1
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
2
|
Yan Q, Shi S, Ge Y, Wan S, Li M, Li M. Nanoparticles of Cerium-Doped Zeolitic Imidazolate Framework-8 Promote Soft Tissue Integration by Reprogramming the Metabolic Pathways of Macrophages. ACS Biomater Sci Eng 2023; 9:4241-4254. [PMID: 37290028 PMCID: PMC10337665 DOI: 10.1021/acsbiomaterials.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Soft tissue integration around the abutment of implants is the basis of long-term retention of implants. Macrophages are an important component involved in the repair of soft tissue due to their crucial role in improving the biological structure of connective tissues by regulating the fiber synthesis, adhesion, and contraction of gingival fibroblasts. Recent studies have illustrated that cerium-doped zeolitic imidazolate framework-8 (Ce@ZIF-8) nanoparticles (NPs) can attenuate periodontitis via both antibacterial and anti-inflammatory effects. However, the effect of Ce@ZIF-8 NPs on soft tissue integration around the abutment is unknown. Herein, we first prepared Ce@ZIF-8 NPs by a one-pot synthesis. Then, we probed the regulatory effect of Ce@ZIF-8 NPs on macrophage polarization, and further experiments were performed to study the changes of fiber synthesis as well as adhesion and contraction of fibroblasts in the M2 macrophage environment stimulated by Ce@ZIF-8 NPs. Strikingly, Ce@ZIF-8 NPs can be internalized by M1 macrophages through macropinocytosis and caveolae-mediated endocytosis in addition to phagocytosis. By catalyzing hydrogen peroxide to produce oxygen, the mitochondrial function was remedied, while hypoxia inducible factor-1α was restrained. Then, macrophages were shifted from the M1 to M2 phenotype via this metabolic reprogramming pathway, provoking soft tissue integration. These results provide innovative insights into facilitating soft tissue integration around implants.
Collapse
Affiliation(s)
- Qiqian Yan
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| | - Shanwei Shi
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| | - Yang Ge
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| | - Shuangquan Wan
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| | - Mingfei Li
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| | - Maoquan Li
- Stomatological
Hospital, School of Stomatology, Southern
Medical University, Guangzhou 510280, China
- Guangdong
Academy of Stomatology, Guangzhou 510180, China
| |
Collapse
|
3
|
Huang P, Xu J, Xie L, Gao G, Chen S, Gong Z, Lao X, Shan Z, Shi J, Zhou Z, Chen Z, Cao Y, Wang Y, Chen Z. Improving hard metal implant and soft tissue integration by modulating the “inflammatory-fibrous complex” response. Bioact Mater 2023; 20:42-52. [PMID: 35633873 PMCID: PMC9127122 DOI: 10.1016/j.bioactmat.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/29/2022] Open
|
4
|
Chen D, Wang Y, Zhou H, Huang Z, Zhang Y, Guo CF, Zhou H. Current and Future Trends for Polymer Micro/Nanoprocessing in Industrial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200903. [PMID: 35313049 DOI: 10.1002/adma.202200903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Polymers are widely used in optical devices, electronic devices, energy-harvesting/storage devices, and sensors, owing to their low weight, excellent flexibility, and simple fabrication process. With advancements in micro/nanoprocessing techniques and more demanding application requirements, it is becoming necessary to realize high-resolution fabrication of polymers to prepare miniaturized devices. This is particularly because conventional processing technologies suffer from high thermal stress and strong adhesion/friction, which can irreversibly damage the micro/nanostructures of miniaturized devices. In addition, although the use of advanced fabrication methods to prepare high-resolution micro/nanostructures is explored, these methods are limited to laboratory research or small-batch production. This review focuses on the micro/nanoprocessing of polymeric materials and devices with high spatial precision and replication accuracy for industrial applications. Specifically, the current state-of-the-art techniques and future trends for micro/nanomolding, high-energy beam processing, and micro/nanomachining are discussed. Moreover, an overview of the fabrication and applications of various polymer-based elements and devices such as microlenses, biosensors, and transistors is provided. These techniques are expected to be widely applied for multiscale and multimaterial processing as well as for multifunction integration in next-generation integrated devices, such as photoelectric, smart, and biodegradable devices.
Collapse
Affiliation(s)
- Dan Chen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Helezi Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhigao Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huamin Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Liang X, Zhang A, Sun W, Lei J, Liu X, Tang Z, Chen H. Vascular cell behavior on glycocalyx-mimetic surfaces: Simultaneous mimicking of the chemical composition and topographical structure of the vascular endothelial glycocalyx. Colloids Surf B Biointerfaces 2022; 212:112337. [PMID: 35051794 DOI: 10.1016/j.colsurfb.2022.112337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
The endothelial glycocalyx is a carbohydrate-rich layer overlying the outermost surface of endothelial cells. It mediates intercellular interactions by specific chemical compositions (e.g., proteoglycans containing glycosaminoglycan (GAG) side chains) and micro/nanotopography. Inspired by the endothelial glycocalyx, we fabricated a series of glycocalyx-mimetic surfaces with tunable chemical compositions (GAG-like polymers with different functional units) and topographical structures (micro/nanopatterns with pillars different in size). The combination of micro/nanopatterns and GAG-like polymers was flexibly and precisely controlled by replica molding using silicon templates (Si templates) and visible light-initiated polymerization. Human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs) were suppressed on surfaces modified with polymers of 2-methacrylamido glucopyranose (MAG) but promoted on surfaces modified with polymers of sodium 4-vinyl-benzenesulfonate (SS) and copolymers of SS and MAG. Surface micro/nanopatterns showed highly complicated effects on surfaces grafted with different GAG-like polymers. Moreover, the spread of HUVSMCs was highly promoted on all flat/patterned surfaces containing sulfonate units, and the elongation effect was stronger on surfaces with smaller pillars. On all the flat/patterned surfaces modified with GAG-like polymers, the adsorption of human vascular endothelial growth factor (VEGF) and human basic fibroblast growth factor (bFGF) was improved, and the amount of VEGF and bFGF absorbed on patterned surfaces containing sulfonate units decreased with pattern dimensions. The decreasing trend of VEGF and bFGF adsorption was in accordance with HUVEC density, suggesting that glycocalyx-mimetic surfaces influence the adsorption of VEGF and bFGF and further influence the growth behavior of vascular cells.
Collapse
Affiliation(s)
- Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Zengchao Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China; Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing Industrial Square, No. 1, Jintian Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| |
Collapse
|
6
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Spiller S, Clauder F, Bellmann-Sickert K, Beck-Sickinger AG. Improvement of wound healing by the development of ECM-inspired biomaterial coatings and controlled protein release. Biol Chem 2021; 402:1271-1288. [PMID: 34392636 DOI: 10.1515/hsz-2021-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Implant design has evolved from biochemically inert substrates, minimizing cell and protein interaction, towards sophisticated bioactive substrates, modulating the host response and supporting the regeneration of the injured tissue. Important aspects to consider are the control of cell adhesion, the discrimination of bacteria and non-local cells from the desired tissue cell type, and the stimulation of implant integration and wound healing. Here, the extracellular matrix acts as a role model providing us with inspiration for sophisticated designs. Within this scope, small bioactive peptides have proven to be miscellaneously deployable for the mediation of surface, cell and matrix interactions. Combinations of adhesion ligands, proteoglycans, and modulatory proteins should guide multiple aspects of the regeneration process and cooperativity between the different extracellular matrix components, which bears the chance to maximize the therapeutic efficiency and simultaneously lower the doses. Hence, efforts to include multiple of these factors in biomaterial design are well worth. In the following, multifunctional implant coatings based on bioactive peptides are reviewed and concepts to implement strong surface anchoring for stable cell adhesion and a dynamic delivery of modulator proteins are discussed.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Franziska Clauder
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
8
|
Yu X, Sun M, He J, Wang H, Yu M, Dong L. Accelerated Neurite Outgrowth and Neurogenesis of PC12 Cells on an Fe-doped TiO 2 Nanorod Film Triggered by Visible Light. ACS Biomater Sci Eng 2021; 7:577-585. [PMID: 33443408 DOI: 10.1021/acsbiomaterials.0c01742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acceleration of neurite outgrowth and neuronal differentiation of neural cells are critical for effective neural tissue regeneration. In addition to biochemical cues, biomaterials have proven to be a valuable tool for engineering neural cellular physiological processes. However, strategies with convenient potential spatiotemporal control are still desirable. We here design a novel Fe-doped TiO2 nanorod film using hemoglobin as the Fe source to endow it with visible-light-responsive regulated surface hydroxyl groups (-OH), which was demonstrated as the central role in mediating cell-material interactions in our previous study. The acceleration of neurite outgrowth and neuronal differentiation of PC12 cells might be attributed to the upregulated distinct terminal hydroxyl groups triggered by visible light. We also demonstrate that the actin cytoskeletal system plays a pivotal role during these processes, approved by the inhibition experiment results. This study therefore sheds light on the regulation of neurite outgrowth and neuronal differentiation of neural cells using a convenient spatiotemporal controllable strategy.
Collapse
Affiliation(s)
- Xiaowen Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Mouyuan Sun
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Jianxiang He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Lingqing Dong
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
9
|
Sun W, Jin S, Zhang A, Huang J, Li Y, Liu X, Chen H. Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition vs. topographic patterning. J Mater Chem B 2020; 8:9151-9161. [PMID: 32945818 DOI: 10.1039/d0tb01000f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Heparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces. However, besides surface structural units, topographic patterning is also an important contributor to the biological activity of the surfaces modified with heparin-like polymers. In this work, both surface structural units and topographic patterning were taken into account to investigate the vascular cell behaviors on the silicone surfaces. A facile method for the production of patterned bromine-containing polydimethylsiloxane surface (PDMS-Br) was developed from a one-step multicomponent thermocuring procedure and replica molding using a nanohole-arrayed silicon template. Different structural units of heparin-like polymers, i.e. homopolymer of sulfonate-containing sodium 4-vinylbenzenesulfonate (pSS), homopolymer of glyco-containing 2-(methacrylamido)glucopyranose (pMAG), and copolymers of MAG and SS (pSG), were then introduced on the flat and patterned PDMS-Br surface using visible light-induced graft polymerization. For the flat surfaces, compared with the PDMS-Br surface, pSS-grafted and pSG-grafted surfaces significantly increased cell densities of both human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs), indicating that they are "vascular cell-friendly". In contrast, the pMAG-grafted surface showed decreased cell attachment of both HUVECs and HUVSMCs, indicating that the pMAG-grafted surface is "vascular cell-resistant". Moreover, surface topographic patterning enhanced the cell responses to the corresponding flat surfaces. That is to say, surface patterning can make the "vascular cell-friendly" surface still friendly, and the "vascular cell-resistant" surface much more resistant. The combination of surface structural units and topographic patterning shows promise in the preparation of new heparin-like surfaces with improved cell compatibility that is suitable for blood-compatible biomaterials.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
10
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
11
|
Effect of Integrin Binding Peptide on Vascularization of Scaffold-Free Microtissue Spheroids. Tissue Eng Regen Med 2020; 17:595-605. [PMID: 32710228 DOI: 10.1007/s13770-020-00281-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) biomimetic models via various approaches can be used by therapeutic applications of tissue engineering. Creating an optimal vascular microenvironment in 3D model that mimics the extracellular matrix (ECM) and providing an adequate blood supply for the survival of cell transplants are major challenge that need to be overcome in tissue regeneration. However, currently available scaffolds-depended approaches fail to mimic essential functions of natural ECM. Scaffold-free microtissues (SFMs) can successfully overcome some of the major challenges caused by scaffold biomaterials such as low cell viability and high cost. METHODS Herein, we investigated the effect of soluble integrin binding peptide of arginine-glycine-aspartic acid (RGD) on vascularization of SFM spheroids of human umbilical vein endothelial cells. In vitro-fabricated microtissue spheroids were constructed and cultivated in 0 mM, 1 mM, 2 mM, and 4 mM of RGD peptide. The dimensions and viability of SFMs were measured. RESULTS Maximum dimension and cell viability observed in 2 mM RGD containing SFM. Vascular gene expression of 2 mM RGD containing SFM were higher than other groups, while 4 mM RGD containing SFM expressed minimum vascularization related genes. Immunofluorescent staining results indicating that platelet/endothelial cell adhesion molecule and vascular endothelial growth factor protein expression of 2 mM RGD containing SFM was higher compared to other groups. CONCLUSION Collectively, these findings demonstrate that SFM spheroids can be successfully vascularized in determined concentration of RGD peptide containing media. Also, soluble RGD incorporated SFMs can be used as an optimal environment for successful prevascularization strategies.
Collapse
|
12
|
He C, Li M, Zhang J, Yan B, Zhao W, Sun S, Zhao C. Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromol Biosci 2020; 20:e2000153. [PMID: 32583960 DOI: 10.1002/mabi.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Indexed: 11/10/2022]
Abstract
Excessive bilirubin in the body of patient with liver dysfunction or metabolic obstruction may cause jaundice with irreversible brain damage, and new type of adsorbent for bilirubin is under frequent investigation. Herein, graphene oxide based core @ polyethersulfone-based shell beads are fabricated by phase inversion method, amides and heparin-like polymer are introduced to functionalize the core-shell beads. The beads are successfully prepared with obvious core-shell structure, adequate thermostability and porous shell. Clotting times and protein adsorption are investigated to inspect the hemocompatibility property of the beads. The adsorption of bilirubin is systematically investigated by evaluating the effects of contacting time, initial concentration and temperature on the adsorption, which exhibits improved bilirubin adsorption amount for the beads with amides contained cores or/and shells. It is worth believing that the amides and heparin-like polymer co-functionalized core-shell beads may be utilized in the field of hemoperfusion for bilirubin adsorption.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingyuan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bingqing Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
13
|
Yang JW, Yu ZY, Cheng SJ, Chung JHY, Liu X, Wu CY, Lin SF, Chen GY. Graphene Oxide-Based Nanomaterials: An Insight into Retinal Prosthesis. Int J Mol Sci 2020; 21:E2957. [PMID: 32331417 PMCID: PMC7216005 DOI: 10.3390/ijms21082957] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objectives in developing biomedical applications of retinal prosthesis.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Zih-Yu Yu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Johnson H. Y. Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Chung-Yu Wu
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan;
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
14
|
Adak A, Das G, Khan J, Mukherjee N, Gupta V, Mallesh R, Ghosh S. Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomater Sci Eng 2020; 6:2287-2296. [PMID: 33455349 DOI: 10.1021/acsbiomaterials.9b01829] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain injury can lead to the loss of neuronal functions and connections, along with the damage of the extracellular matrix (ECM). Thus, it ultimately results in devastating long-term damage, and recovery from this damage is a challenging task. To address this issue, we have designed a sulfo-group-functionalized injectable biocompatible peptide hydrogel, which not only mimics the ECM and supports the damaged neurons but also releases a neurotrophic factor around the injured sites of the brain in the presence of the matrix metalloproteinase 9 (MMP9) enzyme. It has also been observed that the driving force of hydrogel formation is a β-sheet secondary structure and π-π stacking interactions between Phe-Phe moieties. The hydrogel is able not only to promote neurite outgrowth of PC12-derived neurons and primary neurons cultured in its presence but also to nullify the toxic effects of anti-nerve growth factor (Anti-NGF)-induced neurons. It also promotes the expression of vital neuronal markers in rat cortical primary neurons, displays substantial potential in neuroregeneration, and also promotes fast recovery of the sham injured mice brain. Increased expression of reactive astrocytes in the hippocampal dentate gyrus region of the sham injured brain clearly suggests its tremendous ability in the neural repair of the damaged brain. Thus, we can convincingly state that our hydrogel is capable of repairing brain injury by mimicking an ECM-like environment and providing neuroprotection to the damaged neurons.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
15
|
The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 2019; 47:201-209. [PMID: 31612410 DOI: 10.1007/s11033-019-05120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA), a novel type of non-coding RNA that consists of a circular loop, has been demonstrated to act as a "sponge" for microRNAs (miRNAs). However, the role of circRNAs in keloid remains unknown. In this study, we investigated circRNA expression profiles in keloid to identify potential diagnostic and therapeutic circRNAs. We performed a circRNA microarray assay to determine circRNA expression in keloid and paired normal skin tissues. Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression levels of candidate circRNAs. The most significantly over-expressed circRNA was used to predict putative miRNA targets and the binding sites of miRNAs with this circRNA. Finally, we constructed a circRNA-miRNA interaction network and carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We found 52 significantly upregulated and 24 downregulated circRNAs in keloid compared with normal skin tissue. We confirmed that hsa_circ_0057452, hsa_circ_0007482, hsa_circ_0020792, hsa_circ_0057342, and hsa_circ_0043688 were significantly upregulated in keloid tissues. Analysis of the circRNA-miRNA interaction network revealed that circRNAs could interact with miRNAs, including miRNA-29a, miRNA-23a-5p and miRNA-1976. GO and KEGG analyses indicated that these target genes were involved in biological functions and signaling pathways that may play vital roles in the pathogenesis of keloid. This study revealed that circRNAs are potentially implicated in the development of keloid and could serve as novel diagnostic and therapeutic targets.
Collapse
|
16
|
George SD, Chidangil S, Mathur D. Minireview: Laser-Induced Formation of Microbubbles-Biomedical Implications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10139-10150. [PMID: 30441906 DOI: 10.1021/acs.langmuir.8b03293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent work is summarized that shows how microbubbles may have potential utility in biomedical situations as (i) highly localized generators of intense white light in an aqueous environment, (ii) disruptors of matter in aqueous solution, (iii) essential precursors in laser-writing structures on substrates on which biological cells can be spatially aligned, and (iv) mediators in the fabrication of hierarchical nanostructures that enhance signals in biological Raman spectroscopy. Indeed, microbubbles generated upon laser irradiation of surfaces have many more ramifications than originally thought, with implications in the laser modification of surfaces producing either hydrophilicity or hydrophobicity. Many more possibilities remain to be explored and exploited.
Collapse
|
17
|
Abstract
Many studies have found alterations in the positioning and morphology of intracellular organelles under different experimental conditions. Although the precise quantification of these changes is challenging, it is strongly facilitated in single cells that are seeded on micropatterned substrates. Indeed, the controlled microenvironment of the cell leads to a reproducible distribution of organelles, simplifying image analysis and minimizing the number of cells required for robust phenotypes. Here, we outline how alterations in the intracellular organization of lysosomes and mitochondria, as a result of different growth conditions, can be efficiently quantified in cells seeded on adhesive micropatterns.
Collapse
Affiliation(s)
- Bruno Latgé
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, PSL Research University, Paris Cedex 05, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Kristine Schauer
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, PSL Research University, Paris Cedex 05, France. .,Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France.
| |
Collapse
|
18
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The size-effect, fabrication methods and biomedical applications of heparin-based and heparin-inspired hydrogels are reviewed.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haifeng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yihui Qian
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaoling Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
19
|
Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Fetterly CR, Olsen BC, Luber EJ, Buriak JM. Vapor-Phase Nanopatterning of Aminosilanes with Electron Beam Lithography: Understanding and Minimizing Background Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4780-4792. [PMID: 29614858 DOI: 10.1021/acs.langmuir.8b00679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron beam lithography (EBL) is a highly precise, serial method for patterning surfaces. Positive tone EBL resists enable patterned exposure of the underlying surface, which can be subsequently functionalized for the application of interest. In the case of widely used native oxide-capped silicon surfaces, coupling an activated silane with electron beam lithography would enable nanoscale chemical patterning of the exposed regions. Aminoalkoxysilanes are extremely useful due to their reactive amino functionality but have seen little attention for nanopatterning silicon surfaces with an EBL resist due to background contamination. In this work, we investigated three commercial positive tone EBL resists, PMMA (950k and 495k) and ZEP520A (57k), as templates for vapor-phase patterning of two commonly used aminoalkoxysilanes, 3-aminopropyltrimethoxysilane (APTMS) and 3-aminopropyldiisopropylethoxysilane (APDIPES). The PMMA resists were susceptible to significant background reaction within unpatterned areas, a problem that was particularly acute with APTMS. On the other hand, with both APTMS and APDIPES exposure, unpatterned regions of silicon covered by the ZEP520A resist emerged pristine, as shown both with SEM images of the surfaces of the underlying silicon and through the lack of electrostatically driven binding of negatively charged gold nanoparticles. The ZEP520A resist allowed for the highly selective deposition of these alkoxyaminosilanes in the exposed areas, leaving the unpatterned areas clean, a claim also supported by contact angle measurements with four probe liquids and X-ray photoelectron spectroscopy (XPS). We investigated the mechanistic reasons for the stark contrast between the PMMA resists and ZEP520A, and it was found that the efficacy of resist removal appeared to be the critical factor in reducing the background functionalization. Differences in the molecular weight of the PMMA resists and the resulting influence on APTMS diffusion through the resist films are unlikely to have a significant impact. Area-selective nanopatterning of 15 nm gold nanoparticles using the ZEP520A resist was demonstrated, with no observable background conjugation noted in the unexposed areas on the silicon surface by SEM.
Collapse
Affiliation(s)
- Christopher R Fetterly
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Brian C Olsen
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Erik J Luber
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| | - Jillian M Buriak
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
- National Institute for Nanotechnology, National Research Council Canada , 11421 Saskatchewan Drive , Edmonton , Alberta T6G 2M9 , Canada
| |
Collapse
|
21
|
Zou Y, Zhang L, Yang L, Zhu F, Ding M, Lin F, Wang Z, Li Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J Control Release 2018; 273:160-179. [DOI: 10.1016/j.jconrel.2018.01.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
|
22
|
Liu X, Carbonell C, Braunschweig AB. Towards scanning probe lithography-based 4D nanoprinting by advancing surface chemistry, nanopatterning strategies, and characterization protocols. Chem Soc Rev 2018; 45:6289-6310. [PMID: 27460011 DOI: 10.1039/c6cs00349d] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biointerfaces direct some of the most complex biological events, including cell differentiation, hierarchical organization, and disease progression, or are responsible for the remarkable optical, electronic, and biological behavior of natural materials. Chemical information encoded within the 4D nanostructure of biointerfaces - comprised of the three Cartesian coordinates (x, y, z), and chemical composition of each molecule within a given volume - dominates their interfacial properties. As such, there is a strong interest in creating printing platforms that can emulate the 4D nanostructure - including both the chemical composition and architectural complexity - of biointerfaces. Current nanolithography technologies are unable to recreate 4D nanostructures with the chemical or architectural complexity of their biological counterparts because of their inability to position organic molecules in three dimensions and with sub-1 micrometer resolution. Achieving this level of control over the interfacial structure requires transformational advances in three complementary research disciplines: (1) the scope of organic reactions that can be successfully carried out on surfaces must be increased, (2) lithography tools are needed that are capable of positioning soft organic and biologically active materials with sub-1 micrometer resolution over feature diameter, feature-to-feature spacing, and height, and (3) new techniques for characterizing the 4D structure of interfaces should be developed and validated. This review will discuss recent advances in these three areas, and how their convergence is leading to a revolution in 4D nanomanufacturing.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Carlos Carbonell
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA
| | - Adam B Braunschweig
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA and Advanced Science Research Center (ASRC), City University of New York, New York, New York 10031, USA and Department of Chemistry and Biochemistry, City University of New York, Hunter College, 695 Park Avenue, New York, New York 10065, USA.
| |
Collapse
|
23
|
Chen C, Thang SH. RAFT polymerization of a RGD peptide-based methacrylamide monomer for cell adhesion. Polym Chem 2018. [DOI: 10.1039/c7py01887h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study provides a robust method for the preparation of RGD peptide-based polymers that has important implications in the synthesized biomaterials that support cell adhesion.
Collapse
Affiliation(s)
- Chao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering; College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- School of Chemistry
| |
Collapse
|
24
|
Fisher SA, Baker AEG, Shoichet MS. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. J Am Chem Soc 2017; 139:7416-7427. [PMID: 28481537 DOI: 10.1021/jacs.7b00513] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniques to ligate bioactive factors, such as peptides and proteins, onto hydrogels are critical in designing materials with biological function. Here, we outline strategies for peptide and protein immobilization. We specifically focus on click chemistry, enzymatic ligation, and affinity binding for transient immobilization. Protein modification strategies have shifted toward site-specific modification using unnatural amino acids and engineered site-selective amino acid sequences to preserve both activity and structure. The selection of appropriate protein immobilization strategies is vital to engineering functional hydrogels. We provide insight into chemistry that balances the need for facile reactions while maintaining protein bioactivity or desired release.
Collapse
Affiliation(s)
- Stephanie A Fisher
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Alexander E G Baker
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research, ‡Department of Chemical Engineering and Applied Chemistry, §Institute of Biomaterials and Biomedical Engineering, and ∥Department of Chemistry, University of Toronto , 160 College Street, Room 514, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
25
|
Spatially selective binding of green fluorescent protein on designed organosilane nanopatterns prepared with particle lithography. Biointerphases 2017; 12:02C402. [PMID: 28427269 DOI: 10.1116/1.4979912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A practical approach for preparing protein nanopatterns has been to design surface templates of nanopatterns of alkanethiols or organosilanes that will selectively bind and localize the placement of biomolecules. Particle lithography provides a way to prepare millions of protein nanopatterns with a few basic steps. For our nanopatterning strategy, organosilanes with methoxy and sulfhydryl groups were chosen as a surface template. Green fluorescent protein (GFP) was selected as a model for patterning. Areas of 2-[methoxy (polyethyleneoxy)6-9propyl]trichlorosilane (MPT-silane) are effective as a matrix for resisting the attachment of proteins, whereas nanopatterns with sulfur groups provide reactive sites for binding linker groups to connect proteins. A protocol with particle lithography was designed to make a surface template of nanopatterns of (3-mercaptopropyl)trimethoxysilane (MPTMS) surrounded by a methoxy terminated matrix. The sulfhydryl groups of the MPTMS nanopatterns were activated with a sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker. The activated regions of MPTMS furnished sites for binding GFP. Samples were characterized with atomic force microscopy after successive steps of the patterning protocol to evaluate the selectivity of protein binding. Direct views of the protein bound selectively to designated sites of MPTMS are presented, as evidence of robust and reproducible patterning. Nanoscale patterns of proteins can be used for surfaces of biochips and biosensors, and also for immunochemistry test platforms.
Collapse
|
26
|
Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Xia Y, Tang Y, Wu H, Zhang J, Li Z, Pan F, Wang S, Wang X, Xu H, Lu JR. Fabrication of Patterned Thermoresponsive Microgel Strips on Cell-Adherent Background and Their Application for Cell Sheet Recovery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1255-1262. [PMID: 27991750 DOI: 10.1021/acsami.6b12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interfaces between materials and cells play a critical role in cell biomedical applications. Here, a simple, robust, and cost-effective method is developed to fabricate patterned thermoresponsive poly(N-isopropylacrylamide-co-styrene) microgel strips on a polyethyleneimine-precoated, non-thermoresponsive cell-adherent glass coverslip. The aim is to investigate whether cell sheets could be harvested from these cell-adherent surfaces patterned with thermoresponsive strips comprised of the microgels. We hypothesize that if the cell-to-cell interaction is strong enough to retain the whole cell sheet from disintegration, the cell segments growing on the thermoresponsive strips may drag the cell segments growing on the cell-adherent gaps to detach, ending with a whole freestanding and transferable cell sheet. Critical value concerning the width of the thermoresponsive strip and its ratio to the non-thermoresponsive gap may exist for cell sheet recovery from this type of surface pattern. To obtain this critical value, a series of strip patterns with various widths of thermoresponsive strip and non-thermoresponsive gap were prepared using negative microcontact printing technology, with COS7 fibroblast cells being used to test the growth and detachment. The results unraveled that COS7 cells preferentially attached and proliferated on the cell-adherent, non-thermoresponsive gaps to form patterned cell layers and that they subsequently proliferated to cover the microgel strips to form a confluent cell layer. Intact COS7 cell sheets could be recovered when the width of the thermoresponsive strip is no smaller than that of the non-thermoresponsive gap. Other cells such as HeLa, NIH3T3, 293E, and L929 could grow similarly; that is, they showed initial preference to the non-thermoresponsive gaps and then migrated to cover the entire patterned surface. However, it was difficult to detach them as cell sheets due to the weak interactions within the cell layers formed. In contrast, when COS7 and HeLa cells were cultured successively, they formed the cocultured cell layer that could be detached together. These freestanding patterned cell sheets could lead to the development of more elaborate tumor models for drug targeting and interrogation.
Collapse
Affiliation(s)
- Yongqing Xia
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Ying Tang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Han Wu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Fang Pan
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shengjie Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester , Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
28
|
Pagel M, Beck-Sickinger AG. Multifunctional biomaterial coatings: synthetic challenges and biological activity. Biol Chem 2017; 398:3-22. [DOI: 10.1515/hsz-2016-0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
Abstract
A controlled interaction of materials with their surrounding biological environment is of great interest in many fields. Multifunctional coatings aim to provide simultaneous modulation of several biological signals. They can consist of various combinations of bioactive, and bioinert components as well as of reporter molecules to improve cell-material contacts, prevent infections or to analyze biochemical events on the surface. However, specific immobilization and particular assembly of various active molecules are challenging. Herein, an overview of multifunctional coatings for biomaterials is given, focusing on synthetic strategies and the biological benefits by displaying several motifs.
Collapse
|
29
|
Paluck S, Nguyen TH, Maynard HD. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules 2016; 17:3417-3440. [PMID: 27739666 PMCID: PMC5111123 DOI: 10.1021/acs.biomac.6b01147] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Heparin is a naturally occurring, highly sulfated polysaccharide that plays a critical role in a range of different biological processes. Therapeutically, it is mostly commonly used as an injectable solution as an anticoagulant for a variety of indications, although it has also been employed in other forms such as coatings on various biomedical devices. Due to the diverse functions of this polysaccharide in the body, including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization, and drawbacks of its use, analogous heparin-mimicking materials are also widely studied for therapeutic applications. This review focuses on one type of these materials, namely, synthetic heparin-mimicking polymers. Utilization of these polymers provides significant benefits compared to heparin, including enhancing therapeutic efficacy and reducing side effects as a result of fine-tuning heparin-binding motifs and other molecular characteristics. The major types of the various polymers are summarized, as well as their applications. Because development of a broader range of heparin-mimicking materials would further expand the impact of these polymers in the treatment of various diseases, future directions are also discussed.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Creating cellular patterns using genetically engineered, gold- and cell-binding polypeptides. Biointerphases 2016; 11:021009. [PMID: 27233531 DOI: 10.1116/1.4952452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Patterning cells on material surfaces is an important tool for the study of fundamental cell biology, tissue engineering, and cell-based bioassays. Here, the authors report a simple approach to pattern cells on gold patterned silicon substrates with high precision, fidelity, and stability. Cell patterning is achieved by exploiting adsorbed biopolymer orientation to either enhance (gold regions) or impede (silicon oxide regions) cell adhesion at particular locations on the patterned surface. Genetic incorporation of gold binding domains enables C-terminal chemisorption of polypeptides onto gold regions with enhanced accessibility of N-terminal cell binding domains. In contrast, the orientation of polypeptides adsorbed on the silicon oxide regions limit the accessibility of the cell binding domains. The dissimilar accessibility of cell binding domains on the gold and silicon oxide regions directs the cell adhesion in a spatially controlled manner in serum-free medium, leading to the formation of well-defined cellular patterns. The cells are confined within the polypeptide-modified gold regions and are viable for eight weeks, suggesting that bioactive polypeptide modified surfaces are suitable for long-term maintenance of patterned cells. This study demonstrates an innovative surface-engineering approach for cell patterning by exploiting distinct ligand accessibility on heterogeneous surfaces.
Collapse
|
31
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
32
|
Lau UY, Saxer SS, Lee J, Bat E, Maynard HD. Direct Write Protein Patterns for Multiplexed Cytokine Detection from Live Cells Using Electron Beam Lithography. ACS NANO 2016; 10:723-9. [PMID: 26679368 PMCID: PMC4729597 DOI: 10.1021/acsnano.5b05781] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Simultaneous detection of multiple biomarkers, such as extracellular signaling molecules, is a critical aspect in disease profiling and diagnostics. Precise positioning of antibodies on surfaces, especially at the micro- and nanoscale, is important for the improvement of assays, biosensors, and diagnostics on the molecular level, and therefore, the pursuit of device miniaturization for parallel, fast, low-volume assays is a continuing challenge. Here, we describe a multiplexed cytokine immunoassay utilizing electron beam lithography and a trehalose glycopolymer as a resist for the direct writing of antibodies on silicon substrates, allowing for micro- and nanoscale precision of protein immobilization. Specifically, anti-interleukin 6 (IL-6) and antitumor necrosis factor alpha (TNFα) antibodies were directly patterned. Retention of the specific binding properties of the patterned antibodies was shown by the capture of secreted cytokines from stimulated RAW 264.7 macrophages. A sandwich immunoassay was employed using gold nanoparticles and enhancement with silver for the detection and visualization of bound cytokines to the patterns by localized surface plasmon resonance detected with dark-field microscopy. Multiplexing with both IL-6 and TNFα on a single chip was also successfully demonstrated with high specificity and in relevant cell culture conditions and at different times after cell stimulation. The direct fabrication of capture antibody patterns for cytokine detection described here could be useful for biosensing applications.
Collapse
Affiliation(s)
- Uland Y Lau
- Department of Bioengineering, University of California, Los Angeles , 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Sina S Saxer
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Juneyoung Lee
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Erhan Bat
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Bioengineering, University of California, Los Angeles , 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
He C, Shi ZQ, Cheng C, Nie CX, Zhou M, Wang LR, Zhao CS. Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. RSC Adv 2016. [DOI: 10.1039/c6ra14592b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The GO/heparin-analogue hydrogels with hemo- and cyto-compatibility could be used in various biomedical fields, such as drug and protein delivery, tissue regeneration scaffold, and other biomedical systems.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
34
|
Huang Y, Shaw MA, Warmin MR, Mullins ES, Ayres N. Blood compatibility of heparin-inspired, lactose containing, polyureas depends on the chemistry of the polymer backbone. Polym Chem 2016. [DOI: 10.1039/c6py00616g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sulfated glycopolymers were synthesized from diisocyanates and lactose containing diamines. Blood compatibility assays indicated highly sulfated glycopolymers with methylene bis(4-cyclohexyl isocyanate) backbones result in prolonged clotting times.
Collapse
Affiliation(s)
- Y. Huang
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - M. A. Shaw
- Cancer and Blood Diseases Institute
- Cincinnati Children's Hospital Medical Center
- Cincinnati
- USA
| | - M. R. Warmin
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - E. S. Mullins
- Cancer and Blood Diseases Institute
- Cincinnati Children's Hospital Medical Center
- Cincinnati
- USA
| | - N. Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
35
|
Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomater 2016; 30:26-48. [PMID: 26596568 DOI: 10.1016/j.actbio.2015.11.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
Abstract
The chemistry, geometry, topography and mechanical properties of biomaterials modulate biochemical signals (in particular ligand-receptor binding events) that control cells-matrix interactions. In turn, the regulation of cell adhesion by the biochemical and physical properties of the matrix controls cell phenotypes such as proliferation, motility and differentiation. In particular, nanoscale geometrical, topographical and mechanical properties of biomaterials are essential to achieve control of the cell-biomaterials interface. The design of such nanoscale architectures and platforms requires understanding the molecular mechanisms underlying adhesion formation and the assembly of the actin cytoskeleton. This review presents some of the important molecular mechanisms underlying cell adhesion to biomaterials mediated by integrins and discusses the nanoscale engineered platforms used to control these processes. Such nanoscale understanding of the cell-biomaterials interface offers exciting opportunities for the design of biomaterials and their application to the field of tissue engineering. STATEMENT OF SIGNIFICANCE Biomaterials design is important in the fields of regenerative medicine and tissue engineering, in particular to allow the long term expansion of stem cells and the engineering of scaffolds for tissue regeneration. Cell adhesion to biomaterials often plays a central role in regulating cell phenotype. It is emerging that physical properties of biomaterials, and more generally the microenvironment, regulate such behaviour. In particular, cells respond to nanoscale physical properties of their matrix. Understanding how such nanoscale physical properties control cell adhesion is therefore essential for biomaterials design. To this aim, a deeper understanding of molecular processes controlling cell adhesion, but also a greater control of matrix engineering is required. Such multidisciplinary approaches shed light on some of the fundamental mechanisms via which cell adhesions sense their nanoscale physical environment.
Collapse
|
36
|
Gori A, Longhi R. Chemoselective Strategies to Peptide and Protein Bioprobes Immobilization on Microarray Surfaces. Methods Mol Biol 2016; 1352:145-56. [PMID: 26490473 DOI: 10.1007/978-1-4939-3037-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ordered and reproducible bioprobe immobilization onto sensor surfaces is a critical step in the development of reliable analytical devices. A growing awareness of the impact of the immobilization scheme on the consistency of the generated data is driving the demand for chemoselective approaches to immobilize biofunctional ligands, such as peptides, in a predetermined and uniform fashion. Herein, the most intriguing strategies to selective and oriented peptide immobilization are described and discussed. The aim of the current work is to provide the reader a general picture on recent advances made in this field, highlighting the potential associated with each chemoselective strategy. Case studies are described to provide illustrative examples, and cross-references to more topic-focused and exhaustive reviews are proposed throughout the text.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Via Mario Bianco 9, Milan, 20131, Italy.
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Via Mario Bianco 9, Milan, 20131, Italy
| |
Collapse
|
37
|
Wang L, Li H, Chen S, Nie C, Cheng C, Zhao C. Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. ACS Biomater Sci Eng 2015; 1:1183-1193. [PMID: 33429557 DOI: 10.1021/acsbiomaterials.5b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we design the interfacial self-assembly of heparin-mimetic multilayer on poly(ether sulfone) (PES) membrane, which can endow the substrate with excellent cytocompatibility, highly hemocompatibility and enhanced antibacterial properties. The coated 3D sponge-like multilayer was fabricated by surface engineered layer by layer assembly of sulfonic amino polyether sulfone (SNPES) and quaternized chitosan (QC). The cell morphology observation and viability evaluation suggested that the assembled multilayer coating had remarkable cytocompatibility with endothelial cells due to the synergistic promotion of bovine serum albumin adsorption and heparin-mimetic groups; which further indicated that surface endothelialization could be achieved on the heparin-mimetic multilayer. The systematical tests of antithrombotic and blood activation indicated that the heparin-mimetic multilayer-coated membrane owned significantly suppressed adsorption of bovine serum fibrinogen, platelet adhesion and activation, prolonged clotting times, as well as lower activation of blood complement. Furthermore, the antibacterial test suggested the multilayer coated substrates exhibited obvious inhibition capability for both Escherichia coli and Staphylococcus aureus. Therefore, we believe that the developed SNPES/QC multilayer on PES membrane show great potential as a multifunctional coating toward versatile biomedical applications due to the integrated and highly effective antithrombotic, endothelialization, and antibacterial properties.
Collapse
Affiliation(s)
- Lingren Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Jiangsu Provincial Key Laboratory for Interventional Medical Devices. Huaiyin Institute of Technology, Huaian 223003, China
| | - Hao Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuai Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Nguyen TH, Paluck SJ, McGahran AJ, Maynard HD. Poly(vinyl sulfonate) Facilitates bFGF-Induced Cell Proliferation. Biomacromolecules 2015. [PMID: 26212474 DOI: 10.1021/acs.biomac.5b00557] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparin is a highly sulfated polysaccharide and is useful because of its diverse biological functions. However, because of batch-to-batch variability and other factors, there is significant interest in preparing biomimetics of heparin. To identify polymeric heparin mimetics, a cell-based screening assay was developed in cells that express fibroblast growth factor receptors (FGFRs) but not heparan sulfate proteoglycans. Various sulfated and sulfonated polymers were screened, and poly(vinyl sulfonate) (pVS) was identified as the strongest heparin-mimicking polymer in its ability to enhance binding of basic fibroblast growth factor (bFGF) to FGFR. The results were confirmed by an ELISA-based receptor-binding assay. Different molecular weights of pVS polymer were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were able to facilitate dimerization of FGFRs leading to cell proliferation in FGFR-expressing cells, and no size dependence was observed. The data showed that pVS is comparable to heparin in these assays. In addition, pVS was not cytotoxic to fibroblast cells up to at least 1 mg/mL. Together this data indicates that pVS should be explored further as a replacement for heparin.
Collapse
Affiliation(s)
- Thi H Nguyen
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Samantha J Paluck
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Andrew J McGahran
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569 United States
| |
Collapse
|
39
|
Jiménez ZA, Yoshida R. Temperature Driven Self-Assembly of a Zwitterionic Block Copolymer That Exhibits Triple Thermoresponsivity and pH Sensitivity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00769] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zulma A. Jiménez
- Department of Materials Engineering,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
40
|
Samorezov JE, Alsberg E. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 2015; 84:45-67. [PMID: 25445719 PMCID: PMC4428953 DOI: 10.1016/j.addr.2014.11.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022]
Abstract
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo.
Collapse
Affiliation(s)
- Julia E Samorezov
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
41
|
He C, Shi ZQ, Ma L, Cheng C, Nie CX, Zhou M, Zhao CS. Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. J Mater Chem B 2015; 3:592-602. [DOI: 10.1039/c4tb01806k] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired from the chemical and biological benefits of heparinized hydrogels, this study presented the substituted hemocompatible design of graphene oxide based heparin-mimicking polymeric hydrogels for versatile biomedical applications.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
42
|
Soucy PA, Hoh M, Heinz W, Hoh J, Romer L. Oriented matrix promotes directional tubulogenesis. Acta Biomater 2015; 11:264-73. [PMID: 25219769 PMCID: PMC4256113 DOI: 10.1016/j.actbio.2014.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/02/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Detailed control over the structural organization of scaffolds and engineered tissue constructs is a critical need in the quest to engineer functional tissues using biomaterials. This work presents a new approach to spatially direct endothelial tubulogenesis. Micropatterned fibronectin substrates were used to control lung fibroblast adhesion and growth and the subsequent deposition of fibroblast-derived matrix during culture. The fibroblast-derived matrix produced on the micropatterned substrates was tightly oriented by these patterns, with an average variation of only 8.5°. Further, regions of this oriented extracellular matrix provided directional control of developing endothelial tubes to within 10° of the original micropatterned substrate design. Endothelial cells seeded directly onto the micropatterned substrate did not form tubes. A metric for matrix anisotropy showed a relationship between the fibroblast-derived matrix and the endothelial tubes that were subsequently developed on the same micropatterns with a resulting aspect ratio over 1.5 for endothelial tubulogenesis. Micropatterns in "L" and "Y" shapes were used to direct endothelial tubes to turn and branch with the same level of precision. These data demonstrate that anisotropic fibroblast-derived matrices instruct the alignment and shape of endothelial tube networks, thereby introducing an approach that could be adapted for future design of microvascular implants featuring organ-specific natural matrix that patterns microvascular growth.
Collapse
Affiliation(s)
- Patricia A Soucy
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Maria Hoh
- Intelligent Substrates, Inc., Sykesville, MD, USA
| | - Will Heinz
- Intelligent Substrates, Inc., Sykesville, MD, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Hoh
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lewis Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Anesthesiology and Critical Care Medicine, Cell Biology, and Pediatrics, and the Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
He C, Cheng C, Ji HF, Shi ZQ, Ma L, Zhou M, Zhao CS. Robust, highly elastic and bioactive heparin-mimetic hydrogels. Polym Chem 2015. [DOI: 10.1039/c5py01377a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We construct robust, highly elastic, and bioactive graphene oxide doped heparin-mimetic hydrogels for use in drug delivery and other potential biomedical applications.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hai-Feng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
44
|
Hou J, Shi Q, Ye W, Fan Q, Shi H, Wong SC, Xu X, Yin J. A novel hydrophilic polymer-brush pattern for site-specific capture of blood cells from whole blood. Chem Commun (Camb) 2015; 51:4200-3. [DOI: 10.1039/c4cc09096a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrophilic PAMPS–PAAm brush pattern is fabricated to selectively capture blood cells from whole blood.
Collapse
Affiliation(s)
- Jianwen Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Wei Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Qunfu Fan
- Polymer Materials Research Center
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | | | - Xiaodong Xu
- Polymer Materials Research Center
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- P. R. China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
45
|
Ramakers BEI, Bode SA, Killaars AR, van Hest JCM, Löwik DWPM. Sensing cell adhesion using polydiacetylene-containing peptide amphiphile fibres. J Mater Chem B 2015; 3:2954-2961. [DOI: 10.1039/c4tb02099e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensing cell adhesion by means of a colourimetric response provides an intuitive measure of cell binding.
Collapse
Affiliation(s)
- B. E. I. Ramakers
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - S. A. Bode
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - A. R. Killaars
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - J. C. M. van Hest
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - D. W. P. M. Löwik
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
46
|
Wieczorek S, Vigne S, Masini T, Ponader D, Hartmann L, Hirsch AKH, Börner HG. Combinatorial Screening for Specific Drug Solubilizers with Switchable Release Profiles. Macromol Biosci 2014; 15:82-9. [DOI: 10.1002/mabi.201400443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sara Vigne
- École Polytechnique Fédérale de Lausanne (EPFL); Institute of Materials (IMX), EPFL - STI - IMX - LMOM, MXG 037; Station 12 CH-1015 Lausanne Switzerland
| | - Tiziana Masini
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 NL-9747 AG Groningen The Netherlands
| | - Daniela Ponader
- Max Planck Institute of Colloids and Interfaces; MPI KGF Golm D-14424 Potsdam Germany
| | - Laura Hartmann
- Max Planck Institute of Colloids and Interfaces; MPI KGF Golm D-14424 Potsdam Germany
| | - Anna K. H. Hirsch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 NL-9747 AG Groningen The Netherlands
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
47
|
Li Y, Ng HW, Gates BD, Menon C. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars. NANOTECHNOLOGY 2014; 25:285303. [PMID: 24971845 DOI: 10.1088/0957-4484/25/28/285303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR.
Collapse
Affiliation(s)
- Y Li
- MENRVA Research Group, School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|
48
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
50
|
Santander-Borrego M, Green DW, Chirila TV, Whittaker AK, Blakey I. Click functionalization of methacrylate-based hydrogels and their cellular response. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miriem Santander-Borrego
- The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology; St Lucia Queensland 4072 Australia
| | - David W. Green
- The Queensland Eye Institute; 140 Melbourne Street, South Brisbane Queensland 4101 Australia
| | - Traian V. Chirila
- The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology; St Lucia Queensland 4072 Australia
- The Queensland Eye Institute; 140 Melbourne Street, South Brisbane Queensland 4101 Australia
- The University of Queensland, School of Medicine; Herston Road Herston Queensland 4029 Australia
- Queensland University of Technology; Faculty of Science and Engineering; 2 George Street Brisbane Queensland 4001 Australia
- University of Western Australia; Faculty of Science; Crawley Western Australia 6009 Australia
| | - Andrew K. Whittaker
- The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology; St Lucia Queensland 4072 Australia
- The Queensland Eye Institute; 140 Melbourne Street, South Brisbane Queensland 4101 Australia
- The University of Queensland; Centre for Advancing Imaging, St Lucia Queensland 4072 Australia
| | - Idriss Blakey
- The University of Queensland, Australian Institute for the Bioengineering and Nanotechnology; St Lucia Queensland 4072 Australia
- The University of Queensland; Centre for Advancing Imaging, St Lucia Queensland 4072 Australia
| |
Collapse
|