1
|
Wei J, Pham T, Attah EI, Liu M, Yaroshuk T, Chen H, Wojtas L, Shi X. Gold-Catalyzed Diyne-Ene Annulation for the Synthesis of Polysubstituted Benzenes through Formal [3+3] Approach with Amide as the Critical Co-Catalyst. Angew Chem Int Ed Engl 2024; 63:e202407360. [PMID: 38973064 DOI: 10.1002/anie.202407360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The one-step synthesis of tetra-substituted benzenes was accomplished via gold-catalyzed diyne-ene annulation. Distinguished from prior modification methods, this novel strategy undergoes formal [3+3] cyclization, producing polysubstituted benzenes with exceptional efficiency. The critical factor enabling this transformation was the introduction of amides, which were reported for the first time in gold catalysis as covalent nucleophilic co-catalysts. This interesting protocol not only offers a new strategy to achieve functional benzenes with high efficiency, but also enlightens potential new reaction pathways within gold-catalyzed alkyne activation processes.
Collapse
Affiliation(s)
- Jingwen Wei
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Thong Pham
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Emmanuel Ifeanyi Attah
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Mengjia Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| | - Timothy Yaroshuk
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA
| | - Xiaodong Shi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|
2
|
Shen HC, Li JJ, Wang P, Yu JQ. meta-C-H functionalization of phenylethyl and benzylic alcohol derivatives via Pd/NBE relay catalysis. Chem Sci 2024:d4sc03802a. [PMID: 39268204 PMCID: PMC11388095 DOI: 10.1039/d4sc03802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The transition metal-catalyzed meta-C-H functionalization of alcohols and their hydroxylamine derivatives remains underdeveloped. Herein, we report an efficient meta-C-H arylation of both phenylethyl and benzylic alcohols and their hydroxylamine derivatives using a readily removable oxime ether directing group. Using electronically activated 2-carbomethoxynorbornene as the transient mediator and 3-trifluoromethyl-2-pyridone as the enabling ligand, this reaction features a broad substrate scope and good functional group tolerance. More importantly, with this oxime-directed meta-C-H functionalization, this method provides a dual approach for efficient access to both meta-substituted alcohols and hydroxylamines using two sets of simple deprotection conditions. This protocol leads to the efficient synthesis of bioactive compounds possessing promising reactivities for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
3
|
Bag R, Sharma NK. Pd-Catalyzed Picolinamide-Directed C(sp 2)-H Sulfonylation of Amino Acids/Peptides with Sodium Sulfinates. J Org Chem 2024; 89:10127-10147. [PMID: 38924796 DOI: 10.1021/acs.joc.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This report describes a Pd-catalyzed picolinamide-directed site-selective C(sp2)-H sulfonylation of amino acids and peptides with sodium sulfinates in moderate to good yields. Sulfonylation of levodopa and dopamine drug molecules and late-stage directed peptide sulfonylation are studied for the first time. Broad substrate scope having various functionalities, late-stage drug modifications, and various post synthetic utilities such as chalcogenation, bromination, olefination, and arylation are potential advantages.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
4
|
Luo X, Hou P, Shen J, Kuang Y, Sun F, Jiang H, Gooßen LJ, Huang L. Ligand-enabled ruthenium-catalyzed meta-C-H alkylation of (hetero)aromatic carboxylic acids. Nat Commun 2024; 15:5552. [PMID: 38956019 PMCID: PMC11219896 DOI: 10.1038/s41467-024-49362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Carboxylates are ideal directing groups because they are widely available, readily cleavable and excellent linchpins for diverse follow-up reactions. However, their use in meta-selective C-H functionalizations remains a substantial unmet catalytic challenge. Herein, we report the ruthenium-catalyzed meta-C-H alkylation of aromatic carboxylic acids with various functionalized alkyl halides. A bidentate N-ligand increases the electron density at the metal center of ortho-benzoate ruthenacycles to the extent that single-electron reductions of alkyl halides can take place. The subsequent addition of alkyl radicals is exclusively directed to the position para to the CAr-Ru bond, i.e., meta to the carboxylate group. The resulting catalytic meta-C-H alkylation extends to a wide range of (hetero)aromatic carboxylic acids including benzofused five-membered ring heteroarenes but no pyridine derivatives in combination with secondary/tertiary alkyl halides, including fluorinated derivatives. It also allows site-selective C5-H alkylation of 1-naphthoic acids. The products are shown to be synthetic hubs en route to meta-alkylated aryl ketones, nitriles, amides, esters and other functionalized products.
Collapse
Affiliation(s)
- Xianglin Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Peichao Hou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jiayi Shen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Yifeng Kuang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Fengchao Sun
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Lukas J Gooßen
- Ruhr-Universität Bochum Lehrstuhl für Organische Chemie, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
5
|
Han S, Liang M, Ju W, Wang J, Xu X, Huang Z, Zhao Y. Ruthenium-Catalyzed Meta-Selective Trifluoroisopropylation of Arenes. J Org Chem 2024; 89:8601-8609. [PMID: 38835151 DOI: 10.1021/acs.joc.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This work reports the mild and efficient Ru-catalyzed trifluoroisopropylation of arenes using 2-bromo-1,1,1-trifluoropropane. Various bioactive molecules, such as purine and nucleoside derivatives, were well-suited for this transformation, affording the corresponding products in moderate-to-good yields. This method provides an efficient strategy for synthesizing trifluoroisopropyl molecules for drug discovery.
Collapse
Affiliation(s)
- Shuxiong Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Min Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wenjie Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Junrui Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xu Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
6
|
Ojea V, Ruiz M. DLPNO-CCSD(T) and DFT study of the acetate-assisted C-H activation of benzaldimine at [RuCl 2( p-cymene)] 2: the relevance of ligand exchange processes at ruthenium(II) complexes in polar protic media. Dalton Trans 2024; 53:8662-8679. [PMID: 38695752 DOI: 10.1039/d4dt00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To gain mechanistic insights into the acetate-assisted cyclometallations of arylimines promoted by [RuCl2(p-cymene)]2 in polar protic media, DFT geometry optimizations (with M06 and ωB97X-D3 functionals and the cc-pVDZ-PP[Ru] basis set) followed by DLPNO-CCSD(T)/CBS energy evaluations were performed using benzaldimine as a model substrate and methanol as the solvent (with CPCM or SMD models). The calculation results show that coordination of the imine to an acetate ruthenium precursor is followed by anion (chloride or acetate) dissociation as the rate-determining step of the process. H-Bonding of two explicit MeOH to the anion reduces the calculated activation energy to ca. 23 kcal mol-1, in good agreement with the experimental half-life at room temperature. Subsequent AMLA/CMD C-H activation of the intermediate cationic complexes is a faster, reversible process. Alternative reaction pathways involving neutral diacetate ruthenium complexes offer AMLA/CMD transition state structures of lower energy but are precluded due to higher energy barriers for the initial ligand exchange processes at ruthenium. Solvent assistance accelerates the final chloride/acetate exchange processes on the cycloruthenate intermediates, particularly when compression in the condensed phase is taken into consideration. The performance of six DFT functionals (with the aug-pVTZ-PP[Ru] basis set) was assessed using the DLPNO-CCSD(T)/CBS reference energies. Neutral diacetate ruthenium complexes were incorrectly predicted as being kinetically relevant when using hybrid DFT methods (PBE0-D3(BJ), M06-2X or ωB97M-V). Good agreement between the calculated barrier heights and our benchmark energy results was obtained by using double-hybrid DFT methods. PWPB95 with D3(BJ) or D4 dispersion energy corrections was found to be the most accurate (ΔG≠ MUE of ca. 1 kcal mol-1). This study may aid our understanding of and help with further experimental investigations of synthetically useful carboxylate-assisted C-H bond functionalizations involving (N,C)-cyclometallated (p-cymene)Ru(II) intermediate complexes in sustainable polar protic solvents.
Collapse
Affiliation(s)
- Vicente Ojea
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| | - María Ruiz
- Departamento de Química, Facultade de Ciencias, Universidade da Coruña, E-15078 A Coruña, Spain.
| |
Collapse
|
7
|
Lv Q, Hu Z, Zhang Y, Zhang Z, Lei H. Advancing Meta-Selective C-H Amination through Non-Covalent Interactions. J Am Chem Soc 2024; 146:1735-1741. [PMID: 38095630 DOI: 10.1021/jacs.3c09904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Regioselective C-H amination of simple arenes is highly desirable, but accessing meta-sites of ubiquitous arenes has proven challenging due to the lack of both electronic and spatial preference. This study demonstrates the successful use of various privileged nitrogen-containing functionalities found in pharmaceutical compounds to direct meta-C-H amination of arenes, overcoming the long-standing requirement for a redundant directing group. The remarkable advancements in functional group accommodation for precise regiochemical control were achieved through the discovery of an unprecedented organo-initiator and the strategic utilization of non-covalent interactions. This protocol has been successfully applied in the concise synthesis and late-stage derivatization of drug molecules, which would have been otherwise challenging to achieve.
Collapse
Affiliation(s)
- Qianqian Lv
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zongxing Hu
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yousong Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| | - Honghui Lei
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| |
Collapse
|
8
|
Bai PB, Durie A, Wang GW, Larrosa I. Unlocking regioselective meta-alkylation with epoxides and oxetanes via dynamic kinetic catalyst control. Nat Commun 2024; 15:31. [PMID: 38167324 PMCID: PMC10761682 DOI: 10.1038/s41467-023-44219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Regioselective arene C-H bond alkylation is a powerful tool in synthetic chemistry, yet subject to many challenges. Herein, we report the meta-C-H bond alkylation of aromatics bearing N-directing groups using (hetero)aromatic epoxides as alkylating agents. This method results in complete regioselectivity on both the arene as well as the epoxide coupling partners, cleaving exclusively the benzylic C-O bond. Oxetanes, which are normally unreactive, also participate as alkylating reagents under the reaction conditions. Our mechanistic studies reveal an unexpected reversible epoxide ring opening process undergoing catalyst-controlled regioselection, as key for the observed high regioselectivities.
Collapse
Affiliation(s)
- Peng-Bo Bai
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Alastair Durie
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Igor Larrosa
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
9
|
Wang H, Li Z, Dai R, Jiao N, Song S. An efficient and mild oxidative approach from thiols to sulfonyl derivatives with DMSO/HBr. Chem Sci 2023; 14:13228-13234. [PMID: 38023524 PMCID: PMC10664549 DOI: 10.1039/d3sc04945k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.
Collapse
Affiliation(s)
- Hongye Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Zhaoting Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd 38 Beijing 100191 China +86-10-82805294
| |
Collapse
|
10
|
Huang G, Fang Y, Wright JS, Ni SF, Li MD, Dang L. The Essence in Selectivity of Copper-Mediated Intermolecular Nucleophilic Substitution of a meta C-H Bond in 2-Methyl- N-methoxyaniline: A Theoretical Study. J Phys Chem A 2023; 127:9473-9482. [PMID: 37824456 DOI: 10.1021/acs.jpca.3c05223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The detailed mechanism for NHC-Cu(I)-catalyzed intermolecular nucleophilic substitution of the C-H bonds at aniline (2-methyl-N-methoxyaniline) was studied via DFT methods to reveal the essence of the selectivity. Calculations revealed that the meta C-H functionalization proceeds via two nucleophilic attacks on the aromatic ring rather than a one-step meta C-H substitution to give the experimentally observed major product. The reaction is initiated by activation of the substrate via oxidative addition with an NHC-Cu(I) catalyst, through which an umpolung occurs at the ring. From the activated intermediate, methoxyl group transfer to benzyl forms a resting state, while a nucleophile can attack the ortho position of benzyl to form a more stable intermediate. The nucleophile group can then transfer to the meta position by a 1,2-Wagner-Meerwein rearrangement to form the final product through a proton shuttle. In contrast, other transfer processes affording ortho- or para-substituted products encounter higher activation barriers. This work investigates the relationship of product selectivity with the umpolung of the aromatic ring, as well as the priority of a nucleophilic attack at the ortho position of the aromatic, 1,2-Wagner-Meerwein rearrangement from the ortho-substituted intermediate, and proton shuttle from the meta-substituted intermediate.
Collapse
Affiliation(s)
- Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Yuqi Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou , Guangdong 515063, P. R. China
| |
Collapse
|
11
|
You Q, Xiao X, Shi Y, Wu Y, Tan G. Iron-Catalyzed para-Selective C-H Allylation of Aniline Derivatives. Org Lett 2023; 25:7683-7688. [PMID: 37846920 DOI: 10.1021/acs.orglett.3c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Transition-metal-catalyzed directed C-H allylation of arenes offers an efficient and straightforward approach to construct value-added allylic arenes. However, these reactions are often performed with precious transition-metal catalysts and mainly limited to ortho-C-H allylation of arenes. Herein, we disclose a novel iron-catalyzed para-C-H allylation of aniline derivatives with allyl alcohols via a chelation-induced strategy, providing various allylic arenes in good yields with excellent regio- and chemoselectivity. A simple FeCl3·6H2O is employed as a catalyst, serving a dual role in the reaction: (1) coordination with N-arylpicolinamide to alter the electronic property of the aromatic ring and (2) reaction with allyl alcohol to form allyl-Fe species.
Collapse
Affiliation(s)
- Qiulin You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yang Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
12
|
Kuninobu Y. Non-Covalent Interaction-Controlled Site-Selective C-H Transformations. CHEM REC 2023; 23:e202300149. [PMID: 37236150 DOI: 10.1002/tcr.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Site-selective C-H transformations are important to obtain desired compounds as single products in a highly efficient manner. However, it is generally difficult to achieve such transformations because organic substrates contain many C-H bonds with similar reactivities. Therefore, the development of practical and efficient methods for controlling site selectivity is highly desirable. The most frequently used strategy is "directing group method". Although this method is highly effective and promotes site-selective reactions, it has several limitations. Our group recently reported other methods to achieve site-selective C-H transformations using non-covalent interactions between a substrate and a reagent or a catalyst and a substrate (non-covalent method). In this personal account, the background of site-selective C-H transformations, our reaction design to achieve site-selective C-H transformations, and recently reported reactions are explained.
Collapse
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
13
|
Liu LY, Fan Z, Hoque ME, Qian S, Meng G, Chekshin N, Tanaka K, Qiao JX, Yeung KS, Yu JQ. Remote C-H Olefination of Heterocyclic Biaryls Enabled by Reversibly Bound Templates. Angew Chem Int Ed Engl 2023; 62:e202307581. [PMID: 37470111 PMCID: PMC10552871 DOI: 10.1002/anie.202307581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Remote C-H functionalization of heterocyclic biaryls will be of great importance in synthesis and medicinal chemistry. Through adjusting the geometric relationship of the directing atom and target C-H bonds, two new catalytic templates have been developed to enable the functionalization of the more hindered ortho-C-H bonds of heterobiaryls bearing directing heteroatom at the meta- or para-positions, affording unprecedented site-selectivity. The use of template chaperone also overcomes product inhibition and renders the directing templates catalytic. The utility of this protocol was demonstrated by olefination of heterocyclic biaryls with various substituents, overriding conventional steric and electronic effects. These ortho-C-H olefinated heterobiaryls are sterically hindered and can often be challenging to prepare through aryl-aryl coupling reactions.
Collapse
Affiliation(s)
- Luo-Yan Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Md Emdadul Hoque
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Keita Tanaka
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ, 08543, USA
| | - Kap-Sun Yeung
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA, 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
14
|
Yang F, Zhou P, Huang Z, Liao J, Huang G, Liang T, Zhang Z. Ruthenium(II)-Catalyzed Remote C-H Sulfonylation of 2-Pyridones. Org Lett 2023; 25:5779-5783. [PMID: 37498216 DOI: 10.1021/acs.orglett.3c02004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, a ruthenium-mediated remote C-H mono- and disulfonylation of 2-pyridones with arylsulfonyl chlorides is developed. The catalytic system consisting of a [Ru(p-cymene)Cl2]2 catalyst and KOAc additive allows 2-pyridones to undergo C3,C5-disulfonylation in 1,4-dioxane, and C5-sulfonylation when the C3-position of 2-pyridones is blocked. The successful transformation of the products and late-stage modification of estrone further highlighted the potential utility and significance of this synthetic protocol. Preliminary mechanistic studies indicated that the remote regioselectivity might be dictated via chelation-assisted ruthenation.
Collapse
Affiliation(s)
- Fengqi Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Pengfei Zhou
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zeng Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Junqiu Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
15
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Goswami N, Sinha SK, Mondal P, Adhya S, Datta A, Maiti D. Distal meta-alkenylation of formal amines enabled by catalytic use of hydrogen-bonding anionic ligands. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Mondal A, Díaz-Ruiz M, Deufel F, Maseras F, van Gemmeren M. Charge-controlled Pd catalysis enables the meta-C–H activation and olefination of arenes. Chem 2023; 9:1004-1016. [PMID: 37125236 PMCID: PMC10127283 DOI: 10.1016/j.chempr.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
The regioselective C-H activation of arenes remains one of the most promising techniques for accessing highly important functionalized motifs. Such functionalizations can generally be achieved through directed and non-directed processes. The directed approach requires a covalently attached directing group (DG) on the substrate to induce reactivity and selectivity and therefore intrinsically leaves a functional group at the point of attachment within the molecule, even after the tailored DG has been removed. Conversely, non-directed methods typically suffer from regioselectivity issues, especially for unbiased substrates. Herein, we report a unique approach that employs weak charge-charge and charge-dipole interactions to enable the meta-selective activation and olefination of arenes to address these challenges in Pd catalysis. The charged moiety can easily be converted to uncharged simple arenes by hydrogenation or cross-coupling. In-depth mechanistic studies prove that the charge is responsible for the observed selectivity. We expect our studies to be generalizable and thereby enable further regioselective transformations.
Collapse
|
18
|
Li J, Xu J, Jiang M, Song L, Liu J. The Perfluoroalkylthiolation Reaction of Indoles and Activated Arenes with Perfluoroalkanesulfenic Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jia‐Hui Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University 200234 Shanghai China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road 200032 Shanghai China
| | - Jia‐Hong Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road 200032 Shanghai China
- Department of Chemistry College of Science Shanghai University 99 Shangda Road 200436 Shanghai China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road 200032 Shanghai China
| | - Li‐Ping Song
- Department of Chemistry College of Science Shanghai University 99 Shangda Road 200436 Shanghai China
| | - Jin‐Tao Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University 200234 Shanghai China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road 200032 Shanghai China
| |
Collapse
|
19
|
Wang H, Li H, Chen X, Zhou C, Li S, Yang YF, Li G. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides. Angew Chem Int Ed Engl 2022; 61:e202208620. [PMID: 35877556 PMCID: PMC9825995 DOI: 10.1002/anie.202208620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of C-aryl glycosides in biologically active natural products and approved drugs has long motivated the development of efficient strategies for their selective synthesis. Cross-couplings have been frequently used, but largely relied on palladium catalyst with prefunctionalized substrates, while ruthenium-catalyzed C-aryl glycoside preparation has thus far proven elusive. Herein, we disclose a versatile ruthenium(II)-catalyzed meta-C-H glycosylation to access meta-C-aryl glycosides from readily available glycosyl halide donors. The robustness of the ruthenium catalysis was reflected by mild reaction conditions, outstanding levels of anomeric selectivity and exclusive meta-site-selectivity.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Takuya Michiyuki
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| |
Collapse
|
21
|
Vuagnat M, Tognetti V, Jubault P, Besset T. Ru(II)-Catalyzed Hydroarylation of in situ Generated 3,3,3-Trifluoro-1-propyne by C-H Bond Activation: A Facile and Practical Access to β-Trifluoromethylstyrenes. Chemistry 2022; 28:e202201928. [PMID: 35736795 PMCID: PMC9804422 DOI: 10.1002/chem.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, a practical and straightforward synthesis of β-(E)-trifluoromethylstyrenes by ruthenium-catalyzed C-H bond activation was developed. The readily available and inexpensive 2-bromo-3,3,3-trifluoropropene (BTP), a non-ozone depleting reagent, was used as a reservoir of 3,3,3-trifluoropropyne. With this approach, the monofunctionalization of a panel of heteroarenes was possible in a safe and scalable manner (23 examples, up to 87 % yield). Mechanistic investigations and density functional theory (DFT) calculations were also conducted to get a better understanding of the mechanism of this transformation. These studies suggested that 1) a cyclometallated ruthenium complex enabled the transformation, 2) this complex exhibited high efficiency in this transformation compared to the commercially available [RuCl2 (p-cymene)]2 and 3) the mechanism proceeded through a bis-cyclometallated ruthenium intermediate for the carboruthenation step.
Collapse
Affiliation(s)
- Martin Vuagnat
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Vincent Tognetti
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie UnivINSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
22
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
23
|
|
24
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022; 61:e202205656. [DOI: 10.1002/anie.202205656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
25
|
Wang H, Fu L, Zhou C, Li G. Pd(ii)-catalyzed meta-C-H bromination and chlorination of aniline and benzoic acid derivatives. Chem Sci 2022; 13:8686-8692. [PMID: 35974770 PMCID: PMC9337732 DOI: 10.1039/d2sc01834a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
The classic electrophilic bromination leads to ortho- and para-bromination of anilines due to their electron-rich properties. Herein we report the development of an unprecedented Pd-catalyzed meta-C-H bromination of aniline derivatives using commercially available N-bromophthalimide (NBP), which overcomes the competing ortho/para-selectivity of electrophilic bromination of anilines. The addition of acid additives is crucial for the success of this reaction. A broad range of substrates with various substitution patterns can be tolerated in this reaction. Moreover, benzoic acid derivatives bearing complex substitution patterns are also viable with this mild bromination reaction, and meta-C-H chlorination is also feasible under similar reaction conditions. The ease of the directing group removal and subsequent diverse transformations of the brominated products demonstrate the application potential of this method and promise new opportunities for drug discovery.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Lei Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Chunlin Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Gang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
26
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C–H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta‐C‐Aryl Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Wu
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | | | - Julia Pöhlmann
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Takuya Michiyuki
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Binbin Yuan
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
27
|
Gou X, Li Y, Shi W, Luan Y, Ding Y, An Y, Huang Y, Zhang B, Liu X, Liang Y. Ruthenium‐Catalyzed Stereo‐ and Site‐Selective
ortho‐
and
meta
‐C−H Glycosylation and Mechanistic Studies. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue‐Ya Gou
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation Chinese University of Hong Kong Shatin Hong Kong China
| | - Wei‐Yu Shi
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yu‐Yong Luan
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ya‐Nan Ding
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yan‐Chong Huang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Bo‐Sheng Zhang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
28
|
Li XH, Yang GC, Gong JF, Song MP. Copper-catalyzed regioselective C2-H chlorination of indoles with para-toluenesulfonyl chloride. Org Biomol Chem 2022; 20:4815-4825. [PMID: 35648132 DOI: 10.1039/d2ob00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed, pyrimidine directed regioselective C-H chlorination of indoles with para-toluenesulfonyl chloride (TsCl) has been developed. The reactions proceeded smoothly in the presence of 20 mol% of Cu(OAc)2 as the catalyst and TsCl as the chlorine source, delivering C2-chlorinated indoles with structural diversity in moderate to excellent yields. Mechanistic studies suggested that single electron transfer (SET) from Cu(II) to TsCl accompanied by the release of the p-toluenesulfonyl radical and the related Cu(III)Cl species might be involved in the reactions.
Collapse
Affiliation(s)
- Xue-Hong Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Chao Yang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Jun-Fang Gong
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| | - Mao-Ping Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
29
|
Wang Y, Simon H, Chen X, Lin Z, Chen S, Ackermann L. Distal Ruthenaelectro-Catalyzed meta-C-H Bromination with Aqueous HBr. Angew Chem Int Ed Engl 2022; 61:e202201595. [PMID: 35172030 PMCID: PMC9310730 DOI: 10.1002/anie.202201595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
While electrochemical ortho-selective C-H activations are well established, distal C-H activations continue to be underdeveloped. In contrast, we herein describe the electrochemical meta-C-H functionalization. The remote C-H bromination was accomplished in an undivided cell by RuCl3 ⋅3 H2 O with aqueous HBr. The electrohalogenation proceeded under exogenous ligand- and electrolyte-free conditions. Notably, pyrazolylarenes were meta-selectively brominated at the benzenoid moiety, rather than on the electron-rich pyrazole ring for the first time. Mechanistic studies were suggestive of an initial ruthenacycle formation, and a subsequent ligand-to-ligand hydrogen transfer (LLHT) process to liberate the brominated product.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Hendrik Simon
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
30
|
Jia C, Wu N, Li G, Cui X. meta-Allylation of Arenes via Ruthenium-Catalyzed Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:6934-6941. [PMID: 35486707 DOI: 10.1021/acs.joc.2c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A successful example of oxidative meta-dehydrogenative allylation of arenes with alkenes has been developed using Ru(PPh3)3Cl2 as a catalyst and DTBP as an oxidant. In the allylation process, pyrimidines, pyrazoles, and purines, found widely in nucleosides, were effective auxiliary groups. Gram-scale experiments took place smoothly under optimized conditions. Mechanistic studies indicated that ruthenium-catalyzed meta-dehydrogenative allylation was a free-radical process. The allylation process developed herein provides an efficient and practical strategy to prepare versatile meta-allylated arenes.
Collapse
Affiliation(s)
- Chunqi Jia
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Nini Wu
- College of Chemistry and Chemical Engineering, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang 455002, P. R. China
| | - Gang Li
- College of Chemistry and Chemical Engineering, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang 455002, P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
31
|
Liu HC, Gong XP, Wang YZ, Niu ZJ, Yue H, Liu XY, Liang YM. Three-Component Ru-Catalyzed Regioselective Alkylarylation of Vinylarenes via Meta-Selective C(sp 2)–H Bond Functionalization. Org Lett 2022; 24:3043-3047. [DOI: 10.1021/acs.orglett.2c00999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Heng Yue
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Fu Y, Chen CH, Huang MG, Tao JY, Peng X, Xu HB, Liu YJ, Zeng MH. Remote C5-Selective Functionalization of Naphthalene Enabled by P–Ru–C Bond-Directed δ-Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yueliuting Fu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Cui-Hong Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Mao-Gui Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jun-Yang Tao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xu Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Hai-Bing Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yue-Jin Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
33
|
Xu YX, Liang YQ, Cai ZJ, Ji SJ. Ruthenium(II)-Catalyzed Chelation-Assisted Desulfitative Arylation of Benzo[h]quinolines with Arylsulfonyl Chlorides. Org Lett 2022; 24:2601-2606. [PMID: 35357174 DOI: 10.1021/acs.orglett.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel chelation-assisted C-H arylation reaction of benzo[h]quinoline is described. This transformation, using [RuCl2(p-cymene)]2 as the catalyst and cheap and easily accessible arylsulfonyl chlorides as the arylation source, featured simple reaction conditions, a broad substrate scope, and functional group tolerance. The successful application of some bioactive-molecule-based sulfonyl chlorides further highlighted the potential utility and importance of this desulfitative C-H arylation protocol.
Collapse
Affiliation(s)
- Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, China
| |
Collapse
|
34
|
Findlay MT, Domingo-Legarda P, McArthur G, Yen A, Larrosa I. Catalysis with cycloruthenated complexes. Chem Sci 2022; 13:3335-3362. [PMID: 35432864 PMCID: PMC8943884 DOI: 10.1039/d1sc06355c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cycloruthenated complexes have been studied extensively over the last few decades. Many accounts of their synthesis, characterisation, and catalytic activity in a wide variety of transformations have been reported to date. Compared with their non-cyclometallated analogues, cycloruthenated complexes may display enhanced catalytic activities in known transformations or possess entirely new reactivity. In other instances, these complexes can be chiral, and capable of catalysing stereoselective reactions. In this review, we aim to highlight the catalytic applications of cycloruthenated complexes in organic synthesis, emphasising the recent advancements in this field. We discuss recent advances in the applications of cycloruthenated complexes in organic synthesis, comprising C–H activation, chiral-at-metal catalysis, Z-selective olefin metathesis, transfer hydrogenation, enantioselective cyclopropanations and cycloadditions.![]()
Collapse
Affiliation(s)
- Michael T Findlay
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Gillian McArthur
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Andy Yen
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Igor Larrosa
- School of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
35
|
Wang Y, Simon H, Chen X, Lin Z, Chen S, Ackermann L. Distale Ruthenaelektro‐katalysierte
meta
‐C−H‐Bromierung mit wässriger HBr. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Hendrik Simon
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
- Institut für Chemie Zhejiang Universität Hangzhou 310027 China
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
36
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
37
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Hu J, Wang C, Yu M, Zhang S, Chen N, Du H. Palladium‐Catalyzed N3‐Directed C‐H Halogenation of N9‐Arylpurines and Azapurines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junbin Hu
- Beijing University of Chemical Technology College of chemistry CHINA
| | - Chenxing Wang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Mingwu Yu
- Ludong University School of Chemical and Material Science CHINA
| | - Shaojuan Zhang
- Beijing University of Chemical Technology College of Chemistry CHINA
| | - Ning Chen
- Beijing University of Chemical Technolgy chemistry 15 North 3-rd east road, Beijing 100029 Beijing CHINA
| | - Hongguang Du
- Beijing university of chemical technology college of chemistry CHINA
| |
Collapse
|
39
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
40
|
Luan YY, Gou XY, Shi WY, Liu HC, Chen X, Liang YM. Three-Component Ruthenium-Catalyzed meta-C-H Alkylation of Phenol Derivatives. Org Lett 2022; 24:1136-1140. [PMID: 35084198 DOI: 10.1021/acs.orglett.1c04182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we realized the multicomponent reactions of phenol derivatives via a six-membered cycloruthenated intermediate for the first time. This strategy exhibited good substrate suitability and functional group tolerance with various phenol derivatives and provided a potential synthetic drug approach. Mechanistic studies showed that a radical might be involved in this process. In addition, the meta alkylated phenol was obtained by further removal of the directing group.
Collapse
Affiliation(s)
- Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
41
|
Liu HC, Kong X, Gong XP, Li Y, Niu ZJ, Gou XY, Li XS, Wang YZ, Shi WY, Huang YC, Liu XY, Liang YM. Site-Selective Coupling of Remote C(sp3)−H/meta-C(sp2)−H Bonds Enabled by Ru/Photoredox Dual Catalysis and Mechanistic Studies. Chem Sci 2022; 13:5382-5389. [PMID: 35655562 PMCID: PMC9093131 DOI: 10.1039/d2sc00764a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Construction of C(sp2)−C(sp3) bonds via regioselective coupling of C(sp2)−H/C(sp3)−H bonds is challenging due to the low reactivity and regioselectivity of C−H bonds. Here, a novel photoinduced Ru/photocatalyst-cocatalyzed regioselective cross-dehydrogenative coupling...
Collapse
Affiliation(s)
- Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong Shatin Hong Kong China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
42
|
Kumar H, Dubey A, Prajapati G, Kant R, Ampapathi RS, Mandal PK. Regioselective direct sulfenylation of glycals using arylsulfonyl chlorides in the presence of triphenylphosphine: access to C2-thioaryl glycosides. NEW J CHEM 2022. [DOI: 10.1039/d1nj05228d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cheap and easily available arylsulfonyl chlorides as a sulfur source reductively couple with glycals in the presence of triphenylphosphine to afford C2-thioaryl glycosides.
Collapse
Affiliation(s)
- Harikesh Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Atul Dubey
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gurudayal Prajapati
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi S. Ampapathi
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
43
|
Liu S, Wang Q, Huang F, Wang W, Yang C, Liu J, Chen D. Insight into the mechanism of the arylation of arenes via norbornene relay palladation through meta- to para-selectivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01500a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A theoretical insight was shown into the origin of site-selectivity in the arylation of arenes by a norbornene relay palladation through meta- to para-selectivity.
Collapse
Affiliation(s)
- Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
44
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
45
|
Yi B, Wang Q, Tan J, Yi Z, Li D, Kang S, Zhang W, Tang H, Xie Y. Visible Light‐mediated, Iodine‐catalyzed Radical Cascade Sulfonylation/Cyclization for the Synthesis of Sulfone‐containing Coumarin under Photocatalyst‐free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Qiang Wang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jian‐Ping Tan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ziqi Yi
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Daiguang Li
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Shiyuan Kang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Wenhui Zhang
- College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Huan Tang
- College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Yanjun Xie
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| |
Collapse
|
46
|
Zhang T, Luan YX, Lam NYS, Li JF, Li Y, Ye M, Yu JQ. A directive Ni catalyst overrides conventional site selectivity in pyridine C-H alkenylation. Nat Chem 2021; 13:1207-1213. [PMID: 34635815 PMCID: PMC8633040 DOI: 10.1038/s41557-021-00792-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022]
Abstract
Achieving the transition metal-catalysed pyridine C3-H alkenylation, with pyridine as the limiting reagent, has remained a long-standing challenge. Previously, we disclosed that the use of strong coordinating bidentate ligands can overcome catalyst deactivation and provide Pd-catalysed C3 alkenylation of pyridines. However, this strategy proved ineffective when using pyridine as the limiting reagent, as it required large excesses and high concentrations to achieve reasonable yields, which rendered it inapplicable to complex pyridines prevalent in bioactive molecules. Here we report that a bifunctional N-heterocyclic carbene-ligated Ni-Al catalyst can smoothly furnish C3-H alkenylation of pyridines. This method overrides the intrinsic C2 and/or C4 selectivity, and provides a series of C3-alkenylated pyridines in 43-99% yields and up to 98:2 C3 selectivity. This method not only allows a variety of pyridine and heteroarene substrates to be used as the limiting reagent, but is also effective for the late-stage C3 alkenylation of diverse complex pyridine motifs in bioactive molecules.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | | | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| | - Jin-Quan Yu
- The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
47
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
48
|
Gupta SS, Manisha, Kumar R, Dhiman AK, Sharma U. Predictable site-selective functionalization: Promoter group assisted para-halogenation of N-substituted (hetero )aromatics under metal-free condition. Org Biomol Chem 2021; 19:9675-9687. [PMID: 34730171 DOI: 10.1039/d1ob02000e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, regioselective para-C-H halogenation of N-pyrimidyl (hetero)aromatics through SEAr (electrophilic aromatic substitution) type reaction is disclosed. SEAr type reaction has been utilized for the C5-bromination of indolines (para-selective) with N-bromosuccinimide under metal and additive-free conditions in good to excellent yields. The developed methodology is also applicable for iodination and challenging chlorination. The pyrimidyl group is identified as a reactivity tuner that also controls the regioselectivity. The present method is also applicable for selective halogenation of aniline, pyridine, indole, oxindole, pyrazole, tetrahydroquinoline, isoquinoline, and carbazole. DFT studies such as Fukui nucleophilicity and natural charge maps also support the observed p-selectivity. Post-functionalization of the title compound into the corresponding arylated, olefinated, and dihalogenated products is achieved in a one-pot, two-step fashion. Late-stage C-H bromination was also executed on drug/natural molecules (harmine, etoricoxib, clonidine, and chlorzoxazone) to demonstrate the applicability of the developed protocol.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manisha
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Wydział Chemii, Uniwersytet Wrocławski, 50-383 Wrocław, Poland
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
49
|
Chen F, Huang X, Yang C, Jiang H, Zeng W. Photocatalyzed Coupling-Cyclization of ortho-Alkynylaryl Vinylethers with Arylsulfonyl Azides. J Org Chem 2021; 86:14572-14585. [PMID: 34623805 DOI: 10.1021/acs.joc.1c01437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel visible-light-induced coupling-cyclization of ortho-alkynylaryl vinylethers with arylsulfonyl azides has been described. This transformation provided a concise approach to access C3-exocyclic C═C bond/C2-alkylsulfone-tethered benzofurans via a solvent-leveraged carbosulfonylation and [2 + 2 + 3] cyclization. Primary mechanistic studies demonstrated that THF belongs to a crucial H atom source.
Collapse
Affiliation(s)
- Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiang Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
50
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|