1
|
Hudspeth J, Rogge K, Dörner S, Müll M, Hoffmeister D, Rupp B, Werten S. Methyl transfer in psilocybin biosynthesis. Nat Commun 2024; 15:2709. [PMID: 38548735 PMCID: PMC10978996 DOI: 10.1038/s41467-024-46997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Psilocybin, the natural hallucinogen produced by Psilocybe ("magic") mushrooms, holds great promise for the treatment of depression and several other mental health conditions. The final step in the psilocybin biosynthetic pathway, dimethylation of the tryptophan-derived intermediate norbaeocystin, is catalysed by PsiM. Here we present atomic resolution (0.9 Å) crystal structures of PsiM trapped at various stages of its reaction cycle, providing detailed insight into the SAM-dependent methylation mechanism. Structural and phylogenetic analyses suggest that PsiM derives from epitranscriptomic N6-methyladenosine writers of the METTL16 family, which is further supported by the observation that bound substrates physicochemically mimic RNA. Inherent limitations of the ancestral monomethyltransferase scaffold hamper the efficiency of psilocybin assembly and leave PsiM incapable of catalysing trimethylation to aeruginascin. The results of our study will support bioengineering efforts aiming to create novel variants of psilocybin with improved therapeutic properties.
Collapse
Affiliation(s)
- Jesse Hudspeth
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA
| | - Kai Rogge
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sebastian Dörner
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maximilian Müll
- Research Group Biosynthetic Design of Natural Products, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- k.-k. Hofkristallamt, San Diego, California, USA
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Matienko LI, Mil EM, Albantova AA, Goloshchapov AN. The Role H-Bonding and Supramolecular Structures in Homogeneous and Enzymatic Catalysis. Int J Mol Sci 2023; 24:16874. [PMID: 38069195 PMCID: PMC10707003 DOI: 10.3390/ijms242316874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The article analyzes the role of hydrogen bonds and supramolecular structures in enzyme catalysis and model systems. Hydrogen bonds play a crucial role in many enzymatic reactions. However, scientists have only recently attempted to harness the power of hydrogen bonds in homogeneous catalytic systems. One of the newest directions is associated with attempts to control the properties of catalysts by influencing the "second coordination sphere" of metal complexes. The role H-bonding, and the building of stable supramolecular nanostructures due to intermolecular H-bonds, based on catalytic active heteroligand iron (Fe) or nickel (Ni) complexes formed during hydrocarbon oxidations were assessed via the AFM (Atomic-force microscopy) method, which was proposed and applied by authors of this manuscript. Th is article also discusses the roles of hydrogen bonds and supramolecular structures in oxidation reactions catalyzed by heteroligand Ni and Fe complexes, which are not only effective homogeneous catalysts but also structural and functional models of Oxygenases.
Collapse
Affiliation(s)
- Ludmila I. Matienko
- N.M. Emanuel Institution of Biochemical Physics Russian Academy of Science, 4 Kosygin Str., 119334 Moscow, Russia; (E.M.M.); (A.A.A.); (A.N.G.)
| | | | | | | |
Collapse
|
3
|
Azizi K, Gori M, Morzan U, Hassanali A, Kurian P. Examining the origins of observed terahertz modes from an optically pumped atomistic model protein in aqueous solution. PNAS NEXUS 2023; 2:pgad257. [PMID: 37575674 PMCID: PMC10416812 DOI: 10.1093/pnasnexus/pgad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The microscopic origins of terahertz (THz) vibrational modes in biological systems are an active and open area of current research. Recent experiments [Phys Rev X. 8, 031061 (2018)] have revealed the presence of a pronounced mode at ∼0.3 THz in fluorophore-decorated bovine serum albumin (BSA) protein in aqueous solution under nonequilibrium conditions induced by optical pumping. This result was heuristically interpreted as a collective elastic fluctuation originating from the activation of a low-frequency phonon mode. In this work, we show that the sub-THz spectroscopic response emerges in a statistically significant manner (> 2 σ ) from such collective behavior, illustrating how photoexcitation can alter specific THz vibrational modes. We revisit the theoretical analysis with proof-of-concept molecular dynamics that introduce optical excitations into the simulations. Using information theory techniques, we show that these excitations can give rise to a multiscale response involving two optically excited chromophores (tryptophans), other amino acids in the protein, ions, and water. Our results motivate new experiments and fully nonequilibrium simulations to probe these phenomena, as well as the refinement of atomistic models of Fröhlich condensates that are fundamentally determined by nonlinear interactions in biology.
Collapse
Affiliation(s)
- Khatereh Azizi
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Matteo Gori
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Uriel Morzan
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Philip Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| |
Collapse
|
4
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Gao S, Klinman JP. Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts. Curr Opin Struct Biol 2022; 75:102434. [PMID: 35872562 PMCID: PMC9901422 DOI: 10.1016/j.sbi.2022.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023]
Abstract
With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. https://twitter.com/S_H_Gao
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
6
|
Roy RK, Patra N. Prediction of COMT Inhibitors Using Machine Learning and Molecular Dynamics Methods. J Phys Chem B 2022; 126:3477-3492. [PMID: 35533359 DOI: 10.1021/acs.jpcb.1c10278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catechol O-methyltransferase (COMT) plays a vital role in deactivating neurotransmitters like dopamine, norepinephrine, etc., by methylating those compounds. However, the deactivation of an excess amount of neurotransmitters leads to serious mental ailments such as Parkinson's disease. Molecules that bind inside the enzyme's active site inhibit this methylation mechanism by methylating themselves, termed COMT inhibitors. Our study is focused on designing these inhibitors by various machine learning methods. First, we have developed a classification model with experimentally available COMT inhibitors, which helped us generate a new data set of small inhibitor-like molecules. Then, to predict the activity of the new molecules, we have applied regression techniques such as Random Forest, AdaBoost, gradient boosting, and support vector machines. Each of the regression models yielded an R2 value > 70% for both training and test data sets. Finally, to validate our models, 200 ns long molecular dynamics (MD) simulations of the two known inhibitors with known IC50 values and the resultant inhibitors were performed inside the binding pockets to check their stability within. The free energy barrier of the methyl transfer from S-adenosyl-l-methionine (SAM) to each inhibitor was determined by combining steered molecular dynamics (SMD) and umbrella sampling using the quantum mechanics/molecular mechanics (QM/MM) method.
Collapse
Affiliation(s)
- Rakesh Kumar Roy
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
7
|
Demapan D, Kussmann J, Ochsenfeld C, Cui Q. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition. J Chem Theory Comput 2022; 18:2530-2542. [PMID: 35226489 PMCID: PMC9652774 DOI: 10.1021/acs.jctc.1c00714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To analyze the impact of various technical details on the results of quantum mechanical (QM)/molecular mechanical (MM) enzyme simulations, including the QM region size, catechol-O-methyltransferase (COMT) is studied as a model system using an approximate QM/MM method (DFTB3/CHARMM). The results show that key equilibrium and kinetic properties for methyl transfer in COMT exhibit limited variations with respect to the size of the QM region, which ranges from ∼100 to ∼500 atoms in this study. With extensive sampling, local and global structural characteristics of the enzyme are largely conserved across the studied QM regions, while the nature of the transition state (e.g., secondary kinetic isotope effect) and reaction exergonicity are largely maintained. Deviations in the free energy profile with different QM region sizes are similar in magnitude to those observed with changes in other simulation protocols, such as different initial enzyme conformations and boundary conditions. Electronic structural properties, such as the covariance matrix of residual charge fluctuations, appear to exhibit rather long-range correlations, especially when the peptide backbone is included in the QM region; this observation holds when a range-separated DFT approach is used as the QM region, suggesting that delocalization error is unlikely the origin. Overall, the analyses suggest that multiple simulation details determine the results of QM/MM enzyme simulations with comparable contributions.
Collapse
Affiliation(s)
- Darren Demapan
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany.,Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jörg Kussmann
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Abstract
Earlier, we established that nickel or iron heteroligand complexes, which include PhOH (nickel complexes) or tyrosine residue (nickel or iron complexes), are not only hydrocarbon oxidation catalysts (in the case of PhOH), but also simulate the active centers of enzymes (PhOH, tyrosine). The AFM method established the self-organization of nickel or iron heteroligand complexes, which included tyrosine residue or PhOH, into supramolecular structures on a modified silicon surface. Supramolecular structures were formed as a result of H-bonds and other non-covalent intermolecular interactions and, to a certain extent, reflected the structures involved in the mechanisms of reactions of homogeneous and enzymatic catalysis. Using the AFM method, we obtained evidence at the model level in favor of the involvement of the tyrosine fragment as one of the possible regulatory factors in the functioning of Ni(Fe)ARD dioxygenases or monooxygenases of the family of cytochrome P450. The principles of actions of these oxygenases were used to create highly efficient catalytic systems for the oxidation of hydrocarbons.
Collapse
|
9
|
Summers TJ, Cheng Q, Palma MA, Pham DT, Kelso DK, Webster CE, DeYonker NJ. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study. Biophys J 2021; 120:3577-3587. [PMID: 34358526 DOI: 10.1016/j.bpj.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Qianyi Cheng
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Manuel A Palma
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Diem-Trang Pham
- Department of Chemistry, The University of Memphis, Memphis, Tennessee; Department of Computer Science, The University of Memphis, Memphis, Tennessee
| | - Dudley K Kelso
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
10
|
Planas-Iglesias J, Marques SM, Pinto GP, Musil M, Stourac J, Damborsky J, Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol Adv 2021; 47:107696. [PMID: 33513434 DOI: 10.1016/j.biotechadv.2021.107696] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| |
Collapse
|
11
|
Liu F, Zhang J. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study. J Biochem 2020; 168:417-425. [DOI: 10.1093/jb/mvaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023] Open
Abstract
AbstractHuman catechol-O-methyltransferase, a key enzyme related to neurotransmitter metabolism, catalyses a methyl transfer from S-adenosylmethionine to catechol. Although extensive studies aim to understand the enzyme mechanisms, the connection of protein dynamics and enzyme catalysis is still not clear. Here, W38in (Trp143Phe) and W38in/Y68A (Trp143Phe with Tyr68Ala) mutants were carried out to study the relationship of dynamics and catalysis in nano-second timescale using time-resolved fluorescence lifetimes and Stokes shifts in various solvents. The comprehensive data implied the mutant W38in/Y68A with lower activity is more rigid than the ‘WT’−W38in, suggesting the importance of flexibility at residue 38 to maintain the optimal catalysis.
Collapse
Affiliation(s)
- Fan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
12
|
Matienko L, Binykov V, Mil E, Zaikov G. Role of Supramolecular Strucutres in Mechanisms of Catalytic Oxidation and Action of Ni(Fe)ARD Dioxygenases on Model Systems. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.03.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Roca M, Williams IH. Transition-State Vibrational Analysis and Isotope Effects for COMT-Catalyzed Methyl Transfer. J Am Chem Soc 2020; 142:15548-15559. [PMID: 32812761 PMCID: PMC7498148 DOI: 10.1021/jacs.0c07344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotopic partition-function ratios (IPFRs) computed for transition structures (TSs) of the methyl-transfer reaction catalyzed by catechol O-methyltransferase and modeled by hybrid QM/MM methods are analyzed. The ability of smaller Hessians to reproduce trends in α-3H3 and 14Cα IPFRs as obtained using the much larger subset QM/MM Hessians from which they are extracted is investigated critically. A 6-atom-extracted Hessian reproduces perfectly the α-T3 IPFR values from the full-subset Hessians of all the TSs but not the α-14CIPFRs. Average AM1/OPLS-AA harmonic frequencies and mean-square amplitudes are presented for the 12 normal modes of the α-CH3 moiety within the active site of several enzymic transition structures, together with QM/MM potential energy scans along each of these modes to assess the degree of anharmonicity. A novel investigation of ponderal effects upon IPFRs suggests that the value for α-14C tends toward a limiting minimum whereas that for α-T3 tends toward a limiting maximum as the mass of the rest of the system increases. The transition vector is dominated by motions of atoms within the donor and acceptor moieties and is very well described as a simple combination of Walden-inversion "umbrella" bending and asymmetric stretching of the SCα and CαO bonds. The contribution of atoms of the protein residues Met40, Tyr68, and Asp141 to the transition vector is extremely small. Average valence force constants for the COMT TS show significant differences from early BEBOVIB estimates which were used in support of the compression hypothesis for catalysis. There is no correlation between TS IPFRs and the nonbonded distances for close contacts between the S atom of SAM and Tyr68 or between any of the H atoms of the transferring methyl group and either Met40 or Asp141.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Ian H Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
14
|
Wang Y, Begley TP. Mechanistic Studies on CysS - A Vitamin B 12-Dependent Radical SAM Methyltransferase Involved in the Biosynthesis of the tert-Butyl Group of Cystobactamid. J Am Chem Soc 2020; 142:9944-9954. [PMID: 32374991 DOI: 10.1021/jacs.9b06454] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cobalamin (Cbl)-dependent radical S-adenosylmethionine (SAM) methyltransferases catalyze methylation reactions at non-nucleophilic centers in a wide range of substrates. CysS is a Cbl-dependent radical SAM methyltransferase involved in cystobactamid biosynthesis. This enzyme catalyzes the sequential methylation of a methoxy group to form ethoxy, i-propoxy, s-butoxy, and t-butoxy groups on a p-aminobenzoate peptidyl carrier protein thioester intermediate. This biosynthetic strategy enables the host myxobacterium to biosynthesize a combinatorial antibiotic library of 25 cystobactamid analogues. In this Article, we describe three experiments to elucidate how CysS uses Cbl, SAM, and a [4Fe-4S] cluster to catalyze iterative methylation reactions: a cyclopropylcarbinyl rearrangement was used to trap the substrate radical and to estimate the rate of the radical substitution reaction involved in the methyl transfer; a bromoethoxy analogue was used to explore the active site topography; and deuterium isotope effects on the hydrogen atom abstraction by the adenosyl radical were used to investigate the kinetic significance of the hydrogen atom abstraction. On the basis of these experiments, a revised mechanism for CysS is proposed.
Collapse
Affiliation(s)
- Yuanyou Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Zhang J, Balsbaugh JL, Gao S, Ahn NG, Klinman JP. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc Natl Acad Sci U S A 2020; 117:10797-10805. [PMID: 32371482 PMCID: PMC7245127 DOI: 10.1073/pnas.1917219117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Jeremy L Balsbaugh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA 94720;
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
16
|
Theoretical O–CH3 bond dissociation enthalpies of selected aromatic and non-aromatic molecules. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Abstract
This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA;
| |
Collapse
|
18
|
Abstract
For decades, there has been debate regarding the origin of the catalytic power of enzymes. In this work, we use the approach of computational chemistry to study the enzyme catechol O-methyltransferase (COMT) and reveal that the two current views on the catalytic mechanism of enzymes, the rate-promoting vibrations and the electric field, may both be viewed as part of the chemical step catalyzed by COMT. However, we show that the rate-promoting vibrations cause the electrostatic effect. This work provides insight into the catalytic mechanism of COMT and resolves a longstanding controversy regarding this enzyme's mechanism.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Lu Y, Wilhelm S, Bai M, Maness P, Ma L. Replication of the Enzymatic Temperature Dependency of the Primary Hydride Kinetic Isotope Effects in Solution: Caused by the Protein-Controlled Rigidity of the Donor-Acceptor Centers? Biochemistry 2019; 58:4035-4046. [PMID: 31478638 DOI: 10.1021/acs.biochem.9b00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The change from the temperature independence of the primary (1°) H/D kinetic isotope effects (KIEs) in wild-type enzyme-catalyzed H-transfer reactions (ΔEa = EaD - EaH ∼ 0) to a strong temperature dependence with the mutated enzymes (ΔEa ≫ 0) has recently been frequently observed. This has prompted some enzymologists to develop new H-tunneling models to correlate ΔEa with the donor-acceptor distance (DAD) at the tunneling-ready state (TRS) as well as the protein thermal motions/dynamics that sample the short DADTRS's for H-tunneling to occur. While extensive evidence supporting or disproving the thermally activated DAD sampling concept has emerged, a comparable study of the simpler bimolecular H-tunneling reactions in solution has not been carried out. In particular, small ΔEa's (∼0) have not been found. In this paper, we report a study of the hydride-transfer reactions from four NADH models to the same hydride acceptor in acetonitrile. The ΔEa's were determined: 0.37 (small), 0.60, 0.99, and 1.53 kcal/mol (large). The α-secondary (2°) KIEs on the acceptor that serve as a ruler for the rigidity of reaction centers were previously reported or determined. All possible productive reactant complex (PRC) configurations were computed to provide insight into the structures of the TRS's. Relationships among structures, 2° KIEs, DADPRC's, and ΔEa's were discussed. The more rigid system with more suppressed 2° C-H vibrations at the TRS and more narrowly distributed DADPRC's in PRCs gave a smaller ΔEa. The results replicated the trend observed in enzymes versus mutated enzymes and appeared to support the concepts of different thermally activated DADTRS sampling processes in response to the rigid versus flexible donor-acceptor centers.
Collapse
Affiliation(s)
- Yun Lu
- Department of Chemistry , Southern Illinois University Edwardsville , Edwardsville , Illinois 62026 , United States
| | - Samantha Wilhelm
- Department of Chemistry , Southern Illinois University Edwardsville , Edwardsville , Illinois 62026 , United States
| | - Mingxuan Bai
- Department of Chemistry , Southern Illinois University Edwardsville , Edwardsville , Illinois 62026 , United States
| | - Peter Maness
- Department of Chemistry , Southern Illinois University Edwardsville , Edwardsville , Illinois 62026 , United States
| | - Li Ma
- Department of Chemistry , Southern Illinois University Edwardsville , Edwardsville , Illinois 62026 , United States
| |
Collapse
|
20
|
Yang Z, Liu F, Steeves AH, Kulik HJ. Quantum Mechanical Description of Electrostatics Provides a Unified Picture of Catalytic Action Across Methyltransferases. J Phys Chem Lett 2019; 10:3779-3787. [PMID: 31244268 DOI: 10.1021/acs.jpclett.9b01555] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methyl transferases (MTases) are a well-studied class of enzymes for which competing enzymatic enhancement mechanisms have been suggested, ranging from structural methyl group CH···X hydrogen bonds (HBs) to electrostatic- and charge-transfer-driven stabilization of the transition state (TS). We identified all Class I MTases for which reasonable resolution (<2.0 Å) crystal structures could be used to form catalytically competent ternary complexes for multiscale (i.e., quantum-mechanical/molecular-mechanical or QM/MM) simulation of the SN2 methyl transfer reaction coordinate. The four Class I MTases studied have both distinct functions (e.g., protein repair or biosynthesis) and substrate nucleophiles (i.e., C, N, or O). While CH···X HBs stabilize all reactant complexes, no universal TS stabilization role is found for these interactions in MTases. A consistent picture is instead obtained through analysis of charge transfer and electrostatics, wherein much of cofactor-substrate charge separation is maintained in the TS region, and electrostatic potential is correlated with substrate nucleophilicity (i.e., intrinsic reactivity).
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fang Liu
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Adam H Steeves
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
22
|
Yang Z, Mehmood R, Wang M, Qi HW, Steeves AH, Kulik HJ. Revealing quantum mechanical effects in enzyme catalysis with large-scale electronic structure simulation. REACT CHEM ENG 2019; 4:298-315. [PMID: 31572618 PMCID: PMC6768422 DOI: 10.1039/c8re00213d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes have evolved to facilitate challenging reactions at ambient conditions with specificity seldom matched by other catalysts. Computational modeling provides valuable insight into catalytic mechanism, and the large size of enzymes mandates multi-scale, quantum mechanical-molecular mechanical (QM/MM) simulations. Although QM/MM plays an essential role in balancing simulation cost to enable sampling with full QM treatment needed to understand electronic structure in enzyme active sites, the relative importance of these two strategies for understanding enzyme mechanism is not well known. We explore challenges in QM/MM for studying the reactivity and stability of three diverse enzymes: i) Mg2+-dependent catechol O-methyltransferase (COMT), ii) radical enzyme choline trimethylamine lyase (CutC), and iii) DNA methyltransferase (DNMT1), which has structural Zn2+ binding sites. In COMT, strong non-covalent interactions lead to long range coupling of electronic structure properties across the active site, but the more isolated nature of the metallocofactor in DNMT1 leads to faster convergence of some properties. We quantify these effects in COMT by computing covariance matrices of by-residue electronic structure properties during dynamics and along the reaction coordinate. In CutC, we observe spontaneous bond cleavage following initiation events, highlighting the importance of sampling and dynamics. We use electronic structure analysis to quantify the relative importance of CHO and OHO non-covalent interactions in imparting reactivity. These three diverse cases enable us to provide some general recommendations regarding QM/MM simulation of enzymes.
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mengyi Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
23
|
Kulkarni Y, Kamerlin SCL. Computational physical organic chemistry using the empirical valence bond approach. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.apoc.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases. Molecules 2018; 23:molecules23112965. [PMID: 30428636 PMCID: PMC6278250 DOI: 10.3390/molecules23112965] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022] Open
Abstract
Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered multiple instances of carbon tetrel bonding between the methyl group of the substrate S-adenosylmethionine (AdoMet) and electronegative atoms of small molecule inhibitors, ions, and solvent molecules. The majority of these interactions involve oxygen atoms as the Lewis base, with the exception of one structure in which a chlorine atom of an inhibitor functions as the electron donor. Quantum mechanical analyses of a representative subset of the methyltransferase structures from the survey revealed that the calculated interaction energies and spectral properties are consistent with the values for bona fide carbon tetrel bonds. The discovery of methyl tetrel bonding offers new insights into the mechanism underlying the SN2 reaction catalyzed by AdoMet-dependent methyltransferases. These findings highlight the potential of exploiting these interactions in developing new methyltransferase inhibitors.
Collapse
|
25
|
Saez DA, Zinovjev K, Tuñón I, Vöhringer-Martinez E. Catalytic Reaction Mechanism in Native and Mutant Catechol-O-methyltransferase from the Adaptive String Method and Mean Reaction Force Analysis. J Phys Chem B 2018; 122:8861-8871. [DOI: 10.1021/acs.jpcb.8b07339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Adrian Saez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| |
Collapse
|
26
|
Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 2018; 20:20650-20660. [PMID: 30059109 PMCID: PMC6085747 DOI: 10.1039/c8cp03871f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations provide key insights into enzyme structure-function relationships. Numerous studies have demonstrated that large QM regions are needed to systematically converge ground state, zero temperature properties with electrostatic embedding QM/MM. However, it is not well known if ab initio QM/MM free energy simulations have this same dependence, in part due to the hundreds of thousands of energy evaluations required for free energy estimations that in turn limit QM region size. Here, we leverage recent advances in electronic structure efficiency and accuracy to carry out range-separated hybrid density functional theory free energy simulations in a representative methyltransferase. By studying 200 ps of ab initio QM/MM dynamics for each of five QM regions from minimal (64 atoms) to one-sixth of the protein (544 atoms), we identify critical differences between large and small QM region QM/MM in charge transfer between substrates and active site residues as well as in geometric structure and dynamics that coincide with differences in predicted free energy barriers. Distinct geometric and electronic structure features in the largest QM region indicate that important aspects of enzymatic rate enhancement in methyltransferases are identified with large-scale electronic structure.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
28
|
Świderek K, Tuñón I, Williams IH, Moliner V. Insights on the Origin of Catalysis on Glycine N-Methyltransferase from Computational Modeling. J Am Chem Soc 2018; 140:4327-4334. [PMID: 29460630 PMCID: PMC6613375 DOI: 10.1021/jacs.7b13655] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of enzyme catalysis remains a question of debate despite much intense study. We report a QM/MM theoretical study of the SN2 methyl transfer reaction catalyzed by a glycine N-methyltransferase (GNMT) and three mutants to test whether recent experimental observations of rate-constant reductions and variations in inverse secondary α-3H kinetic isotope effects (KIEs) should be attributed to changes in the methyl donor-acceptor distance (DAD): Is catalysis due to a compression effect? Semiempirical (AM1) and DFT (M06-2X) methods were used to describe the QM subset of atoms, while OPLS-AA and TIP3P classical force fields were used for the protein and water molecules, respectively. The computed activation free energies and KIEs are in good agreement with experimental data, but the mutations do not meaningfully affect the DAD: Compression cannot explain the experimental variations on KIEs. On the contrary, electrostatic properties in the active site correlate with the catalytic activity of wild type and mutants. The plasticity of the enzyme moderates the effects of the mutations, explaining the rather small degree of variation in KIEs and reactivities.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot (Spain)
| | - Ian H. Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| | - Vicent Moliner
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| |
Collapse
|
29
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
30
|
Wilson PB, Williams IH. Computational Modeling of a Caged Methyl Cation: Structure, Energetics, and Vibrational Analysis. J Phys Chem A 2018; 122:1432-1438. [DOI: 10.1021/acs.jpca.7b11836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Philippe B. Wilson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Leicester
School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom
| | - Ian H. Williams
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
31
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
32
|
Kean KM, Carpenter RA, Pandini V, Zanetti G, Hall AR, Faber R, Aliverti A, Karplus PA. High-resolution studies of hydride transfer in the ferredoxin:NADP + reductase superfamily. FEBS J 2017; 284:3302-3319. [PMID: 28783258 DOI: 10.1111/febs.14190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 01/19/2023]
Abstract
Ferredoxin: NADP+ reductase (FNR) is an FAD-containing enzyme best known for catalysing the transfer of electrons from ferredoxin (Fd) to NADP+ to make NADPH during photosynthesis. It is also the prototype for a broad enzyme superfamily, including the NADPH oxidases (NOXs) that all catalyse similar FAD-enabled electron transfers between NAD(P)H and one-electron carriers. Here, we define further mechanistic details of the NAD(P)H ⇌ FAD hydride-transfer step of the reaction based on spectroscopic studies and high-resolution (~ 1.5 Å) crystallographic views of the nicotinamide-flavin interaction in crystals of corn root FNR Tyr316Ser and Tyr316Ala variants soaked with either nicotinamide, NADP+ , or NADPH. The spectra obtained from FNR crystal complexes match those seen in solution and the complexes reveal active site packing interactions and patterns of covalent distortion of the FAD that imply significant active site compression that would favour catalysis. Furthermore, anisotropic B-factors show that the mobility of the C4 atom of the nicotinamide in the FNR:NADP+ complex has a directionality matching that expected for boat-like excursions of the nicotinamide ring thought to enhance hydride transfer. Arguments are made for the relevance of this binding mode to catalysis, and specific consideration is given to how the results extrapolate to provide insight to structure-function relations for the membrane-bound NOX enzymes for which little structural information has been available. DATABASES Structural data are available in the PDB database under the accession numbers 3LO8 (wild-type), 5VW4 [Y316S:nicotinamide (P32 21)], 5VW9 [Y316S:nicotinamide (P31 21)], 5VW3 [Y316S:NADP+ (P32 21)], 5VW8 [Y316S:NADP+ (P31 21)], 5VW2 [Y316S:NADPH (P32 21)], 5VW5 [Y316A:nicotinamide (P32 21)], 5VW6 [Y316A:NADP+ (P32 21)], 5VW7 [Y316A:NADPH (P32 21)], 5VWA [Y316F (P32 21)], and 5VWB [Y316F:NADP+ (P31 21)]. Enzyme Commission number: ferredoxin:NADP+ reductase - E C1.18.1.2.
Collapse
Affiliation(s)
- Kelsey M Kean
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Russell A Carpenter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Vittorio Pandini
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Giuliana Zanetti
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Andrea R Hall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Rick Faber
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | | | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
33
|
Suzuki K, Morokuma K, Maeda S. Multistructural microiteration technique for geometry optimization and reaction path calculation in large systems. J Comput Chem 2017. [PMID: 28643353 DOI: 10.1002/jcc.24857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction-center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM-ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM-ONIOM-microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimichi Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
34
|
Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 2017; 6:e28474. [PMID: 28534737 PMCID: PMC5462536 DOI: 10.7554/elife.28474] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.
Collapse
Affiliation(s)
- Timothy Erickson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Clive P Morgan
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | | | - Reo Maeda
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rachel Clemens
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Alex Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
35
|
Cunningham CL, Wu Z, Jafari A, Zhao B, Schrode K, Harkins-Perry S, Lauer A, Müller U. The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. eLife 2017; 6:e24318. [PMID: 28504928 PMCID: PMC5462538 DOI: 10.7554/elife.24318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/14/2017] [Indexed: 12/26/2022] Open
Abstract
Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here, we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Zizhen Wu
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Aria Jafari
- Department of Surgery, University of California, San Diego, San Diego, United States
| | - Bo Zhao
- Department of Otolaryngology Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Kat Schrode
- Department of Otolaryngology, Johns Hopkins University, Baltimore, United States
| | - Sarah Harkins-Perry
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, United States
| | - Amanda Lauer
- Department of Otolaryngology, Johns Hopkins University, Baltimore, United States
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
36
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
37
|
Stratton CF, Poulin MB, Du Q, Schramm VL. Kinetic Isotope Effects and Transition State Structure for Human Phenylethanolamine N-Methyltransferase. ACS Chem Biol 2017; 12:342-346. [PMID: 27997103 PMCID: PMC5553282 DOI: 10.1021/acschembio.6b00922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent conversion of norepinephrine to epinephrine. Epinephrine has been associated with critical processes in humans including the control of respiration and blood pressure. Additionally, PNMT activity has been suggested to play a role in hypertension and Alzheimer's disease. In the current study, labeled SAM substrates were used to measure primary methyl-14C and 36S and secondary methyl-3H, 5'-3H, and 5'-14C intrinsic kinetic isotope effects for human PNMT. The transition state of human PNMT was modeled by matching kinetic isotope effects predicted via quantum chemical calculations to intrinsic values. The model provides information on the geometry and electrostatics of the human PNMT transition state structure and indicates that human PNMT catalyzes the formation of epinephrine through an early SN2 transition state in which methyl transfer is rate-limiting.
Collapse
Affiliation(s)
- Christopher F. Stratton
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | - Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | |
Collapse
|
38
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Lehmann J. Induced fit of the peptidyl-transferase center of the ribosome and conformational freedom of the esterified amino acids. RNA (NEW YORK, N.Y.) 2017; 23:229-239. [PMID: 27879432 PMCID: PMC5238797 DOI: 10.1261/rna.057273.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
The catalytic site of most enzymes can efficiently handle only one substrate. In contrast, the ribosome is capable of polymerizing at a similar rate at least 20 different kinds of amino acids from aminoacyl-tRNA carriers while using just one catalytic site, the peptidyl-transferase center (PTC). An induced-fit mechanism has been uncovered in the PTC, but a possible connection between this mechanism and the uniform handling of the substrates has not been investigated. We present an analysis of published ribosome structures supporting the hypothesis that the induced fit eliminates unreactive rotamers predominantly populated for some A-site aminoacyl esters before induction. We show that this hypothesis is fully consistent with the wealth of kinetic data obtained with these substrates. Our analysis reveals that induction constrains the amino acids into a reactive conformation in a side-chain independent manner. It allows us to highlight the rationale of the PTC structural organization, which confers to the ribosome the very unusual ability to handle large as well as small substrates.
Collapse
Affiliation(s)
- Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Campus Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
40
|
Siegrist J, Netzer J, Mordhorst S, Karst L, Gerhardt S, Einsle O, Richter M, Andexer JN. Functional and structural characterisation of a bacterialO-methyltransferase and factors determining regioselectivity. FEBS Lett 2017; 591:312-321. [DOI: 10.1002/1873-3468.12530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Julia Netzer
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Lukas Karst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Stefan Gerhardt
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Oliver Einsle
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
- BIOSS Centre for Biological Signalling Studies; Freiburg Germany
| | - Michael Richter
- Bio-, Electro- and Chemocatalysis BioCat, Straubing Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| |
Collapse
|
41
|
Linscott JA, Kapilashrami K, Wang Z, Senevirathne C, Bothwell IR, Blum G, Luo M. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Proc Natl Acad Sci U S A 2016; 113:E8369-E8378. [PMID: 27940912 PMCID: PMC5206543 DOI: 10.1073/pnas.1609032114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of protein substrates, and their dysregulation has been linked to many diseases, including cancer. Accumulated evidence suggests that the reaction path of PKMT-catalyzed methylation consists of the formation of a cofactor(cosubstrate)-PKMT-substrate complex, lysine deprotonation through dynamic water channels, and a nucleophilic substitution (SN2) transition state for transmethylation. However, the molecular characters of the proposed process remain to be elucidated experimentally. Here we developed a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method and corresponding mathematic matrix to determine precisely the ratios of isotopically methylated peptides. This approach may be generally applicable for examining the kinetic isotope effects (KIEs) of posttranslational modifying enzymes. Protein lysine methyltransferase SET8 is the sole PKMT to monomethylate histone 4 lysine 20 (H4K20) and its function has been implicated in normal cell cycle progression and cancer metastasis. We therefore implemented the MS-based method to measure KIEs and binding isotope effects (BIEs) of the cofactor S-adenosyl-l-methionine (SAM) for SET8-catalyzed H4K20 monomethylation. A primary intrinsic 13C KIE of 1.04, an inverse intrinsic α-secondary CD3 KIE of 0.90, and a small but statistically significant inverse CD3 BIE of 0.96, in combination with computational modeling, revealed that SET8-catalyzed methylation proceeds through an early, asymmetrical SN2 transition state with the C-N and C-S distances of 2.35-2.40 Å and 2.00-2.05 Å, respectively. This transition state is further supported by the KIEs, BIEs, and steady-state kinetics with the SAM analog Se-adenosyl-l-selenomethionine (SeAM) as a cofactor surrogate. The distinct transition states between protein methyltransferases present the opportunity to design selective transition-state analog inhibitors.
Collapse
Affiliation(s)
- Joshua A Linscott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| | - Kanishk Kapilashrami
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ian R Bothwell
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gil Blum
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Program of Pharmacology, Weill Graduate School of Medical Science, Cornell University, New York, NY 10021
| |
Collapse
|
42
|
Kulik H, Zhang J, Klinman J, Martínez TJ. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J Phys Chem B 2016; 120:11381-11394. [PMID: 27704827 PMCID: PMC5108028 DOI: 10.1021/acs.jpcb.6b07814] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/09/2016] [Indexed: 01/29/2023]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limits rather slowly, requiring approximately 500-600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11-16 residues or 200-300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.
Collapse
Affiliation(s)
- Heather
J. Kulik
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jianyu Zhang
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Judith
P. Klinman
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Todd J. Martínez
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
43
|
Lerner C, Jakob-Roetne R, Buettelmann B, Ehler A, Rudolph M, Rodríguez Sarmiento RM. Design of Potent and Druglike Nonphenolic Inhibitors for Catechol O-Methyltransferase Derived from a Fragment Screening Approach Targeting the S-Adenosyl-l-methionine Pocket. J Med Chem 2016; 59:10163-10175. [PMID: 27685665 DOI: 10.1021/acs.jmedchem.6b00927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A fragment screening approach designed to target specifically the S-adenosyl-l-methionine pocket of catechol O-methyl transferase allowed the identification of structurally related fragments of high ligand efficiency and with activity on the described orthogonal assays. By use of a reliable enzymatic assay together with X-ray crystallography as guidance, a series of fragment modifications revealed an SAR and, after several expansions, potent lead compounds could be obtained. For the first time nonphenolic and small low nanomolar potent, SAM competitive COMT inhibitors are reported. These compounds represent a novel series of potent COMT inhibitors that might be further optimized to new drugs useful for the treatment of Parkinson's disease, as adjuncts in levodopa based therapy, or for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Christian Lerner
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland Jakob-Roetne
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Bernd Buettelmann
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Ehler
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus Rudolph
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rosa María Rodríguez Sarmiento
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
44
|
Patra N, Ioannidis EI, Kulik HJ. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase. PLoS One 2016; 11:e0161868. [PMID: 27564542 PMCID: PMC5001633 DOI: 10.1371/journal.pone.0161868] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/13/2016] [Indexed: 12/27/2022] Open
Abstract
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases.
Collapse
Affiliation(s)
- Niladri Patra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| |
Collapse
|
45
|
Zhang J, Klinman JP. Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase. J Am Chem Soc 2016; 138:9158-65. [PMID: 27355841 PMCID: PMC5270642 DOI: 10.1021/jacs.6b03462] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although an enormous and still growing
number of biologically diverse
methyltransferases have been reported and identified, a comprehensive
understanding of the enzymatic methyl transfer mechanism is still
lacking. Glycine N-methyltransferase (GNMT), a member
of the family that acts on small metabolites as the substrate, catalyzes
methyl transfer from S-adenosyl-l-methionine
(AdoMet) to glycine to form S-adenosyl-l-homocysteine and sarcosine. We report primary carbon (12C/14C) and secondary (1H3/3H3) kinetic isotope effects at the transferred methyl
group, together with 1H3/3H3 binding isotope effects for wild-type GNMT and a series of Tyr21
mutants. The data implicate a compaction effect in the methyl transfer
step that is conferred by the protein structure. Furthermore, a remarkable
similarity of properties is observed between GNMT and catechol O-methyltransferase, despite significant differences between
these enzymes with regard to their active site structures and catalyzed
reactions. We attribute these results to a catalytically relevant
reduction in the methyl donor–acceptor distance that is dependent
on a tyrosine side chain positioned behind the methyl-bearing sulfur
of AdoMet.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Judith P Klinman
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
46
|
Abstract
Human DNA methyltransferase 1 (DNMT1) maintains the epigenetic state of DNA by replicating CpG methylation signatures from parent to daughter strands, producing heritable methylation patterns through cell divisions. The proposed catalytic mechanism of DNMT1 involves nucleophilic attack of Cys(1226) to cytosine (Cyt) C6, methyl transfer from S-adenosyl-l-methionine (SAM) to Cyt C5, and proton abstraction from C5 to form methylated CpG in DNA. Here, we report the subangstrom geometric and electrostatic structure of the major transition state (TS) of the reaction catalyzed by human DNMT1. Experimental kinetic isotope effects were used to guide quantum mechanical calculations to solve the TS structure. Methyl transfer occurs after Cys(1226) attack to Cyt C6, and the methyl transfer step is chemically rate-limiting for DNMT1. Electrostatic potential maps were compared for the TS and ground states, providing the electronic basis for interactions between the protein and reactants at the TS. Understanding the TS of DNMT1 demonstrates the possibility of using similar analysis to gain subangstrom geometric insight into the complex reactions of epigenetic modifications.
Collapse
Affiliation(s)
- Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
47
|
Wilson PB, Williams IH. Influence of Equatorial CH⋅⋅⋅O Interactions on Secondary Kinetic Isotope Effects for Methyl Transfer. Angew Chem Int Ed Engl 2016; 55:3192-5. [PMID: 26823274 PMCID: PMC4770435 DOI: 10.1002/anie.201511708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 11/29/2022]
Abstract
DFT calculations for methyl cation complexed within a constrained cage of water molecules permit the controlled manipulation of the "axial" donor/acceptor distance and the "equatorial" distance to hydrogen-bond acceptors. The kinetic isotope effect k(CH3)/k(CT3) for methyl transfer within a cage with a short axial distance becomes less inverse for shorter equatorial C⋅⋅⋅O distances: a decrease of 0.5 Å results in a 3 % increase at 298 K. Kinetic isotope effects in AdoMet-dependent methyltransferases may be m∧odulated by CH⋅⋅⋅O hydrogen bonding, and factors other than axial compression may contribute, at least partially, to recently reported isotope-effect variations for catechol-O-methyltransferase and its mutant structures.
Collapse
Affiliation(s)
| | - Ian H Williams
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
48
|
Poulin MB, Schneck JL, Matico RE, McDevitt PJ, Huddleston MJ, Hou W, Johnson NW, Thrall SH, Meek TD, Schramm VL. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Proc Natl Acad Sci U S A 2016; 113:1197-201. [PMID: 26787850 PMCID: PMC4747696 DOI: 10.1073/pnas.1521036113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.
Collapse
Affiliation(s)
- Myles B Poulin
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Jessica L Schneck
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Rosalie E Matico
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Patrick J McDevitt
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Michael J Huddleston
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Wangfang Hou
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Neil W Johnson
- Cancer Epigenetics Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - Sara H Thrall
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Thomas D Meek
- Biological Sciences, Platform Technology and Science, GlaxoSmithKline, Collegeville, PA 19426
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461;
| |
Collapse
|
49
|
Wilson PB, Williams IH. Influence of Equatorial CH⋅⋅⋅O Interactions on Secondary Kinetic Isotope Effects for Methyl Transfer. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ian H. Williams
- Department of Chemistry; University of Bath; Bath BA2 7AY UK
| |
Collapse
|
50
|
Law BJC, Bennett MR, Thompson ML, Levy C, Shepherd SA, Leys D, Micklefield J. Effects of Active-Site Modification and Quaternary Structure on the Regioselectivity of Catechol-O-Methyltransferase. Angew Chem Int Ed Engl 2016; 55:2683-7. [PMID: 26797714 PMCID: PMC4770447 DOI: 10.1002/anie.201508287] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/08/2022]
Abstract
Catechol‐O‐methyltransferase (COMT), an important therapeutic target in the treatment of Parkinson's disease, is also being developed for biocatalytic processes, including vanillin production, although lack of regioselectivity has precluded its more widespread application. By using structural and mechanistic information, regiocomplementary COMT variants were engineered that deliver either meta‐ or para‐methylated catechols. X‐ray crystallography further revealed how the active‐site residues and quaternary structure govern regioselectivity. Finally, analogues of AdoMet are accepted by the regiocomplementary COMT mutants and can be used to prepare alkylated catechols, including ethyl vanillin.
Collapse
Affiliation(s)
- Brian J C Law
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Matthew R Bennett
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Mark L Thompson
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin Levy
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sarah A Shepherd
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jason Micklefield
- School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|