegbahn PEM, Liao RZ, Åkermark B. Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorg Chem 2018; 57:10881-10895. [DOI: 10.1021/acs.inorgchem.8b01527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Shing KP, Cao B, Liu Y, Lee HK, Li MD, Phillips DL, Chang XY, Che CM. Arylruthenium(III) Porphyrin-Catalyzed C-H Oxidation and Epoxidation at Room Temperature and [Ru V(Por)(O)(Ph)] Intermediate by Spectroscopic Analysis and Density Functional Theory Calculations. J Am Chem Soc 2018; 140:7032-7042. [PMID: 29781605 DOI: 10.1021/jacs.8b04470] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of highly active and selective metal catalysts for efficient oxidation of hydrocarbons and identification of the reactive intermediates in the oxidation catalysis are long-standing challenges. In the rapid hydrocarbon oxidation catalyzed by ruthenium(IV) and -(III) porphyrins, the putative Ru(V)-oxo intermediates remain elusive. Herein we report that arylruthenium(III) porphyrins are highly active catalysts for hydrocarbon oxidation. Using catalyst [RuIII(TDCPP)(Ph)(OEt2)] (H2TDCPP = 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin), the oxidation of C-H bonds of various hydrocarbons with oxidant m-CPBA at room temperature gave alcohols/ketones in up to 99% yield within 1 h; use of [ nBu4N]IO4 as a mild alternative oxidant avoided formation of lactone from cyclic ketone in C-H oxidation, and the catalytic epoxidation with up to 99% yield and high selectivity (no aldehydes as side product) was accomplished within 5 min. UV-vis, electrospray ionization-mass spectrometry, resonance Raman, electron paramagnetic resonance, and kinetic measurements and density functional theory calculations lend evidence for the formation of Ru(V)-oxo intermediate [RuV(TDCPP)(O)(Ph)].
Collapse
Affiliation(s)
- Ka-Pan Shing
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Bei Cao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Yungen Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Hung Kay Lee
- Department of Chemistry , The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong , China
| | - Ming-De Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Xiao-Yong Chang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 , China
| |
Collapse
|
38
|
Photosynthetic water splitting by the Mn4Ca2+OX catalyst of photosystem II: its structure, robustness and mechanism. Q Rev Biophys 2018; 50:e13. [PMID: 29233225 DOI: 10.1017/s0033583517000105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biological energy cycle of our planet is driven by photosynthesis whereby sunlight is absorbed by chlorophyll and other accessory pigments. The excitation energy is then efficiently transferred to a reaction centre where charge separation occurs in a few picoseconds. In the case of photosystem II (PSII), the energy of the charge transfer state is used to split water into oxygen and reducing equivalents. This is accomplished by the relatively low energy content of four photons of visible light. PSII is a large multi-subunit membrane protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Four high energy electrons, together with four protons (4H+), are used to reduce plastoquinone (PQ), the terminal electron acceptor of PSII, to plastoquinol (PQH2). PQH2 passes its reducing equivalents to an electron transfer chain which feeds into photosystem I (PSI) where they gain additional reducing potential from a second light reaction which is necessary to drive CO2 reduction. The catalytic centre of PSII consists of a cluster of four Mn ions and a Ca2+ linked by oxo bonds. In addition, there are seven amino acid ligands. In this Article, I discuss the structure of this metal cluster, its stability and the probability that an acid-base (nucleophilic-electrophilic) mechanism catalyses the water splitting reaction on the surface of the metal-cluster. Evidence for this mechanism is presented from studies on water splitting catalysts consisting of organo-complexes of ruthenium and manganese and also by comparison with the enzymology of carbon monoxide dehydrogenase (CODH). Finally the relevance of our understanding of PSII is discussed in terms of artificial photosynthesis with emphasis on inorganic water splitting catalysts as oxygen generating photoelectrodes.
Collapse
|
39
|
Li J, Wang L, You W, Liu M, Zhang L, Sang X. Catalytic effects of [Ag(H2O)(H3PW11O39)]3− on a TiO2 anode for water oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62973-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
40
|
Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Wan R, Xu Q, Han M, Ma P, Zhang C, Niu J, Wang J. A Novel Ruthenium-Decorating Polyoxomolybdate Cs₃Na₆H[Mo VI14Ru IV₂O 50(OH)₂]·24H₂O: An Active Heterogeneous Oxidation Catalyst for Alcohols. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E178. [PMID: 29360802 PMCID: PMC5848875 DOI: 10.3390/ma11020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 11/24/2022]
Abstract
The first example of wholly inorganic ruthenium-containing polyoxomolybdate Cs₃Na₆H[MoVI14RuIV₂O50(OH)₂]·24H₂O (1) was isolated and systematically characterized by element analysis, infrared spectroscopy (IR), thermogravimetric analyses (TGA), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and single-crystal X-ray diffraction. Compound 1 is composed of an unprecedented {Mo14}-type isopolymolybdate with a di-ruthenium core precisely encapsulated in its center, exhibiting a three-tiered ladder-like structure. The title compound can act as an efficient heterogeneous catalyst in the transformation of 1-phenylethanol to acetophenone. This catalyst is also capable of being recycled and reused for at least ten cycles with its activity being retained under the optimal conditions.
Collapse
Affiliation(s)
- Rong Wan
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Mengdan Han
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
42
|
Liu B, Glass EN, Wang RP, Cui YT, Harada Y, Huang DJ, Schuppler S, Hill CL, de Groot FMF. Cobalt-to-vanadium charge transfer in polyoxometalate water oxidation catalysts revealed by 2p3d resonant inelastic X-ray scattering. Phys Chem Chem Phys 2018; 20:4554-4562. [PMID: 29376165 DOI: 10.1039/c7cp06786k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
2p3d RIXS spectra reveal electronic structures ofCo4V2WOC, which offers insights into its enhanced catalytic activity thanCo4P2WOC.
Collapse
Affiliation(s)
- Boyang Liu
- Inorganic Chemistry & Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- The Netherlands
| | | | - Ru-Pan Wang
- Inorganic Chemistry & Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- The Netherlands
| | - Yi-Tao Cui
- Institute for Solid State Physics
- The University of Tokyo
- Chiba 277-8581
- Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics
- The University of Tokyo
- Chiba 277-8581
- Japan
| | - Di-Jing Huang
- National Synchrotron Radiation Research Center
- Hsinchu 30076
- Taiwan
| | - Stefan Schuppler
- Institut fuer Festkorperphysik
- Karlsruhe Institute of Technology
- Karlsruhe 76021
- Germany
| | | | - Frank M. F. de Groot
- Inorganic Chemistry & Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- The Netherlands
| |
Collapse
|
43
|
Lebedev D, Pineda-Galvan Y, Tokimaru Y, Fedorov A, Kaeffer N, Copéret C, Pushkar Y. The Key Ru V=O Intermediate of Site-Isolated Mononuclear Water Oxidation Catalyst Detected by in Situ X-ray Absorption Spectroscopy. J Am Chem Soc 2017; 140:451-458. [PMID: 29219306 DOI: 10.1021/jacs.7b11388] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improvement of the oxygen evolution reaction (OER) is a challenging step toward the development of sustainable energy technologies. Enhancing the OER rate and efficiency relies on understanding the water oxidation mechanism, which entails the characterization of the reaction intermediates. Very active Ru-bda type (bda is 2,2'-bipyridine-6,6'-dicarboxylate) molecular OER catalysts are proposed to operate via a transient 7-coordinate RuV═O intermediate, which so far has never been detected due to its high reactivity. Here we prepare and characterize a well-defined supported Ru(bda) catalyst on porous indium tin oxide (ITO) electrode. Site isolation of the catalyst molecules on the electrode surface allows trapping of the key 7-coordinate RuV═O intermediate at potentials above 1.34 V vs NHE at pH 1, which is characterized by electron paramagnetic resonance and in situ X-ray absorption spectroscopies. The in situ extended X-ray absorption fine structure analysis shows a Ru═O bond distance of 1.75 ± 0.02 Å, consistent with computational results. Electrochemical studies and density functional theory calculations suggest that the water nucleophilic attack on the surface-bound RuV═O intermediate (O-O bond formation) is the rate limiting step for OER catalysis at low pH.
Collapse
Affiliation(s)
- Dmitry Lebedev
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yuliana Pineda-Galvan
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| | - Yuki Tokimaru
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Nicolas Kaeffer
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yulia Pushkar
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| |
Collapse
|
44
|
Hoffman AS, Sokaras D, Zhang S, Debefve LM, Fang C, Gallo A, Kroll T, Dixon DA, Bare SR, Gates BC. High‐Energy‐Resolution X‐ray Absorption Spectroscopy for Identification of Reactive Surface Species on Supported Single‐Site Iridium Catalysts. Chemistry 2017; 23:14760-14768. [DOI: 10.1002/chem.201701459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Adam S. Hoffman
- Department of Chemical Engineering University of California, Davis Davis CA 95616 USA
- Present address: Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Shengjie Zhang
- Department of Chemistry The University of Alabama Tuscaloosa AL 35487 USA
| | - Louise M. Debefve
- Department of Chemical Engineering University of California, Davis Davis CA 95616 USA
| | - Chia‐Yu Fang
- Department of Chemical Engineering University of California, Davis Davis CA 95616 USA
- Department of Materials Science and Engineering University of California, Davis Davis CA 95616 USA
| | - Alessandro Gallo
- Department of Chemical Engineering Stanford University Stanford CA 94305 USA
- SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - David A. Dixon
- Department of Chemistry The University of Alabama Tuscaloosa AL 35487 USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Bruce C. Gates
- Department of Chemical Engineering University of California, Davis Davis CA 95616 USA
| |
Collapse
|
45
|
Bazzan I, Volpe A, Dolbecq A, Natali M, Sartorel A, Mialane P, Bonchio M. Cobalt based water oxidation catalysis with photogenerated Ru(bpy) 3 3+ : Different kinetics and competent species starting from a molecular polyoxometalate and metal oxide nanoparticles capped with a bisphosphonate alendronate pendant. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Draksharapu A, Rasheed W, Klein JEMN, Que L. Facile and Reversible Formation of Iron(III)–Oxo–Cerium(IV) Adducts from Nonheme Oxoiron(IV) Complexes and Cerium(III). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Johannes E. M. N. Klein
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
47
|
Draksharapu A, Rasheed W, Klein JEMN, Que L. Facile and Reversible Formation of Iron(III)-Oxo-Cerium(IV) Adducts from Nonheme Oxoiron(IV) Complexes and Cerium(III). Angew Chem Int Ed Engl 2017; 56:9091-9095. [PMID: 28598024 DOI: 10.1002/anie.201704322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 11/09/2022]
Abstract
Ceric ammonium nitrate (CAN) or CeIV (NH4 )2 (NO3 )6 is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)FeIII -O-CeIV (OH2 )(NO3 )4 ]+ (3), a complex obtained from the reaction of [(N4Py)FeII (NCMe)]2+ with 2 equiv CAN or [(N4Py)FeIV =O]2+ (2) with CeIII (NO3 )3 in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the FeIV and CeIV centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 FeIV in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that FeIV =O complexes may avail of reaction pathways involving multiple spin states having little or no barrier.
Collapse
Affiliation(s)
- Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
48
|
Soriano-López J, Musaev DG, Hill CL, Galán-Mascarós JR, Carbó JJ, Poblet JM. Tetracobalt-polyoxometalate catalysts for water oxidation: Key mechanistic details. J Catal 2017. [DOI: 10.1016/j.jcat.2017.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Sharma N, Jung J, Lee YM, Seo MS, Nam W, Fukuzumi S. Multi-Electron Oxidation of Anthracene Derivatives by Nonheme Manganese(IV)-Oxo Complexes. Chemistry 2017; 23:7125-7131. [DOI: 10.1002/chem.201700666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Namita Sharma
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering, SENTAN; Japan Science and Technology Agency (JST); Meijo University; Nagoya Aichi 468-8502 Japan
| |
Collapse
|
50
|
Pattanayak S, Chowdhury DR, Garai B, Singh KK, Paul A, Dhar BB, Gupta SS. Electrochemical Formation of Fe V (O) and Mechanism of Its Reaction with Water During O-O Bond Formation. Chemistry 2017; 23:3414-3424. [PMID: 28012231 DOI: 10.1002/chem.201605061] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 12/21/2022]
Abstract
A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Debarati Roy Chowdhury
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP, 462066, India
| | - Bikash Garai
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Kundan K Singh
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune, 411008, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, MP, 462066, India
| | - Basab B Dhar
- Department of Chemistry, Shiv Nadar University, Goutam Buddha Nagar, UP, 201314, India
| | - Sayam Sen Gupta
- Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|