1
|
Zheng C, Mao Y, Markland TE, Boxer SG. Beyond the Vibrational Stark Effect: Unraveling the Large Redshifts of Alkyne C-H Bond in Solvation Environments. J Am Chem Soc 2025; 147:6227-6235. [PMID: 39930554 DOI: 10.1021/jacs.4c18102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
C-H···O hydrogen bonds are formed in systems ranging from biomolecular complexes to small-molecule structures. Previous work has focused on the blueshifts in the C-H stretching frequency (ν ¯ CH ) induced by these hydrogen bonds and their chemical and biological roles. Here, we show that, in contrast, terminal alkyne C-H hydrogen bonds exhibit large redshifts (50-100 cm-1) upon hydrogen bonding with oxygen-containing solvents. Using spectroscopic and computational approaches, we elucidate and compare the roles of the vibrational Stark effect, bond polarization, and charge transfer in driving the C-H redshift. We show that the redshifts of alkyne's terminal C-H upon the formation of hydrogen bonds correlate with the Lewis basicity of the solvent and are significantly larger than those arising solely from solvent electric fields (vibrational Stark effect), differing from the well-studied redshift of carbonyl vibrations induced by hydrogen bonds. Through a decomposition of vibrational frequency shifts based on DFT calculations using absolutely localized molecular orbitals, we demonstrate that including the effects of bond polarization and charge transfer, in addition to the vibrational Stark effect, results in quantitative agreement between experimentally observed C-H frequency shifts and the theoretically predicted values in various oxygen-containing solvents. Our results highlight the significance of effects beyond pure electrostatics in accounting for the large redshifts in C-H···O hydrogen bonds and exemplify our approach to quantifying the contributions from different physical effects.
Collapse
Affiliation(s)
- Chu Zheng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Wu Y, Chen S, Wu J, Liu F, Chen C, Ding B, Zhou X, Deng H. Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. SCIENCE ADVANCES 2024; 10:eadn8662. [PMID: 39612327 PMCID: PMC11606434 DOI: 10.1126/sciadv.adn8662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Microplastic remediation in aquatic bodies is essential for the entire ecosystem, but is challenging to achieve with a universal and efficient strategy. Here, we developed a sustainable and environmentally adaptable adsorbent through supramolecular self-assembly of chitin and cellulose. This biomass fibrous framework (Ct-Cel) showcases an excellent adsorption performance for polystyrene, polymethyl methacrylate, polypropylene, and polyethylene terephthalate. The affinity for diverse microplastics is attributed to the transformation of multiple intermolecular interactions between different microplastics and Ct-Cel. Meanwhile, the strong resistance of Ct-Cel to multiple pollutants in water enables an enhanced adsorption when coexisting with microorganisms and Pb2+. Moreover, Ct-Cel can remove 98.0 to 99.9% of microplastics in four types of real water and maintains a high removal efficiency of up to 95.1 to 98.1% after five adsorption cycles. This work may open up prospects for functional biomass materials for cost-efficient remediation of microplastics in complex aquatic environments.
Collapse
Affiliation(s)
- Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Shixiong Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Fried SDE, Mukherjee S, Mao Y, Boxer SG. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. J Phys Chem Lett 2024; 15:10826-10834. [PMID: 39436117 DOI: 10.1021/acs.jpclett.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
NAD(P)H cofactors are found in all forms of life and are essential for electron and hydrogen atom transfer. The linear response of a carbon-deuterium (C-D) vibration based on the vibrational Stark effect can facilitate measurements of electric fields for critical biological reactions including cofactor-mediated hydride transfer. We find both inter- and intramolecular electric fields influence the C-D frequency in NAD(P)H and nicotinamide-like models where the reactive C4-hydrogen has been deuterated. Hence, the C-D frequency can report both environmental electrostatics and conformational changes of the nicotinamide ring. Conformation-dependent effects are mediated through space as electrostatic effects, rather than through-bond. A Stark tuning rate of ∼0.57 cm-1/(MV/cm) was determined using both experimental and computational approaches, including vibrational solvatochromism, molecular dynamics simulations, and in silico Stark calculations. The vibrational probe's Stark tuning rate is shown to be robust and suitable for measuring fields along hydride transfer reaction coordinates in enzymes.
Collapse
Affiliation(s)
- Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Srijit Mukherjee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Pathak B, Boda M, Patwari GN. Probing the Role of Solvent Configurations and Local Electric Fields on HX (X = F, Cl, Br and I) Dissociation in Water Clusters. J Phys Chem B 2024; 128:9829-9836. [PMID: 39347838 DOI: 10.1021/acs.jpcb.4c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The acidity of hydrohalic acids increases down the group, with HF and HI being the weakest and strongest acids. Electronic structure calculations suggest that the critical electric fields required for the dissociation of HF, HCl, HBr, and HI are 347, 193, 163, and 153 MV cm-1, respectively, which are proportional to their corresponding pKa values and emphasize that in these systems the bond dissociation energy determines the pKa. The solvent configuration plays a significant role in the acid dissociation process, which is illustrated by a particular configuration of three water molecules around HX and favors dissociation of only HBr, even though the critical electric field required for the dissociation of HI is lower than that of HBr, as depicted in the graphical abstract. Further, the Born-Oppenheimer molecular dynamics (BOMD) simulations suggest that the spontaneity of HX dissociation depends on both the solvent configuration and thermal fluctuations, which hold higher significance in the case of weaker acids. In general, it was observed that the solvent electric field required for the acid dissociation process is marginally lower at higher temperatures.
Collapse
Affiliation(s)
- Bijaya Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manjusha Boda
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Matienko LI, Mil EM, Albantova AA, Goloshchapov AN. The Role H-Bonding and Supramolecular Structures in Homogeneous and Enzymatic Catalysis. Int J Mol Sci 2023; 24:16874. [PMID: 38069195 PMCID: PMC10707003 DOI: 10.3390/ijms242316874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The article analyzes the role of hydrogen bonds and supramolecular structures in enzyme catalysis and model systems. Hydrogen bonds play a crucial role in many enzymatic reactions. However, scientists have only recently attempted to harness the power of hydrogen bonds in homogeneous catalytic systems. One of the newest directions is associated with attempts to control the properties of catalysts by influencing the "second coordination sphere" of metal complexes. The role H-bonding, and the building of stable supramolecular nanostructures due to intermolecular H-bonds, based on catalytic active heteroligand iron (Fe) or nickel (Ni) complexes formed during hydrocarbon oxidations were assessed via the AFM (Atomic-force microscopy) method, which was proposed and applied by authors of this manuscript. Th is article also discusses the roles of hydrogen bonds and supramolecular structures in oxidation reactions catalyzed by heteroligand Ni and Fe complexes, which are not only effective homogeneous catalysts but also structural and functional models of Oxygenases.
Collapse
Affiliation(s)
- Ludmila I. Matienko
- N.M. Emanuel Institution of Biochemical Physics Russian Academy of Science, 4 Kosygin Str., 119334 Moscow, Russia; (E.M.M.); (A.A.A.); (A.N.G.)
| | | | | | | |
Collapse
|
7
|
Gopakumar K, Samantaray V, Prusty MK, Swain L, Ramanan R. Internal charge-transfer in a metal-catalyzed oxidative addition reaction turns an inhibitive electric field stimulus to catalytic. Chem Commun (Camb) 2023; 59:13054-13057. [PMID: 37846773 DOI: 10.1039/d3cc04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or vice versa. The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis. The charge-transfer mechanism in metal-catalyzed oxidative addition is tunable by EEF.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Vivekananda Samantaray
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Mithun Kumar Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Lopita Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Gopakumar K, Shaik S, Ramanan R. Two-Way Catalysis in a Diels-Alder Reaction Limits Inhibition Induced by an External Electric Field. Angew Chem Int Ed Engl 2023; 62:e202307579. [PMID: 37530131 DOI: 10.1002/anie.202307579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Oriented external electric fields (EEFs) act as catalysts that can induce selectivity in chemical reactions. The responses of the Diels-Alder (DA) reaction between butadiene and ethylene (BDE-DA) as well as cyclopentadiene and ethylene (CPDE-DA) towards EEF stimuli are investigated here using density functional theory (B3LYP) calculations. EEF is a vector that catalyzes the reaction in one direction while inhibiting it in the opposite direction. Here we report that the inhibitive direction becomes rate-enhancing after some increase in the EEF. The EEF value that brings about the maximum possible inhibition for the reaction is defined as the electrostatic resistance point (ERP). The possibility of both normal and inverse electron-demand DA reactions causes catalytic activity in both directions of the EEF starting at a unique ERP value. The C5 substituents of cyclopentadiene control the ERP values depending upon the resistance power that the functional group provides against the EEF. The endo and exo diastereomeric transition states of the DA reaction have distinct ERP values and the difference (ΔERP) provides the through-space electrostatic contribution to the stereoselectivity on a relative scale. Thus, the ERP values can be used as a gauge for the electrostatic interactions between substituent groups and external stimuli.
Collapse
Affiliation(s)
- Karthik Gopakumar
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407, Jerusalem, Israel
| | - Rajeev Ramanan
- Department of Chemistry, National Institute of Technology, Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
9
|
Kuang Y, Xie X, Zhou S, Chen L, Zheng J, Ouyang G. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161840. [PMID: 36716883 DOI: 10.1016/j.scitotenv.2023.161840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The synergistic effect of high microporosity and abundant heteroatoms is important for improving the performance of biochar in various fields. However, it is still challenging to create enough micropores for biochar, while simultaneously retaining the heteroatoms from biomass. A series of biochar with variable microstructures was successfully prepared by carbonization and following ball milling on lotus pedicel (LP), watermelon rind (WR), and litchi rind (LR). The pore structures and heteroatoms of biochar were characterized in detail. Notably, high microporosity could be realized by the carbonization of LR, and further ball milling resulted in a higher microporous surface area (1323.4 m2·g-1) and richer oxygen. Furthermore, the obtained biochar was fabricated as solid phase microextraction (SPME) coatings with uniform morphologies and similar thicknesses to deeply investigate the relationships between the microstructures and extraction performance. The best performance was demonstrated by the LR800BM, with enrichment factors from 1780 to 155,217. Finally, it was coupled with gas chromatography-mass spectrometry (GC-MS) to develop an analytical method with a wide linear range (1-50,000 ng·L-1), low limits of detection (0.10-1.4 ng·L-1), good repeatability (0.83 %-7.5 %) and reproducibility (4.2 %-8.9 %). This work provides valuable insights into the structure-performance relationship of biochar, which is important for the design of high-performance biochar-based adsorbents and their applications in the environment.
Collapse
Affiliation(s)
- Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xintong Xie
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou 510006, China.
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
10
|
Dubey KD, Stuyver T, Shaik S. Local Electric Fields: From Enzyme Catalysis to Synthetic Catalyst Design. J Phys Chem B 2022; 126:10285-10294. [PMID: 36469939 DOI: 10.1021/acs.jpcb.2c06422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Mini-Review Article outlines recent advances in the study of local electric field (LEF) governed enzyme catalysis and the application of the LEF principle in synthetic catalyst design. We start by discussing the electrostatics principles that drive enzyme catalysis, and its experimental verifications through vibrational Stark spectroscopy. Subsequently, we describe aspects of LEFs other than catalysis, i.e., induction of mechanistic crossovers, among others. Here, we focus on the early work done using computational tools, along with some recent contributions. Following an in-depth discussion of the role of LEFs in enzyme catalysis, we then highlight some recent works on designed local electric fields (D-LEF) and their applications in organic synthesis. Subsequently, we turn to D-LEFs in synthetic enzymes and supramolecular systems (cf. the work by the Head-Gordon group). We end by discussing some of the software packages that have been developed to analyze local electric fields computationally. Overall, the present Mini-Review Article paints an insightful picture of the current state of the art using LEF in enzyme catalysis and its application for further bioengineering and synthetic organic frameworks in a broad perspective.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Gautam Buddha Nagar, Uttar Pradesh201314, India
| | - Thijs Stuyver
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Sason Shaik
- The Hebrew University, Institute of Chemistry, Edmond J. Safra Campus at Givat Ram, Jerusalem, 9190401Israel
| |
Collapse
|
11
|
Wagen CC, Jacobsen EN. Evidence for Oxonium Ions in Ethereal "Hydrogen Chloride". Org Lett 2022; 24:8826-8831. [PMID: 36450043 PMCID: PMC9879297 DOI: 10.1021/acs.orglett.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Although solutions of hydrogen chloride in ethereal solvents like diethyl ether or dioxane are commonly employed in the laboratory, the solution structure of these reagents has yet to be firmly established. Here, we analyze solutions of ethereal hydrogen chloride or deuterium chloride in toluene, in dichloromethane, or in the absence of a co-solvent by in situ infrared spectroscopy. The resulting spectra are inconsistent with free HCl or often-proposed 1:1 HCl-ether complexes but closely match the predicted spectra of oxonium ions generated via protonation of diethyl ether. Molecular dynamics simulation of the oxonium chloride complexes provides evidence for an outer-sphere contact ion pair. These results suggest new approaches for tuning the acidity of strong Brønsted acids in organic solvents and demonstrate the importance of conducting spectroscopic measurements under reaction-relevant conditions.
Collapse
Affiliation(s)
- Corin C. Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Chen L, Wang Y, Dong S, Chen S, Luo S. Copolymerization Driven Construction of in-Plane Heterostructure for Enhanced Photocatalytic Performance: Structure–Activity and Effects of Water Matrices. Catal Letters 2022. [DOI: 10.1007/s10562-022-04155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat Commun 2022; 13:5330. [PMID: 36088353 PMCID: PMC9464189 DOI: 10.1038/s41467-022-33129-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWater-in-salt electrolytes are an appealing option for future electrochemical energy storage devices due to their safety and low toxicity. However, the physicochemical interactions occurring at the interface between the electrode and the water-in-salt electrolyte are not yet fully understood. Here, via in situ Raman spectroscopy and molecular dynamics simulations, we investigate the electrical double-layer structure occurring at the interface between a water-in-salt electrolyte and an Au(111) electrode. We demonstrate that most interfacial water molecules are bound with lithium ions and have zero, one, or two hydrogen bonds to feature three hydroxyl stretching bands. Moreover, the accumulation of lithium ions on the electrode surface at large negative polarizations reduces the interfacial field to induce an unusual “hydrogen-up” structure of interfacial water and blue shift of the hydroxyl stretching frequencies. These physicochemical behaviours are quantitatively different from aqueous electrolyte solutions with lower concentrations. This atomistic understanding of the double-layer structure provides key insights for designing future aqueous electrolytes for electrochemical energy storage devices.
Collapse
|
14
|
Role of the electrostatic interactions in the changes in the CN stretching frequency of benzonitrile interacting with hydrogen-bond donating molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Sato H, Morisawa Y, Takaya S, Ozaki Y. A Study of C=O…HO and OH…OH (Dimer, Trimer, and Oligomer) Hydrogen Bonding in a Poly(4-vinylphenol) 30%/Poly(methyl methacrylate) 70% Blend and its Thermal Behavior Using Near-Infrared Spectroscopy and Infrared Spectroscopy. APPLIED SPECTROSCOPY 2022; 76:831-840. [PMID: 35255723 DOI: 10.1177/00037028221086913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inter- and intramolecular hydrogen bonding and their temperature-dependent changes in a poly(4-vinylphenol)/poly(methyl methacrylate)(PVPh 30%/PMMA 70%) blend were investigated using near-infrared (NIR) and infrared (IR) spectroscopy. Band assignments of the fundamentals and first overtones of the OH stretching mode of a free OH group and OH groups in C=O···HO and OH···OH (dimer, trimer, and oligomer) hydrogen bonding of PVPh 30%/PMMA 70% were carried out by comparison between its NIR and IR spectra and comparison with NIR and IR spectra of phenol. The comparison of the NIR spectra of the PVPh 30%/PMMA 70% blend (hereafter, we denote it as PVPh30%) with the corresponding IR spectra reveals that to observe bands arising from the free OH and OH···OH dimer, which is a weaker hydrogen bonding, NIR is better while to investigate bands originating from OH groups in the OH···O=C and OH···OH (oligomer) hydrogen bonds, which are stronger hydrogen bonding, IR is better. Thus, a combination of IR and NIR spectroscopy has provided convincing results for the hydrogen bonding of PVPh30%. The relative intensity of the two bands at 7058 and 6921 cm-1 (I7058/I6921) due to the first overtones of the OH stretching modes of the free OH group and the OH group in the dimer, respectively, increases significantly above 90 °C, which is close to Tg of PVPh. In concomitance with the intensity increase in the relative intensity of the free OH band, the intensity of a band at 1706 cm-1 due to the C=O stretching mode of the C=O···HO hydrogen bond of PVPh30% decreases above 90°C. These results suggest that above the Tg of PVPh the C=O···HO hydrogen bond is broken gradually and that the free OH increases. Of note is that below Tg the intensities of NIR bands due to the OH first overtones of free OH group and OH groups in the OH···OH dimer gain intensity in parallel with temperature increase, and above Tg the intensity of the band derived from the OH···OH group increases linearly much slower than that of the band due to the free OH. Moreover, a band due to an OH···OH oligomer decreases linearly. Hence, it is very likely that the OH···OH oligomers dissociate into free OH groups. Anharmonicity of O-H bonds, which is sensitive to a hydrogen bond, was estimated for the free OH and OH bonds in the C=O···HO and OH···OH (dimer, trimer, and oligomer) hydrogen bonding by comparison between the NIR and IR spectra in the OH stretching band regions.
Collapse
Affiliation(s)
- Harumi Sato
- Graduate School of Human Development and Environment, 12885Kobe University, Kobe, Japan
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan
| | - Yusuke Morisawa
- School of Science and Engineering, Kindai University, Osaka, Japan
| | - Satoshi Takaya
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| | - Yukihiro Ozaki
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
16
|
Singh S, Ozaki Y, Antoni Czarnecki M. Association and solubility of chlorophenols in CCl 4: MIR/NIR spectroscopic and DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121077. [PMID: 35248856 DOI: 10.1016/j.saa.2022.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This work provides new information on the effect of position and number of substituents on association and solubility of chlorophenols in CCl4. Using MIR and NIR spectroscopy we examined solutions of 12 chlorophenols at several concentrations. In addition, we calculated (DFT) theoretical spectra and structures of monomers and associates of chlorophenols from dimer to tetramer. The number of substituents at positions 2 and 6 allows to divide studied chlorophenols into three Groups: I (3; 4; 3,4; 3,5), II (2; 2,3; 2,4; 2,5; 2,4,5), and III (2,6; 2,4,6; 2,3,4,5,6). An equilibrium between intermolecular OH⋅⋅⋅OH and intramolecular OH⋅⋅⋅Cl hydrogen bonding depends on position and number of substituents. The extent of association decreases in going from Group I to Group III due to growing steric hindrance near the OH group and the resonance effect from Cl. In chlorophenols of Group I, Cl at positions 3 or 5 weakens the OH⋅⋅⋅OH intermolecular hydrogen bonding, while for Group II it strengthens the OH⋅⋅⋅⋅Cl intramolecular bonding. In contrast, Cl at position 4 has minor effect on association. In the case of Group I, increasing concentration shifts the equilibrium towards solute-solute interactions, whereas for Groups II and III dominate the species with intramolecular OH⋅⋅⋅Cl bonding. The theoretical calculations predict that for monosubstituted chlorophenols of Group I the most stable are non-planar cyclic tetramers, while for disubstituted ones, the non-planar cyclic tetramers and linear trimers have similar binding energies. Chlorophenols of Group II prefer the cyclic non-planar trimers, whereas those of Group III form the planar dimers with an antiparallel orientation of the OH groups. Our study reveals that chlorophenols creating the cyclic associates are better soluble in CCl4 as compared with those forming the linear ones. Hence, one can conclude that in an inert or weakly interacting solvents the solubility is closely related to the structure of the solute associates.
Collapse
Affiliation(s)
- Swapnil Singh
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, POLAND
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan; Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | | |
Collapse
|
17
|
Boda M, Patwari GN. Vibrational Stark fields in carboxylic acid dimers. Phys Chem Chem Phys 2022; 24:5879-5885. [PMID: 35195127 DOI: 10.1039/d1cp02211c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with an electron-donating group and lower with an electron-withdrawing substituent on the partner. The Stark tuning rate (Δ) of the O-H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O-H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm-1 (MV cm-1)-1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm-1 (MV cm-1)-1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O-D frequency shifts is about 40-50% higher than the corresponding harmonic O-D frequency shifts calculated at the B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O-H/O-D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, India.
| |
Collapse
|
18
|
Singh RK, Pant R, Patwari GN. Ultrafast Proton-Transfer Reaction in Phenol–(Ammonia)n Clusters: An Ab Initio Molecular Dynamics Investigation. J Phys Chem B 2022; 126:1590-1597. [DOI: 10.1021/acs.jpcb.1c09700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reman Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G. Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Singh S, Majer M, Czarnecki MA, Morisawa Y, Ozaki Y. Solvent Effect on Assembling and Interactions in Solutions of Phenol: Infrared Spectroscopic and Density Functional Theory Study. APPLIED SPECTROSCOPY 2022; 76:28-37. [PMID: 34643138 DOI: 10.1177/00037028211052302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work provides new insight into assembling of phenol in various solvents and competition between different kinds of interactions. To examine both weak and strong interactions, we selected a series of non-aromatic and aromatic solvents. Infrared spectra were measured at low (0.05 M) and high (2 M) phenol content. In addition, we performed density functional theory calculations of the structures and harmonic vibrational spectra of 1:1 complexes of phenol with the solvents and the associates of phenol from dimer to tetramer. Based on these results, we divided the solvents into three groups. The first group consists of non-aromatic solvents weakly interacting with phenol. Depending on the concentration, molecules of phenol in these solvents remain non-bonded or self-associated. In diluted solutions of phenol in chlorinated non-aromatic solvents do not appear free OH groups, since they are involved in a weak OH···Cl interaction. It is of note that in diluted solutions of phenol in tetramethyl ethylene both the non-bonded and bonded OH coexists due to solvent-solvent interactions. The second group consists of aromatic solvents with methyl or chlorine substituents. At low concentration, the molecules of phenol are involved in the phenol-solvent OH···π interaction and the strength of these interactions depends on the solvent properties. At a higher phenol content an equilibrium exists between phenol-solvent OH···π and phenol-phenol OH···OH interactions. Finally, the third group includes the aromatic and non-aromatic solvents with highly polar group (C≡N). In these solvents, regardless of the concentration all molecules of phenol are involved in the solute-solvent OH···NC interaction. Comparison of the experimental and theoretical band parameters reveals that molecules of phenol in non-aromatic solvents prefer the cyclic associates, while in the aromatic solvents they tend to form the linear associates.
Collapse
Affiliation(s)
- Swapnil Singh
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | - Mateusz Majer
- Faculty of Chemistry, University of Wrocław, Wrocław, Poland
| | | | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Osaka, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
- Toyota Physical and Chemical Research Institute, Aichi, Japan
| |
Collapse
|
20
|
Sadhukhan D, Hsu PJ, Kuo JL, Patwari GN. Is Dissociation of HCl in DMSO Clusters Bistable? J Phys Chem A 2021; 125:10351-10358. [PMID: 34821498 DOI: 10.1021/acs.jpca.1c08627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dissociation of HCl embedded in dimethyl sulfoxide (DMSO) clusters was investigated by projecting the solvent electric field along the HCl bond using B3LYP-D3/6-31+G(d) and MP2/6-31+G(d,p) levels of theory. A large number of distinct structures (about 1500) consisting of up to five DMSO molecules were considered in the present work for statistical reliability. The B3LYP-D3 calculations reveal that the dissociation of HCl embedded in DMSO clusters requires a critical electric field of 138 MV cm-1 along the H-Cl bond. However, a large number of exceptions wherein the electric field values much higher than the critical electric field of 138 MV cm-1 did not result in dissociation of HCl were observed, in addition to several cases wherein the HCl dissociates with an electric field less than the critical electric field. On the other hand, the MP2 level calculations reveal that the critical electric field for HCl dissociation is about 181 MV cm-1 with almost no exceptions. A comparison of calculations carried out using the MP2 and the B3LYP-D3 levels suggests that the dissociation of HCl embedded in DMSO clusters is bistable at the B3LYP-D3 level, which is an artifact, suggesting that care must be exercised in interpreting the processes of proton transfer. The answer to the question raised as the title of this paper is NO.
Collapse
Affiliation(s)
- Debopriya Sadhukhan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
21
|
Wang X, Li X, He X, Zhang JZH. A fixed multi-site interaction charge model for an accurate prediction of the QM/MM interactions. Phys Chem Chem Phys 2021; 23:21001-21012. [PMID: 34522933 DOI: 10.1039/d1cp02776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fixed multi-site interaction charge (FMIC) model was proposed for the accurate prediction of intermolecular electrostatic interactions based on the quantum mechanical linear response of a molecule to an external electric field. In such a model, some additional off-center interaction sites were added for capturing multipole interactions for a given molecule. By multivariate least-square fitting analysis of the calculated QM/MM interactions of a given molecule with the electrostatic environment and the electrostatic potentials of the environment at the pre-defined distributed interaction sites, the FMIC of the molecule was obtained. The model system of CO in myoglobin (Mb) was utilized to demonstrate the derivation of the FMIC. The accuracy of FMIC in predicting the electrostatic interactions between CO and the Mb environment was investigated using 10 000 different Mb-CO configurations generated from the 400 ps QM/MM MD simulation. In comparison to the QM/MM calculations at the B3LYP/aug-cc-pVTZ/ff99SB level, the mean unsigned error (MUE) of the results based on the FMIC model was merely 0.10 kcal mol-1, and the root mean square error (RMSE) was only 0.13 kcal mol-1, which are significantly lower than the results predicted by the ESP charge model (MUE = 1.45 kcal mol-1, and RMSE = 1.7 kcal mol-1, respectively). The transferability of FMIC was tested by applying the obtained FMIC in the wild type Mb-CO system to the mutants of V68F and H64L Mb-CO systems. The MUEs of the obtained results for 10 000 different configurations are both smaller than 0.2 kcal mol-1 for the V68F and H64L Mb-CO systems in comparison to the B3LYP/aug-cc-pVTZ/ff99SB calculations, and the RMSEs are also lower than 0.2 kcal mol-1 for both mutants. The applications of FMIC were extended to model the electrostatic interactions between a hydrogen fluoride molecule and 492 waters in a truncated octahedron box; our study showed that the FMIC could give satisfactory results with a MUE of 0.12 kcal mol-1 and a RMSE of 0.16 kcal mol-1 in comparison to the B3LYP/aug-cc-pVDZ/TIP3P calculations for 10 000 different configurations generated using the 10 ns classical MD simulation. Therefore, the FMIC method provides an accurate and efficient tool for predicting intermolecular electrostatic interactions, which can be utilized in the future development of molecular force fields.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China. .,Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Xilong Li
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Xiao He
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China. .,Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
22
|
Czarnecki MA, Morisawa Y, Katsumoto Y, Takaya T, Singh S, Sato H, Ozaki Y. Solvent effect on the competition between weak and strong interactions in phenol solutions studied by near-infrared spectroscopy and DFT calculations. Phys Chem Chem Phys 2021; 23:19188-19194. [PMID: 34524284 DOI: 10.1039/d1cp02103f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) spectra of phenol in a series of non-aromatic and aromatic solvents were recorded to study the competition between various types of solute-solute and solute-solvent interactions. Depending on the phenol concentration, the free OH and OH involved in the OH⋯OH interactions in the dimers and higher associates are present in cyclohexane solutions. On the other hand, free OH does not appear in Cl-containing solvents since at a low phenol content the OH groups participate in the OH⋯Cl interactions. In CCl4 and tetrachloroethylene this interaction is weak, while in chlorobenzene the strength of this interaction is higher. In the aromatic solvents the solute-solute OH⋯OH interactions compete with the solute-solvent OH⋯π and aromatic CH⋯OH ones. Consequently, the degree of self-association of phenol in aromatic solvents is smaller than that in non-aromatic ones. The strength of the OH⋯π interactions increases with growing electron-donating ability of the substituents in the benzene derivatives. This observation obtained from the NIR spectra is in line with the results of the theoretical calculations (DFT). A clear correlation appears between the number of methyl groups in aromatic solvents and the population of the free OH groups. The methyl groups are steric hindrances and impede the formation of the OH⋯OH and OH⋯π interactions. Our results suggest the presence of aromatic CH⋯OH solute-solvent interactions, not observed in previous studies. NIR spectroscopy appears to be a powerful tool for exploration of free and weakly-bonded OH groups.
Collapse
Affiliation(s)
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yukiteru Katsumoto
- Department of Chemistry, School of Science, Fukuoka University, Nanakuma, Jyonan-Ku, Fukuoka 814-0180, Japan
| | - Tomoyuki Takaya
- School of Biological and Environmental Sciences. Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan.
| | - Swapnil Singh
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie, 14, Wrocław 50-383, Poland.
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences. Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. .,Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
23
|
Wang X, Yan J, Zhang H, Xu Z, Zhang JZH. An electrostatic energy-based charge model for molecular dynamics simulation. J Chem Phys 2021; 154:134107. [PMID: 33832260 DOI: 10.1063/5.0043707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The interactions of the polar chemical bonds such as C=O and N-H with an external electric field were investigated, and a linear relationship between the QM/MM interaction energies and the electric field along the chemical bond is established in the range of weak to intermediate electrical fields. The linear relationship indicates that the electrostatic interactions of a polar group with its surroundings can be described by a simple model of a dipole with constant moment under the action of an electric field. This relationship is employed to develop a general approach to generating an electrostatic energy-based charge (EEC) model for molecules containing single or multiple polar chemical bonds. Benchmark test studies of this model were carried out for (CH3)2-CO and N-methyl acetamide in explicit water, and the result shows that the EEC model gives more accurate electrostatic energies than those given by the widely used charge model based on fitting to the electrostatic potential (ESP) in direct comparison to the energies computed by the QM/MM method. The MD simulations of the electric field at the active site of ketosteroid isomerase based on EEC demonstrated that EEC gave a better representation of the electrostatic interaction in the hydrogen-bonding environment than the Amber14SB force field by comparison with experiment. The current study suggests that EEC should be better suited for molecular dynamics study of molecular systems with polar chemical bonds such as biomolecules than the widely used ESP or RESP (restrained ESP) charge models.
Collapse
Affiliation(s)
- Xianwei Wang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jinhua Yan
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Hang Zhang
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zhousu Xu
- College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - John Z H Zhang
- Shanghai Engineering Research Center for Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Castillo A, Ceballos P, Santos P, Cerón M, Venkatesan P, Pérez-Gutiérrez E, Sosa-Rivadeneyra M, Thamotharan S, Siegler MA, Percino MJ. Solution and Solid-State Photophysical Properties of Positional Isomeric Acrylonitrile Derivatives with Core Pyridine and Phenyl Moieties: Experimental and DFT Studies. Molecules 2021; 26:1500. [PMID: 33801942 PMCID: PMC8001298 DOI: 10.3390/molecules26061500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The compounds I (Z)-2-(phenyl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile with one side (2,4,5-MeO-), one symmetrical (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(2,4,5-trimethoxyphenyl)acrylonitrile), II (both sides with (2,4,5-MeO-), and three positional isomers with pyridine (Z)-2-(pyridin-2- 3, or 4-yl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile, III-V were synthetized and characterized by UV-Vis, fluorescence, IR, H1-NMR, and EI mass spectrometry as well as single crystal X-ray diffraction (SCXRD). The optical properties were strongly influenced by the solvent (hyperchromic and hypochromic shift), which were compared with the solid state. According to the solvatochromism theory, the excited-state (μe) and ground-state (μg) dipole moments were calculated based on the variation of Stokes shift with the solvent's relative permittivity, refractive index, and polarity parameters. SCXRD analyses revealed that the compounds I and II crystallized in the monoclinic system with the space group, P21/n and P21/c, respectively, and with Z = 4 and 2. III, IV, and V crystallized in space groups: orthorhombic, Pbca; triclinic, P-1; and monoclinic, P21 with Z = 1, 2, and 2, respectively. The intermolecular interactions for compounds I-V were investigated using the CCDC Mercury software and their energies were quantified using PIXEL. The density of states (DOS), molecular electrostatic potential surfaces (MEPS), and natural bond orbitals (NBO) of the compounds were determined to evaluate the photophysical properties.
Collapse
Affiliation(s)
- Armando Castillo
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Paulina Ceballos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Pilar Santos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Margarita Cerón
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Perumal Venkatesan
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Enrique Pérez-Gutiérrez
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Martha Sosa-Rivadeneyra
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esquina San Claudio, San Manuel, Puebla 72570, Mexico;
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, School of Chemical & Biotechnology, Department of Bioinformatics, SASTRA Deemed University, Thanjavur 613401, India;
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, New Chemistry Building, 3400 N. Charles St., Baltimore, MD 21218, USA;
| | - María Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| |
Collapse
|
25
|
Ozaki Y. Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. ANAL SCI 2021; 37:1193-1212. [PMID: 33612556 DOI: 10.2116/analsci.20r008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article aims to overview infrared (IR) spectroscopy. Simultaneously, it outlines mid-infrared (MIR), near-infrared (NIR), and far-infrared (FIR) or terahertz (THz) spectroscopy separately, and compares them in terms of principles, characteristics, advantages, and applications. MIR spectroscopy is the central spectroscopic technique in the IR region, and is mainly concerned with the fundamentals of molecular vibrations. NIR spectroscopy incorporates both electronic and vibrational spectroscopy; however, in this review, I have chiefly discussed vibrational NIR spectroscopy, where bands due to overtones and combination modes appear. FIR or THz spectroscopy contains both vibrational and rotational spectroscopy. However, only vibrational FIR or THz spectroscopy has been discussed in this review. These three spectroscopy cover wide areas in their applications, making it rather difficult to describe these various topics simultaneously. Hence, I have selected three key topics: hydrogen bond studies, applications of quantum chemical calculations, and imaging. The perspective of the three spectroscopy has been discussed in the last section.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University.,Toyota Physical and Chemical Research Institute
| |
Collapse
|
26
|
Torii H, Ukawa R. Role of Intermolecular Charge Fluxes in the Hydrogen-Bond-Induced Frequency Shifts of the OH Stretching Mode of Water. J Phys Chem B 2021; 125:1468-1475. [PMID: 33506673 DOI: 10.1021/acs.jpcb.0c11461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relation between the vibrational properties and the electrostatic situations of the vibrating functional group is useful to predict vibrational spectroscopic features based on, for example, classical molecular dynamics of liquids or biomolecular systems, but to pursue its generality or the extent of applicability, it is required to understand the mechanisms giving rise to it. Here such an analysis is carried out for the OH stretching mode of water. By examining the correlations among various (structural, vibrational, and electrostatic) properties and by analyzing the spatial characteristics of the behavior of electrons occurring upon the vibration, it is shown that the dependence of the vibrational frequency and the dipole derivative of the OH stretching mode on the electric field is not of purely electrostatic origin, and the delocalized electronic motions occurring with this mode, called intermolecular charge fluxes, related to both the dipole first and second derivatives play important roles.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.,Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Ryota Ukawa
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
27
|
Ouyang L, Lin Z, Li S, Chen B, Liu J, Shi WJ, Zheng L. Synthesis of functionalized diarylbenzofurans via Ru-catalyzed C–H activation and cyclization under air: rapid access to the polycyclic scaffold of diptoindonesin G. Org Chem Front 2021. [DOI: 10.1039/d1qo01242h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for rapid assembly of 2,3-diarylbenzofuran-4-carboxylic acids from m-hydroxybenzoic acids and alkynes via Ru-catalyzed C–H alkenylation and cyclization, which was successfully applied for total synthesis of diptoindonesin G.
Collapse
Affiliation(s)
- Lufeng Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhigeng Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shiqi Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Baoyin Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
28
|
Mollica Nardo V, Cassone G, Ponterio RC, Saija F, Sponer J, Tommasini M, Trusso S. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. J Phys Chem A 2020; 124:10856-10869. [PMID: 33306380 DOI: 10.1021/acs.jpca.0c09791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intense static electric fields can strongly perturb chemical bonds and induce frequency shifts of the molecular vibrations in the so-called vibrational Stark effect. Based on a density functional theory (DFT) approach, here, we report a detailed investigation of the influence of oriented external electric fields (OEEFs) on the dipole moment and infrared (IR) spectrum of the nonpolar centrosymmetric indigo molecule. When an OEEF as intense as ∼0.1 V Å-1 is applied, several modifications in the IR spectrum are observed. Besides the notable frequency shift of some modes, we observe the onset of new bands-forbidden by the selection rules in the zero-field case. Such a neat field-induced modification of the vibrational selection rules, and the subsequent variations of the peaks' intensities in the IR spectrum, paves the way toward the design of smart tools employing centrosymmetric molecules as proxies for mapping local electric fields. In fact, here, we show that the ratio between the IR and the Raman intensities of selected modes is proportional to the square of the local field. This indicator can be used to quantitatively measure local fields, not only in condensed matter systems under standard conditions but also in field-emitting-tip apparatus.
Collapse
Affiliation(s)
- Viviana Mollica Nardo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Giuseppe Cassone
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Rosina Celeste Ponterio
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Franz Saija
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
| | - Sebastiano Trusso
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
29
|
Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J Phys Chem Lett 2020; 11:8983-8988. [PMID: 33035059 DOI: 10.1021/acs.jpclett.0c02581] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proton transfer in liquid water controls acid-base chemistry, crucial enzyme reactions, and the functioning of fuel cells. Externally applied static electric fields in water are capable of dissociating molecules and transferring protons across the H-bond network. However, the impact of nuclear quantum effects (NQEs) on these fundamental field-induced phenomena has not yet been reported. By comparing state-of-the-art ab initio molecular dynamics (AIMD) and path integral AIMD simulations of water under electric fields, I show that quantum delocalization of the proton lowers the molecular ionization threshold to approximately one-third. Moreover, also the water behavior as a protonic semiconductor is considerably modified by the inclusion of NQEs. In fact, when the quantum nature of the nuclei is taken into account, the proton conductivity is ∼50% larger. This work proves that NQEs sizably affect the protolysis phenomenon and proton transfer in room-temperature liquid water.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council, Viale F. Stagno d'Alcontres 37, 98158 Messina, Italy
| |
Collapse
|
30
|
Curing behaviors and properties of epoxy resins with para-hexatomic ring blocks: Excellent comprehensive performances of tetrafluorophenyl. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Kazim M, Guan L, Chopra A, Sun R, Siegler MA, Lectka T. Switching a HO···π Interaction to a Nonconventional OH···π Hydrogen Bond: A Completed Crystallographic Puzzle. J Org Chem 2020; 85:9801-9807. [PMID: 32633510 DOI: 10.1021/acs.joc.0c01121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this article, we present crystallographic and spectroscopic evidence of a tunable system wherein a HO···π interaction switches incrementally to a nonconventional OH···π hydrogen bonding (HB) interaction. More specifically, we report the synthesis of substituted forms of model system 1 to study the effects of aryl ring electronic density on the qualitative characteristics of OH···π hydrogen bonds therein. The OH stretch in experimental infrared data, in agreement with density-functional theory (DFT) calculations, shows continuous red-shifts as the adjacent ring becomes more electron rich. For example, the OH stretch of an amino-substituted analogue is red-shifted by roughly 50 cm-1 compared to the same stretch in the CF3 analogue, indicating a significantly stronger HB interaction in the former. Moreover, DFT calculations (ωB97XD/6-311+G**) predict that increasing electronic density on the adjacent top ring reduces the aryl π-OH σ* energy gap with a concomitant enhancement of the OH n-π* energy gap. Consequently, a dominant π-σ* interaction in the amino substituted analogue locks the system in the in-form while a favorable n-π* interaction reverses the orientation of the oxygen-bound hydrogen in its protonated form. Additionally, the 1H NMR data of various analogues reveal that stronger OH···π interactions in systems with electron-rich aromatic rings slow exchange of the alcoholic proton, thereby revealing coupling with the geminal proton. Finally, X-ray crystallographic analyses of a spectrum of analogues clearly visualize the three distinct stages of "switch"-starting with exclusive HO···π, to partitioned HO···π/OH···π, and finally to achieving exclusive OH···π forms. Furthermore, the crystal structure of the amino analogue reveals an interesting feature in which an extended HB network, involving two conventional (NH···O) and two nonconventional (OH···π) HBs, dimerizes and anchors the molecule in the unit cell.
Collapse
Affiliation(s)
- Muhammad Kazim
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Liangyu Guan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States.,Calibr-A Division of Scripps Research, 11119 N Torrey Pines Rd, La Jolla, San Diego, California 92037, United States
| | - Anant Chopra
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Roy Sun
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
32
|
The Impact of Electron Correlation on Describing QM/MM Interactions in the Attendant Molecular Dynamics Simulations of CO in Myoglobin. Sci Rep 2020; 10:8539. [PMID: 32444817 PMCID: PMC7244521 DOI: 10.1038/s41598-020-65475-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
The impact of the dispersion and electron correlation effects on describing quantum mechanics/molecular mechanics (QM/MM) interactions in QM/MM molecular dynamics (MD) simulations was explored by performing a series of up to 2 ns QM/MM MD simulations on the B states of the myoglobin-carbon monoxide (MbCO) system. The results indicate that both dispersion and electron correlations play significant roles in the simulation of the ratios of two B states (B1/B2), which suggests that the inclusion of the electron correlation effects is essential for accurately modeling the interactions between QM and MM subsystems. We found that the QM/MM interaction energies between the CO and the surroundings statistically present a linear correlation with the electric fields along the CO bond. This indicates that QM/MM interactions can be described by a simple physical model of a dipole with constant moment under the action of the electric fields. The treatment provides us with an accurate and effective approach to account for the electron correlation effects in QM/MM MD simulations.
Collapse
|
33
|
Boda M, Patwari GN. Internal electric fields in methanol [MeOH] 2-6 clusters. Phys Chem Chem Phys 2020; 22:10917-10923. [PMID: 32373804 DOI: 10.1039/c9cp04571f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water and methanol are well known solvents showing cooperative hydrogen bonding, however the differences in the hydrogen bonding pattern in water and methanol are due to the presence of the methyl group in methanol. The presence of the methyl group leads to formation of C-HO hydrogen bonds apart from the usual O-HO hydrogen bonds. The electric fields evaluated along the hydrogen bonded donor OH and CH groups reveal that the C-HO hydrogen bonds can significantly influence the structure and energetics (by about 20%) of methanol clusters. A linear Stark effect was observed on the hydrogen bonded OH groups in methanol clusters with a Stark tuning rate of 3.1 cm-1 (MV cm-1)-1 as an average behaviour. Furthermore, the Stark tuning of the OH oscillators in methanol depends on their hydrogen bonding environment wherein molecules with the DAA motif show higher rates than the rest. The present work suggests that the OH group of methanol has higher sensitivity as a vibrational probe relative to the OH group of water.
Collapse
Affiliation(s)
- Manjusha Boda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
34
|
Sadhukhan D, Hazra A, Patwari GN. Bend-to-Break: Curvilinear Proton Transfer in Phenol-Ammonia Clusters. J Phys Chem A 2020; 124:3101-3108. [PMID: 32227953 DOI: 10.1021/acs.jpca.0c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electric field experienced by the OH group of phenol embedded in the cluster of ammonia molecules depends on the relative orientation of the ammonia molecules, and a critical field of 236 MV cm-1 is essential for the transfer of a proton from phenol to the surrounding ammonia cluster. However, exceptions to this rule were observed, which indicates that the projection of the solvent electric field over the O-H bond is not a definite descriptor of the proton transfer reaction. Therefore, a critical electric field is necessary, but it is not a sufficient condition for the proton abstraction. This, in combination with an adequate solvation of the acceptor ammonia molecule in a triple donor motif that energetically favors the proton transfer process, constitutes necessary and sufficient conditions for the spontaneous proton abstraction. The proton transfer process in phenol-(ammonia)n clusters is statistically favored to occur away from the plane of the phenyl ring and follows a curvilinear path which includes the O-H bond elongation and out-of-plane movement of the proton. Colloquially, this proton transfer can be referred to as a "bend-to-break" process.
Collapse
Affiliation(s)
- Debopriya Sadhukhan
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
36
|
Protein polarization effects in the thermodynamic computation of vibrational Stark shifts. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance. J Colloid Interface Sci 2019; 553:59-70. [DOI: 10.1016/j.jcis.2019.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/06/2023]
|
38
|
Galabov B, Koleva G, Hadjieva B, Schaefer HF. π‐Hydrogen Bonding Probes Chemical Reactivity: Bromination of a CC Double Bond and Electrophilic Aromatic Benzylation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Boris Galabov
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Gergana Koleva
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and PharmacyUniversity of Sofia 1 James Bourchier Ave 1164 Sofia Bulgaria
| | - Henry F. Schaefer
- Center for Computational Quantum ChemistryUniversity of Georgia 1004 Cedar Street, Athens Georgia 30602 USA
| |
Collapse
|
39
|
Liu ZY, Hu JW, Huang CH, Huang TH, Chen DG, Ho SY, Chen KY, Li EY, Chou PT. Sulfur-Based Intramolecular Hydrogen-Bond: Excited-State Hydrogen-Bond On/Off Switch with Dual Room-Temperature Phosphorescence. J Am Chem Soc 2019; 141:9885-9894. [DOI: 10.1021/jacs.9b02765] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Jiun-Wei Hu
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Chun-Hao Huang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, Republic of China
| | - Teng-Hsing Huang
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Ssu-Yu Ho
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | - Kew-Yu Chen
- Department of Chemical Engineering, Feng Chia University, Taichung, 40724 Taiwan, Republic of China
| | - Elise Y. Li
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan, Republic of China
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| |
Collapse
|
40
|
Galabov B, Koleva G, Hadjieva B, Schaefer HF. π-Hydrogen Bonding Probes the Reactivity of Aromatic Compounds: Nitration of Substituted Benzenes. J Phys Chem A 2019; 123:1069-1076. [PMID: 30624929 DOI: 10.1021/acs.jpca.8b12508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shifts of phenol O-H stretching vibration frequencies [Δν(OH)exp] upon π-hydrogen bonding with aromatic compounds is proposed as a spectroscopic probe of the reactivity of aromatic substrates toward electrophiles. A single infrared spectrum reflecting the Δν(OH)exp shift for an aromatic species in a reference solvent (CCl4 in this study) provides a good estimate of reactivity. The methodology is applied in rationalizing reactivity trends for the BF3 catalyzed nitration by methylnitrate in nitromethane of 20 aromatic reactants, including benzene, 11 methylbenzenes, several monoalkyl benzenes, the four halobenzenes, and anisole. Literature kinetic data are employed in the analysis. Very good correlations between relative rates of nitration and Δν(OH)exp are obtained. The approach is best applied to reactions, where the initial interactions between the reactants controls the rates. A new theoretical quantity, the shifts (with respect to benzene) of the molecular electrostatic potential at 1.5 Å over the centroid of the aromatic ring [Δ V(1.5)] is defined and shown to provide a good description of substituent effects on properties of the aromatic species. B3LYP density functional and MP2 ab initio methods combined with the 6-311++G(3df,2pd) basis set are employed in evaluating the Δ V(1.5) values.
Collapse
Affiliation(s)
- Boris Galabov
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Gergana Koleva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Boriana Hadjieva
- Department of Chemistry and Pharmacy , University of Sofia , Sofia 1164 , Bulgaria
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
41
|
Matamoros E, Cintas P, Palacios JC. Tautomerism and stereodynamics in Schiff bases from gossypol and hemigossypol with N-aminoheterocycles. Org Biomol Chem 2019; 17:6229-6250. [DOI: 10.1039/c9ob01011d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gossypol, a natural male contraceptive, can be functionalized via dynamic imine linkages, whose tautomerism has been explored in detail.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| | - Juan Carlos Palacios
- Departamento de Química Orgánica e Inorgánica
- Facultad de Ciencias
- and IACYS-Unidad de Química Verde y Desarrollo Sostenible
- Universidad de Extremadura
- 06006 Badajoz
| |
Collapse
|
42
|
Wang Y, Yang Q, Zhao M, Wu J, Su B. Silica-Nanochannel-Based Interferometric Sensor for Selective Detection of Polar and Aromatic Volatile Organic Compounds. Anal Chem 2018; 90:10780-10785. [DOI: 10.1021/acs.analchem.8b01681] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yafeng Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qian Yang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Meijiao Zhao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Banerjee P, Chakraborty T. Weak hydrogen bonds: insights from vibrational spectroscopic studies. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1419731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Pujarini Banerjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - Tapas Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
44
|
Abstract
The ability to rapidly assess the preferred conformation of key fragments in a structure “by visual inspection” is a very useful starting point in the process of drug design. With the ability to do so, one could address questions like: “How could we avoid planarity in a molecule?”, “Will a molecule change its conformational preference if we make it more or less basic?” or “How does this electronic repulsion affect the conformational preference in the system?” in timely fashion. In this paper, we describe how the conformational energy profile (CEP, plot of energy as a function of dihedral bond angle) of a fragment can be interpreted through the understanding the interplay between resonance stabilization, steric effects and electrostatic interactions. Fifty-nine biaryl and aryl carbonyl fragments present in oral drugs or which are close derivatives thereof were selected. Calculation of their CEPs using ab initio methodology allowed us to conclude the relative importance of these factors in the conformational preference of these fragments as follows: “steric repulsion > lone pair—lone pair repulsion > lone pair—fluorine repulsion > resonance stabilization” and to formulate “rules of thumb” that the practicing medicinal/organic chemist can apply when analysing molecules that contain these fragments.
Collapse
Affiliation(s)
| | - John M. Schaus
- Discovery Chemistry Research and Technologies, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| |
Collapse
|
45
|
Zheng D, Yuan XA, Ma H, Li X, Wang X, Liu Z, Ma J. Unexpected solvent effects on the UV/Vis absorption spectra of o-cresol in toluene and benzene: in contrast with non-aromatic solvents. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171928. [PMID: 29657794 PMCID: PMC5882718 DOI: 10.1098/rsos.171928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/09/2018] [Indexed: 06/07/2023]
Abstract
Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ma
- Author for correspondence: Jing Ma e-mail:
| |
Collapse
|
46
|
Galabov B, Nikolova V, Cheshmedzhieva D, Hadjieva B, Schaefer HF. Hyperconjugative effects in π-hydrogen bonding: Theory and experiment. J Comput Chem 2017; 39:527-534. [DOI: 10.1002/jcc.25088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Boris Galabov
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
- Center for Computational Quantum Chemistry, University of Georgia; Athens Georgia 30602
| | - Valia Nikolova
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
| | | | - Boriana Hadjieva
- Department of Chemistry and Pharmacy; University of Sofia; Sofia 1164 Bulgaria
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia; Athens Georgia 30602
| |
Collapse
|
47
|
Guan L, Holl MG, Pitts CR, Struble MD, Siegler MA, Lectka T. Through-Space Activation Can Override Substituent Effects in Electrophilic Aromatic Substitution. J Am Chem Soc 2017; 139:14913-14916. [DOI: 10.1021/jacs.7b09792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangyu Guan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxwell Gargiulo Holl
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Cody Ross Pitts
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Mark D. Struble
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
49
|
Maier JM, Li P, Vik EC, Yehl CJ, Strickland SMS, Shimizu KD. Measurement of Solvent OH−π Interactions Using a Molecular Balance. J Am Chem Soc 2017; 139:6550-6553. [DOI: 10.1021/jacs.7b02349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Josef M. Maier
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ping Li
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Erik C. Vik
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher J. Yehl
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sharon M. S. Strickland
- Department
of Biology, Chemistry, and Physics, Converse College, Spartanburg, South Carolina 29302, United States
| | - Ken D. Shimizu
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
50
|
Kumar S, Singh SK, Vaishnav JK, Hill JG, Das A. Interplay among Electrostatic, Dispersion, and Steric Interactions: Spectroscopy and Quantum Chemical Calculations of π-Hydrogen Bonded Complexes. Chemphyschem 2017; 18:828-838. [PMID: 28124829 DOI: 10.1002/cphc.201601405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Indexed: 11/07/2022]
Abstract
π-Hydrogen bonding interactions are ubiquitous in both materials and biology. Despite their relatively weak nature, great progress has been made in their investigation by experimental and theoretical methods, but this becomes significantly more complicated when secondary intermolecular interactions are present. In this study, the effect of successive methyl substitution on the supramolecular structure and interaction energy of indole⋅⋅⋅methylated benzene (ind⋅⋅⋅n-mb, n=1-6) complexes is probed through a combination of supersonic jet experiments and benchmark-quality quantum chemical calculations. It is demonstrated that additional secondary interactions introduce a subtle interplay among electrostatic and dispersion forces, as well as steric repulsion, which fine-tunes the overall structural motif. Resonant two-photon ionization and IR-UV double-resonance spectroscopy techniques are used to probe jet-cooled ind⋅⋅⋅n-mb (n=2, 3, 6) complexes, with redshifting of the N-H IR stretching frequency showing that increasing the degree of methyl substitution increases the strength of the primary N-H⋅⋅⋅π interaction. Ab initio harmonic frequency and binding energy calculations confirm this trend for all six complexes. Electronic spectra of the three dimers are broad and structureless, with quantum chemical calculations revealing that this is likely to be due to multiple tilted conformations of each dimer possessing similar stabilization energies.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.,Present address: Department of Dynamics at Surfaces, Max Planck Institute of Biophysical Chemistry, Am Faßberg 11, 37077, Gottingen, Germany
| | - Santosh K Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Jamuna K Vaishnav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.,Present address: Indian Institute of Technology (IIT) Indore, Khandwa Rd, Simrol, Madhya, Pradesh, 452020, India
| | - J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|