1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Le AV, Hartman MCT. Improved synthesis of the unnatural base NaM, and evaluation of its orthogonality in in vitro transcription and translation. RSC Chem Biol 2024; 5:d4cb00121d. [PMID: 39279876 PMCID: PMC11389374 DOI: 10.1039/d4cb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Unnatural base pairs (UBP) promise to diversify cellular function through expansion of the genetic code. Some of the most successful UBPs are the hydrophobic base pairs 5SICS:NaM and TPT3:NaM developed by Romesberg. Much of the research on these UBPs has emphasized strategies to enable their efficient replication, transcription and translation in living organisms. These experiments have achieved spectacular success in certain cases; however, the complexity of working in vivo places strong constraints on the types of experiments that can be done to optimize and improve the system. Testing UBPs in vitro, on the other hand, offers advantages including minimization of scale, the ability to precisely control the concentration of reagents, and simpler purification of products. Here we investigate the orthogonality of NaM-containing base pairs in transcription and translation, looking at background readthrough of NaM codons by the native machinery. We also describe an improved synthesis of NaM triphosphate (NaM-TP) and a new assay for testing the purity of UBP containing RNAs.
Collapse
Affiliation(s)
- Anthony V Le
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| | - Matthew C T Hartman
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| |
Collapse
|
3
|
Wang G, Du Y, Chen T. Enzymatic Preparation of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase and Its Applications. Methods Mol Biol 2024; 2760:133-145. [PMID: 38468086 DOI: 10.1007/978-1-0716-3658-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Efficient preparation of DNA oligonucleotides containing unnatural nucleobases (UBs) that can pair with their cognates to form unnatural base pairs (UBPs) is an essential prerequisite for the application of UBPs in vitro and in vivo. Traditional preparation of oligonucleotides containing unnatural nucleobases largely relies on solid-phase synthesis, which needs to use unstable nucleoside phosphoramidites and a DNA synthesizer, and is environmentally unfriendly and limited in product length. To overcome these limitations of solid-phase synthesis, we developed enzymatic methods for daily laboratory preparation of DNA oligonucleotides containing unnatural nucleobase dNaM, dTPT3, or one of the functionalized dTPT3 derivatives, which can be used for orthogonal DNA labeling or the preparation of DNAs containing UBP dNaM-dTPT3, one of the most successful UBPs to date, based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Here, we first provide a detailed procedure for the TdT-based preparation of DNA oligonucleotides containing 3'-nucleotides of dNaM, dTPT3, or one of dTPT3 derivatives. We then present the procedures for enzyme-linked oligonucleotide assay (ELONA) and imaging of bacterial cells using DNA oligonucleotides containing 3'-nucleotides of dTPT3 derivatives with different functional groups. The procedure for enzymatic synthesis of DNAs containing an internal UBP dNaM-dTPT3 is also described. Hopefully, these methods will greatly facilitate the application of UBPs and the construction of semi-synthetic organisms with an expanded genetic alphabet.
Collapse
Affiliation(s)
- Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
5
|
Bai J, Zou J, Cao Y, Du Y, Chen T. Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet. ACS Synth Biol 2023; 12:2676-2690. [PMID: 37590442 DOI: 10.1021/acssynbio.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Unnatural base pairs (UBPs) have been developed to expand the genetic alphabet in vitro and in vivo. UBP dNaM-dTPT3 and its analogues have been successfully used to construct the first set of semi-synthetic organisms, which suggested the great potential of UBPs to be used for producing novel synthetic biological parts. Two prerequisites for doing so are the facile manipulation of DNA containing UBPs with common tool enzymes, including DNA polymerases and ligases, and the easy availability of UBP-containing DNA strands. Besides, for the application of UBPs in phage synthetic biology, the recognition of UBPs by phage enzymes is essential. Here, we first explore the recognition of dNaM-dTPT3 by a family B DNA polymerase from bacteriophage, T4 DNA polymerase D219A. Results from primer extension, steady-state kinetics, and gap-filling experiments suggest that T4 DNA polymerase D219A can efficiently and faithfully replicate dNaM-dTPT3, and efficiently fill a gap by inserting dTPT3TP or its analogues opposite dNaM. We then systematically explore the recognition of dNaM-dTPT3 and its analogues by different DNA ligases from bacteriophages and find that these DNA ligases are generally able to efficiently ligate the DNA nick next to dNaM-dTPT3 or its analogues, albeit with slightly different efficiencies. These results suggest more enzymatic tools for the manipulation of dNaM-dTPT3 and indicate the potential use of dNaM-dTPT3 for expanding the genetic alphabet in bacteriophages. Based on these results, we next develop and comprehensively optimize an upgraded method for enzymatic preparation of unnatural nucleobase (UB)-containing DNA oligonucleotides with good simplicity and universality.
Collapse
Affiliation(s)
- Jingsi Bai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yijun Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Cao Y, Bai J, Zou J, Du Y, Chen T. One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural. ACS Synth Biol 2023; 12:2691-2706. [PMID: 37672623 DOI: 10.1021/acssynbio.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The genetic alphabet of life has been dramatically expanded via the development of unnatural base pairs (UBPs) that work as efficiently as natural base pairs in the storage and retrieval of genetic information. Among the most predominant UBPs, dNaM-dTPT3 and its analogues have been successfully employed to build semisynthetic cells with a functional six-letter genome. With the rapidly growing applications of UBPs in vitro and in vivo, there is an ever-increasing demand for DNA oligonucleotides containing unnatural bases (UBs) at desired positions. Conventional solid-phase synthesis of oligonucleotides has intrinsic limitations and needs to use unstable unnatural phosphoramidites and a DNA synthesizer, so it does not meet the daily urgent requirement for a few UB-containing DNA oligonucleotides in the laboratory. In this work, we develop a one-pot enzymatic method for preparing dNaM- or dTPT3-containing DNA oligonucleotides via controlled pause and restart of primer extension mediated by Klenow fragment (exo-). By systematic optimization of the reaction conditions, high efficiencies and product purities have been achieved. The universality of this method for preparing DNA oligonucleotides containing dNaM or dTPT3 in different sequence contexts is also demonstrated. This method allows convenient production of an arbitrary UB-containing DNA oligonucleotide in a single test tube with only two natural DNA oligonucleotides, stable nucleoside triphosphates, Klenow fragment (exo-), and other common reagents in the laboratory, providing the lowest cost and the highest simplicity for the enzymatic preparation of UB-containing oligonucleotides. Clearly, this method has great potential to facilitate the in vitro and in vivo applications of the UBPs.
Collapse
Affiliation(s)
- Yijun Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jingsi Bai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Hu Y, Wang Y, Singh J, Sun R, Xu L, Niu X, Huang K, Bai G, Liu G, Zuo X, Chen C, Qin PZ, Fang X. Phosphorothioate-Based Site-Specific Labeling of Large RNAs for Structural and Dynamic Studies. ACS Chem Biol 2022; 17:2448-2460. [PMID: 36069699 PMCID: PMC10186269 DOI: 10.1021/acschembio.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR) spectroscopy, X-ray scattering interferometry (XSI), and single-molecule Förster resonance energy transfer (smFRET) are molecular rulers that provide inter- or intramolecular pair-wise distance distributions in the nanometer range, thus being ideally suitable for structural and dynamic studies of biomolecules including RNAs. The prerequisite for such applications requires site-specific labeling of biomolecules with spin labels, gold nanoparticles, and fluorescent tags, respectively. Recently, site-specific labeling of large RNAs has been achieved by a combination of transcription of an expanded genetic alphabet containing A-T/G-C base pairs and NaM-TPT3 unnatural base pair (UBP) with post-transcriptional modifications at UBP bases by click chemistry or amine-NHS ester reactions. However, due to the bulky sizes of functional groups or labeling probes used, such strategies might cause structural perturbation and decrease the accuracy of distance measurements. Here, we synthesize an α-thiophosphorylated variant of rTPT3TP (rTPT3αS), which allows for post-transcriptional site-specific labeling of large RNAs at the internal α-phosphate backbone via maleimide-modified probes. Subsequent PELDOR, XSI, and smFRET measurements result in narrower distance distributions than labeling at the TPT3 base. The presented strategy provides a new route to empower the molecular rulers for structural and dynamic studies of large RNA and its complex.
Collapse
Affiliation(s)
- Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ruirui Sun
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lilei Xu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolin Niu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Keyun Huang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont Illinois 60439, United States
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Kimoto M, Hirao I. Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Front Mol Biosci 2022; 9:851646. [PMID: 35685243 PMCID: PMC9171071 DOI: 10.3389/fmolb.2022.851646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Amino acid sequences of proteins are encoded in nucleic acids composed of four letters, A, G, C, and T(U). However, this four-letter alphabet coding system limits further functionalities of proteins by the twenty letters of amino acids. If we expand the genetic code or develop alternative codes, we could create novel biological systems and biotechnologies by the site-specific incorporation of non-standard amino acids (or unnatural amino acids, unAAs) into proteins. To this end, new codons and their complementary anticodons are required for unAAs. In this review, we introduce the current status of methods to incorporate new amino acids into proteins by in vitro and in vivo translation systems, by focusing on the creation of new codon-anticodon interactions, including unnatural base pair systems for genetic alphabet expansion.
Collapse
Affiliation(s)
| | - Ichiro Hirao
- *Correspondence: Michiko Kimoto, ; Ichiro Hirao,
| |
Collapse
|
9
|
Zhou H, Li Y, Gan Y, Wang R. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Cham) 2022; 380:16. [PMID: 35218412 DOI: 10.1007/s41061-022-00371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
Abstract
RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.
Collapse
Affiliation(s)
- Hongling Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youfang Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Natural Product and Resource, Shanghai Institute of Organic Chemistry, Shanghai, 230030, China.
| |
Collapse
|
10
|
Bornewasser L, Kath-Schorr S. Preparation of Site-Specifically Spin-Labeled RNA by in Vitro Transcription Using an Expanded Genetic Alphabet. Methods Mol Biol 2022; 2439:223-240. [PMID: 35226325 DOI: 10.1007/978-1-0716-2047-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in pulsed electron paramagnetic resonance (EPR) spectroscopy enable studying structure and folding of nucleic acids. An efficient introduction of spin labels at specific positions within the oligonucleotide sequence is a prerequisite. We here present a step-by-step guide to synthesize long RNA oligonucleotides bearing spin labels at specific positions within the sequence. RNA preparation is achieved enzymatically via in vitro transcription using an expanded genetic alphabet. Highly structured, several hundred nucleotides long RNAs with two nitroxide spin labels at specific positions can be prepared by this method.
Collapse
|
11
|
Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs. Nat Commun 2021; 12:6417. [PMID: 34741027 PMCID: PMC8571300 DOI: 10.1038/s41467-021-26616-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.
Collapse
|
12
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
13
|
Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat Chem Biol 2021; 17:906-914. [PMID: 34140682 PMCID: PMC8319059 DOI: 10.1038/s41589-021-00817-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The development of unnatural base pairs (UBPs) has greatly increased the information storage capacity of DNA, allowing for transcription of unnatural RNA by the heterologously expressed T7 RNA polymerase (RNAP) in Escherichia coli. However, little is known about how UBPs are transcribed by cellular RNA polymerases. Here, we investigated how synthetic unnatural nucleotides, NaM and TPT3, are recognized by eukaryotic RNA polymerase II (Pol II) and found that Pol II is able to selectively recognize UBPs with high fidelity when dTPT3 is in the template strand and rNaMTP acts as the nucleotide substrate. Our structural analysis and molecular dynamics simulation provide structural insights into transcriptional processing of UBPs in a stepwise manner. Intriguingly, we identified a novel 3'-RNA binding site after rNaM addition, termed the swing state. These results may pave the way for future studies in the design of transcription and translation strategies in higher organisms with expanded genetic codes.
Collapse
|
14
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag-Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2021; 60:4098-4103. [PMID: 33095964 PMCID: PMC7898847 DOI: 10.1002/anie.202013936] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/19/2022]
Abstract
The mRNA modification N6 -methyladenosine (m6 A) is associated with multiple roles in cell function and disease. The methyltransferases METTL3-METTL14 and METTL16 act as "writers" for different target transcripts and sequence motifs. The modification is perceived by dedicated "reader" and "eraser" proteins, but not by polymerases. We report that METTL3-14 shows remarkable cosubstrate promiscuity, enabling sequence-specific internal labeling of RNA without additional guide RNAs. The transfer of ortho-nitrobenzyl and 6-nitropiperonyl groups allowed enzymatic photocaging of RNA in the consensus motif, which impaired polymerase-catalyzed primer extension in a reversible manner. METTL16 was less promiscuous but suitable for chemo-enzymatic labeling using different types of click chemistry. Since both enzymes act on distinct sequence motifs, their combination allowed orthogonal chemo-enzymatic modification of different sites in a single RNA.
Collapse
Affiliation(s)
- Anna Ovcharenko
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Florian P. Weissenboeck
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| | - Andrea Rentmeister
- Department of ChemistryInstitute of BiochemistryUniversity of Münster, Corrensstrasse 3648149MünsterGermany
- Cells in Motion Interfaculty CenterUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
15
|
Ovcharenko A, Weissenboeck FP, Rentmeister A. Tag‐Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Ovcharenko
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Florian P. Weissenboeck
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| | - Andrea Rentmeister
- Department of Chemistry Institute of Biochemistry University of Münster, Corrensstrasse 36 48149 Münster Germany
- Cells in Motion Interfaculty Center University of Münster Waldeyerstraße 15 48149 Münster Germany
| |
Collapse
|
16
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
17
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
18
|
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci U S A 2020; 117:22823-22832. [PMID: 32868439 DOI: 10.1073/pnas.2005217117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.
Collapse
|
19
|
Wang Y, Kathiresan V, Chen Y, Hu Y, Jiang W, Bai G, Liu G, Qin PZ, Fang X. Posttranscriptional site-directed spin labeling of large RNAs with an unnatural base pair system under non-denaturing conditions. Chem Sci 2020; 11:9655-9664. [PMID: 33224460 PMCID: PMC7667596 DOI: 10.1039/d0sc01717e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date.
Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date. We here demonstrate an efficient and generally applicable posttranscriptional SDSL method for large RNAs using an expanded genetic alphabet containing the NaM-TPT3 unnatural base pair (UBP). An alkyne-modified TPT3 ribonucleotide triphosphate (rTPT3COTP) is synthesized and site-specifically incorporated into large RNAs by in vitro transcription, which allows attachment of the azide-containing nitroxide through click chemistry. We validate this strategy by SDSL of a 419-nucleotide ribonuclease P (RNase P) RNA from Bacillus stearothermophilus under non-denaturing conditions. The effects of site-directed UBP incorporation and subsequent spin labeling on the global structure and function of RNase P are marginal as evaluated by Circular Dichroism spectroscopy, Small Angle X-ray Scattering, Sedimentation Velocity Analytical Ultracentrifugation and enzymatic assay. Continuous-Wave EPR analyses reveal that the labeling reaction is efficient and specific, and Pulsed Electron–Electron Double Resonance measurements yield an inter-spin distance distribution that agrees with the crystal structure. The labeling strategy as presented overcomes the size constraint of RNA labeling, opening new avenues of spin labeling and EPR spectroscopy for investigating the structure and dynamics of large RNAs.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Venkatesan Kathiresan
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Yaoyi Chen
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Yanping Hu
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| | - Wei Jiang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Guangcan Bai
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Peter Z Qin
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , USA .
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology , School of Life Sciences , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
20
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
21
|
|
22
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
23
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
24
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non‐coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Frank Eggert
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Christine Wuebben
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Lisa Bornewasser
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
25
|
Croce S, Serdjukow S, Carell T, Frischmuth T. Chemoenzymatic Preparation of Functional Click-Labeled Messenger RNA. Chembiochem 2020; 21:1641-1646. [PMID: 31943671 DOI: 10.1002/cbic.201900718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/23/2022]
Abstract
Synthetic mRNAs are promising candidates for a new class of transformative drugs that provide genetic information for patients' cells to develop their own cure. One key advancement to develop so-called druggable mRNAs was the preparation of chemically modified mRNAs, by replacing standard bases with modified bases, such as uridine with pseudouridine, which can ameliorate the immunogenic profile and translation efficiency of the mRNA. Thus the introduction of modified nucleobases was the foundation for the clinical use of such mRNAs. Herein we describe modular and simple methods to chemoenzymatically modify mRNA. Alkyne- and/or azide-modified nucleotides are enzymatically incorporated into mRNA and subsequently conjugated to fluorescent dyes using click chemistry. This allows visualization of the labeled mRNA inside cells. mRNA coding for the enhanced green fluorescent protein (eGFP) was chosen as a model system and the successful expression of eGFP demonstrated that our modified mRNA is accepted by the translation machinery.
Collapse
Affiliation(s)
- Stefano Croce
- baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (bei München), Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Sascha Serdjukow
- baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (bei München), Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Thomas Frischmuth
- baseclick GmbH, Floriansbogen 2-4, 82061, Neuried (bei München), Germany
| |
Collapse
|
26
|
Ledbetter MP, Craig JM, Karadeema RJ, Noakes MT, Kim HC, Abell SJ, Huang JR, Anderson BA, Krishnamurthy R, Gundlach JH, Romesberg FE. Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair. J Am Chem Soc 2020; 142:2110-2114. [PMID: 31985216 DOI: 10.1021/jacs.9b09808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Unnatural base pairs (UBPs) have been developed and used for a variety of in vitro applications as well as for the engineering of semisynthetic organisms (SSOs) that store and retrieve increased information. However, these applications are limited by the availability of methods to rapidly and accurately determine the sequence of unnatural DNA. Here we report the development and application of the MspA nanopore to sequence DNA containing the dTPT3-dNaM UBP. Analysis of two sequence contexts reveals that DNA containing the UBP is replicated with an efficiency and fidelity similar to that of natural DNA and sufficient for use as the basis of an SSO that produces proteins with noncanonical amino acids.
Collapse
Affiliation(s)
- Michael P Ledbetter
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Jonathan M Craig
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Rebekah J Karadeema
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Matthew T Noakes
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Hwanhee C Kim
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Sarah J Abell
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Jesse R Huang
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Brooke A Anderson
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | | | - Jens H Gundlach
- Department of Physics , University of Washington , Seattle , Washington 98195 , United States
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
27
|
Ledbetter MP, Malyshev DA, Romesberg FE. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet. Methods Mol Biol 2019; 1973:193-212. [PMID: 31016704 DOI: 10.1007/978-1-4939-9216-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polymerase chain reaction (PCR) is a universal and essential tool in molecular biology and biotechnology, but it is generally limited to the amplification of DNA with the four-letter genetic alphabet. Here, we describe PCR amplification with a six-letter alphabet that includes the two natural dA-dT and dG-dC base pairs and an unnatural base pair (UBP) formed between the synthetic nucleotides dNaM and d5SICS or dTPT3 or analogs of these synthetic nucleotides modified with linkers that allow for the site-specific labeling of the amplified DNA with different functional groups. Under standard conditions, the six-letter DNA may be amplified with high efficiency and with greater than 99.9% fidelity. This allows for the efficient production of DNA site-specifically modified with different functionalities of interest for use in a wide range of applications.
Collapse
Affiliation(s)
| | - Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Bao W, Ma H, Wang N, He Z. pH‐sensitive carbon quantum dots−doxorubicin nanoparticles for tumor cellular targeted drug delivery. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen Bao
- The College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Haibo Ma
- The College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Nan Wang
- The College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| | - Zhanhang He
- The College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou China
| |
Collapse
|
29
|
Feldman AW, Dien VT, Karadeema RJ, Fischer EC, You Y, Anderson BA, Krishnamurthy R, Chen JS, Li L, Romesberg FE. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J Am Chem Soc 2019; 141:10644-10653. [PMID: 31241334 DOI: 10.1021/jacs.9b02075] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing noncanonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy- and ribonucleotide analogues. Importantly, this includes the first in vivo structure-activity relationship (SAR) analysis of unnatural ribonucleoside triphosphates. Similarities and differences between how DNA and RNA polymerases recognize the unnatural nucleotides were observed, and remarkably, we found that a wide variety of unnatural ribonucleotides can be efficiently transcribed into RNA and then productively and selectively paired at the ribosome to mediate the synthesis of proteins with ncAAs. The results extend previous studies, demonstrating that nucleotides bearing no significant structural or functional homology to the natural nucleotides can be efficiently and selectively paired during replication, to include each step of the entire process of information storage and retrieval. From a practical perspective, the results identify the most optimal UBP for replication and transcription, as well as the most optimal unnatural ribonucleoside triphosphates for transcription and translation. The optimized SSO is now, for the first time, able to efficiently produce proteins containing multiple, proximal ncAAs.
Collapse
Affiliation(s)
- Aaron W Feldman
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vivian T Dien
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Rebekah J Karadeema
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Emil C Fischer
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Yanbo You
- School of Chemistry and Chemical Engineering , Henan Normal University , Henan 453007 , P. R. China
| | - Brooke A Anderson
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Jason S Chen
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Lingjun Li
- School of Chemistry and Chemical Engineering , Henan Normal University , Henan 453007 , P. R. China
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
30
|
Padroni G, Withers JM, Taladriz-Sender A, Reichenbach LF, Parkinson JA, Burley GA. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. J Am Chem Soc 2019; 141:9555-9563. [DOI: 10.1021/jacs.8b12444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giacomo Padroni
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Jamie M. Withers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Linus F. Reichenbach
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
31
|
Eggert F, Kurscheidt K, Hoffmann E, Kath‐Schorr S. Towards Reverse Transcription with an Expanded Genetic Alphabet. Chembiochem 2019; 20:1642-1645. [DOI: 10.1002/cbic.201800808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Frank Eggert
- LIMES Institute, Chemical Biology and Medicinal Chemistry UnitUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Katharina Kurscheidt
- LIMES Institute, Chemical Biology and Medicinal Chemistry UnitUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Eva Hoffmann
- LIMES Institute, Chemical Biology and Medicinal Chemistry UnitUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Stephanie Kath‐Schorr
- LIMES Institute, Chemical Biology and Medicinal Chemistry UnitUniversity of Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
32
|
Park HS, Kietrys AM, Kool ET. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem Commun (Camb) 2019; 55:5135-5138. [PMID: 30977472 PMCID: PMC6541391 DOI: 10.1039/c9cc01598a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe the synthesis and RNA acylation activity of a series of minimalist azidoalkanoyl imidazole reagents, with the aim of functionalizing RNA at 2'-hydroxyl groups at stoichiometric to superstoichiometric levels. We find marked effects of small structural changes on their ability to acylate and be reductively removed, and identify reagents and methods that enable efficient RNA functionalization and control.
Collapse
Affiliation(s)
- Hyun Shin Park
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
33
|
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 2019; 16:5800-5807. [PMID: 30063056 DOI: 10.1039/c8ob01498a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.
Collapse
Affiliation(s)
- Nemanja Milisavljevič
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
34
|
Huy Le B, Nguyen VT, Seo YJ. Site-specific incorporation of multiple units of functional nucleotides into DNA using a step-wise approach with polymerase and its application to monitoring DNA structural changes. Chem Commun (Camb) 2019; 55:2158-2161. [PMID: 30675606 DOI: 10.1039/c8cc09444f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed a new method, a step-wise approach with polymerase, for site-specific incorporation of multiple units of functional nucleotides into DNA to form hairpin secondary structures. The fluorescence of the resulting DNA incorporating the functional nucleotides varied upon transitioning from single-strand to hairpin and duplex structures.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Chonbuk National University, South Korea
| | | | | |
Collapse
|
35
|
Guo WW, Zhang TS, Fang WH, Cui G. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base. Phys Chem Chem Phys 2018; 20:5067-5073. [PMID: 29388994 DOI: 10.1039/c7cp08696b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S2(1ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T1(3ππ*). In the first one, the S2(1ππ*) system first decays to the S1(1nπ*) state near the S2/S1 conical intersection, which is followed by an efficient S1 → T1 intersystem crossing process at the S1/T1 crossing point; in the second one, an efficient S2 → T2 intersystem crossing takes place first, and then, the T2(3nπ*) system hops to the T1(3ππ*) state through an internal conversion process at the T2/T1 conical intersection. Moreover, an S2/S1/T2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.
Collapse
Affiliation(s)
- Wei-Wei Guo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | |
Collapse
|
36
|
Palumbo CM, Beal PA. Nucleoside analogs in the study of the epitranscriptome. Methods 2018; 156:46-52. [PMID: 30827466 DOI: 10.1016/j.ymeth.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 01/15/2023] Open
Abstract
Over 150 unique RNA modifications are now known including several nonstandard nucleotides present in the body of messenger RNAs. These modifications can alter a transcript's function and are collectively referred to as the epitrancriptome. Chemically modified nucleoside analogs are poised to play an important role in the study of these epitranscriptomic marks. Introduced chemical features on nucleic acid strands provide unique structures or reactivity that can be used for downstream detection or quantification. Three methods are used in the field to synthesize RNA containing chemically modified nucleoside analogs. Nucleoside analogs can be introduced by metabolic labeling, via polymerases with modified nucleotide triphosphates or via phosphoramidite-based chemical synthesis. In this review, these methods for incorporation of nucleoside analogs will be discussed with specific recently published examples pertaining to the study of the epitranscriptome.
Collapse
Affiliation(s)
- Cody M Palumbo
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Ashwood B, Pollum M, Crespo-Hernández CE. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem Photobiol 2018; 95:33-58. [PMID: 29978490 DOI: 10.1111/php.12975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-substituted nucleobases (a.k.a., thiobases) are among the world's leading prescriptions for chemotherapy and immunosuppression. Long-term treatment with azathioprine, 6-mercaptopurine and 6-thioguanine has been correlated with the photoinduced formation of carcinomas. Establishing an in-depth understanding of the photochemical properties of these prodrugs may provide a route to overcoming these carcinogenic side effects, or, alternatively, a basis for developing effective compounds for targeted phototherapy. In this review, a broad examination is undertaken, surveying the basic photochemical properties and excited-state dynamics of sulfur-substituted analogs of the canonical DNA and RNA nucleobases. A molecular-level understanding of how sulfur substitution so remarkably perturbs the photochemical properties of the nucleobases is presented by combining experimental results with quantum-chemical calculations. Structure-property relationships demonstrate the impact of site-specific sulfur substitution on the photochemical properties, particularly on the population of the reactive triplet state. The value of fundamental photochemical investigations for driving the development of ultraviolet-A chemotherapeutics is showcased. The most promising photodynamic agents identified thus far have been investigated in various carcinoma cell lines and shown to decrease cell proliferation upon exposure to ultraviolet-A radiation. Overarching principles have been elucidated for the impact that sulfur substitution of the carbonyl oxygen has on the photochemical properties of the nucleobases.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
38
|
Kimoto M, Meyer AJ, Hirao I, Ellington AD. Genetic alphabet expansion transcription generating functional RNA molecules containing a five-letter alphabet including modified unnatural and natural base nucleotides by thermostable T7 RNA polymerase variants. Chem Commun (Camb) 2018; 53:12309-12312. [PMID: 29094732 DOI: 10.1039/c7cc06661a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thermostable T7 RNA polymerase variants were explored for genetic alphabet expansion transcription involving the unnatural Ds-Pa pair. One variant exhibited high incorporation efficiencies of functionally modified Pa substrates and enabled the simultaneous incorporation of 2'-fluoro-nucleoside triphosphates of pyrimidines into transcripts, allowing the generation of novel, highly functional RNA molecules.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.
| | | | | | | |
Collapse
|
39
|
Guseinov TO, Kuznetsova VE, Shershov VE, Spitsyn MA, Lapa SA, Zasedatelev AS, Chudinov AV. New Synthetic Route to CY5-Labeled 2'-Deoxycytidine- 5'-Triphosphates Using Sonogashira Reaction. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018020103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chiba J, Oda Y, Inouye M. Synthesis of Alkynyl C-Nucleotide Triphosphates Toward Enzymatic Elongation of Artificial DNA. HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities. Curr Opin Biotechnol 2017; 48:153-158. [DOI: 10.1016/j.copbio.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
|
42
|
Wang Q, Xie XY, Han J, Cui G. QM and QM/MM Studies on Excited-State Relaxation Mechanisms of Unnatural Bases in Vacuo and Base Pairs in DNA. J Phys Chem B 2017; 121:10467-10478. [DOI: 10.1021/acs.jpcb.7b09046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiao-Ying Xie
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Juan Han
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
43
|
Feldman AW, Romesberg FE. In Vivo Structure-Activity Relationships and Optimization of an Unnatural Base Pair for Replication in a Semi-Synthetic Organism. J Am Chem Soc 2017; 139:11427-11433. [PMID: 28796508 DOI: 10.1021/jacs.7b03540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to expand the genetic alphabet and create semi-synthetic organisms (SSOs) that store and retrieve increased information, we have developed the unnatural base pairs (UBPs) dNaM and d5SICS or dTPT3 (dNaM-d5SICS and dNaM-dTPT3). The UBPs form based on hydrophobic and packing forces, as opposed to complementary hydrogen bonding, and while they are both retained within the in vivo environment of an Escherichia coli SSO, their development was based on structure-activity relationship (SAR) data generated in vitro. To address the likely possibility of different requirements of the in vivo environment, we screened 135 candidate UBPs for optimal performance in the SSO. Interestingly, we find that in vivo SARs differ from those collected in vitro, and most importantly, we identify four UBPs whose retention in the DNA of the SSO is higher than that of dNaM-dTPT3, which was previously the most promising UBP identified. The identification of these four UBPs further demonstrates that when optimized, hydrophobic and packing forces may be used to replace the complementary hydrogen bonding used by natural pairs and represents a significant advance in our continuing efforts to develop SSOs that store and retrieve more information than natural organisms.
Collapse
Affiliation(s)
- Aaron W Feldman
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
44
|
Warminski M, Sikorski PJ, Warminska Z, Lukaszewicz M, Kropiwnicka A, Zuberek J, Darzynkiewicz E, Kowalska J, Jemielity J. Amino-Functionalized 5' Cap Analogs as Tools for Site-Specific Sequence-Independent Labeling of mRNA. Bioconjug Chem 2017; 28:1978-1992. [PMID: 28613834 DOI: 10.1021/acs.bioconjchem.7b00291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA is a template for protein biosynthesis, and consequently mRNA transport, translation, and turnover are key elements in the overall regulation of gene expression. Along with growing interest in the mechanisms regulating mRNA decay and localization, there is an increasing need for tools enabling convenient fluorescent labeling or affinity tagging of mRNA. We report new mRNA 5' cap analog-based tools that enable site-specific labeling of RNA within the cap using N-hydroxysuccinimide (NHS) chemistry. We explored two complementary methods: a co-transcriptional labeling method, in which the label is first attached to a cap analog and then incorporated into RNA by in vitro transcription, and a post-transcriptional labeling method, in which an amino-functionalized cap analog is incorporated into RNA followed by chemical labeling of the resulting transcript. After testing the biochemical properties of RNAs carrying the novel modified cap structures, we demonstrated the utility of fluorescently labeled RNAs in decapping assays, RNA decay assays, and RNA visualization in cells. Finally, we also demonstrated that mRNAs labeled by the reported method are translationally active. We envisage that the novel analogs will provide an alternative to radiolabeling of mRNA caps for in vitro studies and open possibilities for new applications related to the study of mRNA fates in vivo.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| | - Zofia Warminska
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland.,College of Interfaculty Individual Studies of Mathematics and Natural Sciences, University of Warsaw , 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Anna Kropiwnicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland.,Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw , 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw , 02-097, Warsaw, Poland
| |
Collapse
|
45
|
Zhang F, Liang Y, Li J, Gao F, Liu H, Zhao Y. A Concise Synthesis of Novel Aryl Pyrimidine C
-Nucleoside Analogs from Sugar Alkynes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fuyi Zhang
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Yan Liang
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Jing Li
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Fei Gao
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Hong Liu
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
| | - Yufen Zhao
- The College of Chemistry and Molecular Engineering; The Key Laboratory of Chemical Biology and Organic Chemistry; Zhengzhou University; Zhengzhou 450001 China
- College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
46
|
Eggert F, Kulikov K, Domnick C, Leifels P, Kath-Schorr S. Iluminated by foreign letters - Strategies for site-specific cyclopropene modification of large functional RNAs via in vitro transcription. Methods 2017; 120:17-27. [PMID: 28454775 DOI: 10.1016/j.ymeth.2017.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022] Open
Abstract
The synthesis of sequence-specifically modified long RNA molecules, which cannot entirely be prepared via solid phase synthesis methods is experimentally challenging. We are using a new approach based on an expanded genetic alphabet preparing site-specifically modified RNA molecules via standard in vitro transcription. In this report, the site-specific labeling of functional RNAs, in particular ribozymes and a long non-coding RNA with cyclopropene moieties, is presented. We provide detailed instructions for RNA labeling via in vitro transcription and include required analytical methods to verify production and identity of the transcript. We further present post-transcriptional inverse electron demand Diels-Alder cycloaddition reactions on the cyclopropene-modified sequences and discuss applications of the genetic alphabet expansion transcription for in vitro preparation of labeled functional RNAs with complex foldings. In detail, the glmS and CPEB3 ribozymes were site-specifically decorated with methyl cyclopropene moieties using the unnatural TPT3CP triphosphate and were proven to be still functional. In addition, the structurally complex A region of the Xist lncRNA (401nt) was site-specifically modified with methyl cyclopropene and detected by fluorescence after cycloaddition reaction with a tetrazine-BODIPY conjugate.
Collapse
Affiliation(s)
- Frank Eggert
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Katharina Kulikov
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Christof Domnick
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Philipp Leifels
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
47
|
Fleming AM, Ding Y, Burrows CJ. Sequencing DNA for the Oxidatively Modified Base 8-Oxo-7,8-Dihydroguanine. Methods Enzymol 2017. [PMID: 28645369 DOI: 10.1016/bs.mie.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The DNA base guanine (G) can be oxidatively modified to 8-oxo-7,8-dihydroguanine (OG). Extraction of genomic DNA followed by nuclease digestion and mass spectrometry analysis has found OG is present at background levels of ~1 out of 106 Gs; however, this approach cannot determine the locations for the OGs in the genome. Thus, in this methods report, we outline three different methods (A, B, and C) for sequencing OG in DNA. Method A sequences OG by utilizing the base excision repair pathway to delete the OG nucleotide from the DNA that is then detected by Sanger sequencing as a deletion signature. Method B sequences OG by harnessing the base excision repair pathway to convert OG to an unnatural DNA base pair followed by Sanger sequencing to locate the unnatural base pair indicating where OG was located. Method C (i.e., OG-Seq) takes genomic DNA sheared to ~150bps followed by selectively biotinylating the OG-containing fragments for affinity purification and enrichment of the OG-modified strands. The OG-modified fragments are sequenced on a next-generation sequencing platform to locate OG on the genomic scale with a resolution of ~150bps. The methods outlined are then compared and contrasted allowing researchers to select the one that best suits their experimental goals.
Collapse
Affiliation(s)
| | - Yun Ding
- University of Utah, Salt Lake City, UT, United States
| | | |
Collapse
|
48
|
Jazi AA, Ploetz E, Arizki M, Dhandayuthapani B, Waclawska I, Krämer R, Ziegler C, Cordes T. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments. Biochemistry 2017; 56:2031-2041. [PMID: 28362086 PMCID: PMC5390306 DOI: 10.1021/acs.biochem.6b00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Caged
organic fluorophores are established tools for localization-based
super-resolution imaging. Their use relies on reversible deactivation
of standard organic fluorophores by chemical reduction or commercially
available caged dyes with ON switching of the fluorescent signal by
ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores
and caged rhodamine dyes, i.e., chemical deactivation of fluorescence,
for single-molecule Förster resonance energy transfer (smFRET)
experiments with freely diffusing molecules. They allow temporal separation
and sorting of multiple intramolecular donor–acceptor pairs
during solution-based smFRET. We use this “caged FRET”
methodology for the study of complex biochemical species such as multisubunit
proteins or nucleic acids containing more than two fluorescent labels.
Proof-of-principle experiments and a characterization of the uncaging
process in the confocal volume are presented. These reveal that chemical
caging and UV reactivation allow temporal uncoupling of convoluted
fluorescence signals from, e.g., multiple spectrally similar donor
or acceptor molecules on nucleic acids. We also use caging without
UV reactivation to remove unwanted overlabeled species in experiments
with the homotrimeric membrane transporter BetP. We finally outline
further possible applications of the caged FRET methodology, such
as the study of weak biochemical interactions, which are otherwise
impossible with diffusion-based smFRET techniques because of the required
low concentrations of fluorescently labeled biomolecules.
Collapse
Affiliation(s)
- Atieh Aminian Jazi
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Muhamad Arizki
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Izabela Waclawska
- Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Reinhard Krämer
- Institute for Biochemistry, Universität Köln , 50674 Köln, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
49
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
50
|
Li L, Ding S, Yang Y, Zhu A, Fan X, Cui M, Chen C, Zhang G. Multicomponent Aqueous Synthesis of Iodo-1,2,3-triazoles: Single-Step Models for Dual Modification of Free Peptide and Radioactive Iodo Labeling. Chemistry 2016; 23:1166-1172. [DOI: 10.1002/chem.201605034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Lingjun Li
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Shengqiang Ding
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Yanping Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Xincui Fan
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P.R. China
| | - Changpo Chen
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green; Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical; Media and Reactions, Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 P.R. China
| |
Collapse
|