1
|
Zhang Y, Jafari M, Zhang T, Sui D, Sagresti L, Merz KM, Hu J. Molecular insights into substrate translocation in an elevator-type metal transporter. Nat Commun 2024; 15:9665. [PMID: 39516201 PMCID: PMC11549095 DOI: 10.1038/s41467-024-54048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The Zrt/Irt-like protein (ZIP) metal transporters are key players in maintaining the homeostasis of a panel of essential microelements. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator transporter, but how the metal substrate moves along the transport pathway and how the transporter changes conformation to allow alternating access remain to be elucidated. Here, we combine structural, biochemical, and computational approaches to investigate the process of metal substrate translocation along with the global structural rearrangement. Our study reveals an upward hinge motion of the transport domain in a high-resolution crystal structure of a cross-linked variant, elucidates the mechanisms of metal release from the transport site into the cytoplasm and activity regulation by a cytoplasmic metal-binding loop, and unravels an unusual elevator mode in enhanced sampling simulations that distinguishes BbZIP from other elevator transporters. This work provides important insights into the metal transport mechanism of the ZIP family.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Majid Jafari
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Tuo Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Luca Sagresti
- Scuola Normale Superiore, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Pisa, Italy
| | - Kenneth M Merz
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
- Center for Computational Life Sciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Zhang Y, Jafari M, Zhang T, Sui D, Sagresti L, Merz KM, Hu J. Molecular insights into substrate translocation in an elevator-type metal transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613805. [PMID: 39345646 PMCID: PMC11429975 DOI: 10.1101/2024.09.18.613805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The Zrt/Irt-like protein (ZIP) metal transporters are key players in maintaining the homeostasis of a panel of essential microelements. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator transporter, but how the metal substrate moves along the transport pathway and how the transporter changes conformation to allow alternating access remain to be elucidated. Here, we combined structural, biochemical, and computational approaches to investigate the process of metal substrate translocation along with the global structural rearrangement. Our study revealed an upward hinge motion of the transport domain in a high-resolution crystal structure of a cross-linked variant, elucidated the mechanisms of metal release from the transport site into the cytoplasm and activity regulation by a cytoplasmic metal-binding loop, and unraveled an unusual elevator mode in enhanced sampling simulations that distinguishes BbZIP from other elevator transporters. This work provides important insights into the metal transport mechanism of the ZIP family.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Majid Jafari
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Tuo Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Luca Sagresti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and CSGI
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Kenneth M. Merz
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| |
Collapse
|
3
|
Galvani F, Pala D, Cuzzolin A, Scalvini L, Lodola A, Mor M, Rizzi A. Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations. J Chem Inf Model 2023; 63:2842-2856. [PMID: 37053454 PMCID: PMC10170513 DOI: 10.1021/acs.jcim.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 04/15/2023]
Abstract
The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.
Collapse
Affiliation(s)
- Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alberto Cuzzolin
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
- Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Andrea Rizzi
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
4
|
Chakrabarti M, Amzel LM, Lau AY. Sodium/Iodide Symporter Metastable Intermediates Provide Insights into Conformational Transition between Principal Thermodynamic States. J Phys Chem B 2023; 127:1540-1551. [PMID: 36758032 DOI: 10.1021/acs.jpcb.2c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The Sodium/Iodide Symporter (NIS), a 13-helix transmembrane protein found in the thyroid and other tissues, transports iodide, a required constituent of thyroid hormones T3 and T4. Despite extensive experimental information and clinical data, structural details of the intermediate microstates comprising the conformational transition of NIS between its inwardly and outwardly open states remain unresolved. We present data from a combination of enhanced sampling and transition path molecular dynamics (MD) simulations that elucidate the principal intermediate states comprising the inwardly to outwardly open transition of fully bound and apo NIS under an enforced ionic gradient. Our findings suggest that in both the absence and presence of bound physiological ions, NIS principally occupies a proximally inward to inwardly open state. When fully bound, NIS is also found to occupy a rare "inwardly occluded" state. The results of this work provide novel insight into the populations of NIS intermediates and the free energy landscape comprising the conformational transition, adding to a mechanistic understanding of NIS ion transport. Moreover, the knowledge gained from this approach can serve as a basis for studies of NIS mutants to target therapeutic interventions.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., PO Box B, Frederick, Maryland 21702, United States
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
6
|
Zhang Q, Zhao N, Meng X, Yu F, Yao X, Liu H. The prediction of protein-ligand unbinding for modern drug discovery. Expert Opin Drug Discov 2021; 17:191-205. [PMID: 34731059 DOI: 10.1080/17460441.2022.2002298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Drug-target thermodynamic and kinetic information have perennially important roles in drug design. The prediction of protein-ligand unbinding, which can provide important kinetic information, in experiments continues to face great challenges. Uncovering protein-ligand unbinding through molecular dynamics simulations has become efficient and inexpensive with the progress and enhancement of computing power and sampling methods. AREAS COVERED In this review, various sampling methods for protein-ligand unbinding and their basic principles are firstly briefly introduced. Then, their applications in predicting aspects of protein-ligand unbinding, including unbinding pathways, dissociation rate constants, residence time and binding affinity, are discussed. EXPERT OPINION Although various sampling methods have been successfully applied in numerous systems, they still have shortcomings and deficiencies. Most enhanced sampling methods require researchers to possess a wealth of prior knowledge of collective variables or reaction coordinates. In addition, most systems studied at present are relatively simple, and the study of complex systems in real drug research remains greatly challenging. Through the combination of machine learning and enhanced sampling methods, prediction accuracy can be further improved, and some problems encountered in complex systems also may be solved.
Collapse
Affiliation(s)
| | - Nannan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaoxiao Meng
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Mai D, Chen R, Wang J, Zheng J, Zhang X, Qu S. Critical amino acids in the TM2 of EAAT2 are essential for membrane-bound localization, substrate binding, transporter function and anion currents. J Cell Mol Med 2021; 25:2530-2548. [PMID: 33523598 PMCID: PMC7933967 DOI: 10.1111/jcmm.16212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l-glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km ) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.
Collapse
Affiliation(s)
- Dongmei Mai
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Rongqing Chen
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Ji Wang
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| | - Jiawei Zheng
- Department of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiuping Zhang
- Teaching Center of Experimental MedicineSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shaogang Qu
- Department of NeurologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Key Laboratory of Mental Health of the Ministry of EducationSouthern Medical UniversityGuangzhouChina
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangzhouChina
| |
Collapse
|
8
|
Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. The high-energy transition state of the glutamate transporter homologue GltPh. EMBO J 2021; 40:e105415. [PMID: 33185289 PMCID: PMC7780239 DOI: 10.15252/embj.2020105415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Mass Spectrometry for Biology Unit, USR 2000CNRSInstitut PasteurParisFrance
| | - Didar Ciftci
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
| | - Xiaoyu Wang
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Scott C Blanchard
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- St. Jude Children’s Research HospitalMemphisTNUSA
| | - Olga Boudker
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
- Tri‐Institutional Training Program in Chemical BiologyNew YorkNYUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
9
|
Kogut MM, Maszota-Zieleniak M, Marcisz M, Samsonov SA. Computational insights into the role of calcium ions in protein–glycosaminoglycan systems. Phys Chem Chem Phys 2021; 23:3519-3530. [DOI: 10.1039/d0cp05438k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prediction power of computational methodologies for studying the role of ions in protein–glycosaminoglycan interactions was critically assessed.
Collapse
|
10
|
Matin TR, Heath GR, Huysmans GHM, Boudker O, Scheuring S. Millisecond dynamics of an unlabeled amino acid transporter. Nat Commun 2020; 11:5016. [PMID: 33024106 PMCID: PMC7538599 DOI: 10.1038/s41467-020-18811-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are important in many physiological processes and crucial for the removal of excitatory amino acids from the synaptic cleft. Here, we develop and apply high-speed atomic force microscopy line-scanning (HS-AFM-LS) combined with automated state assignment and transition analysis for the determination of transport dynamics of unlabeled membrane-reconstituted GltPh, a prokaryotic EAAT homologue, with millisecond temporal resolution. We find that GltPh transporters can operate much faster than previously reported, with state dwell-times in the 50 ms range, and report the kinetics of an intermediate transport state with height between the outward- and inward-facing states. Transport domains stochastically probe transmembrane motion, and reversible unsuccessful excursions to the intermediate state occur. The presented approach and analysis methodology are generally applicable to study transporter kinetics at system-relevant temporal resolution. Excitatory amino acid transporters (EAATs) are crucial for the removal of excitatory amino acids from the synaptic cleft. Here authors combined high-speed atomic force microscopy line-scanning with automated state assignment for the determination of transport dynamics of GltPh, a prokaryotic EAAT homologue, with millisecond temporal resolution.
Collapse
Affiliation(s)
- Tina R Matin
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - George R Heath
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Limongelli V. Ligand binding free energy and kinetics calculation in 2020. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1455] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science – Center for Computational Medicine in Cardiology Università della Svizzera italiana (USI) Lugano Switzerland
- Department of Pharmacy University of Naples “Federico II” Naples Italy
| |
Collapse
|
12
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
13
|
Setiadi J, Kuyucak S. Free-Energy Simulations Resolve the Low-Affinity Na +-High-Affinity Asp Binding Paradox in Glt Ph. Biophys J 2019; 117:780-789. [PMID: 31383357 DOI: 10.1016/j.bpj.2019.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Glutamate transporters clear up excess extracellular glutamate by cotransporting three Na+ and one H+ with the countertransport of one K+. The archaeal homologs are selective to aspartate and only cotransport three Na+. The crystal structures of GltPh from archaea have been used in computational studies to understand the transport mechanism. Although some progress has been made with regard to the ligand-binding sites, a consistent picture of transport still eludes us. A major concern is the discrepancy between the computed binding free energies, which predict high-affinity Na+-low-affinity aspartate binding, and the experimental results in which the opposite is observed. Here, we show that the binding of the first two Na+ ions involves an intermediate state near the Na1 site, where two Na+ ions coexist and couple to aspartate with similar strengths, boosting its affinity. Binding free energies for Na+ and aspartate obtained using this intermediate state are in good agreement with the experimental values. Thus, the paradox in binding affinities arises from the assumption that the ligands bind to the sites observed in the crystal structure following the order dictated by their binding free energies with no intermediate states. In fact, the presence of an intermediate state eliminates such a correlation between the binding free energies and the binding order. The intermediate state also facilitates transition of the first Na+ ion to its final binding site via a knock-on mechanism, which induces substantial conformational changes in the protein consistent with experimental observations.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
14
|
Lupia A, Moraca F, Bagetta D, Maruca A, Ambrosio FA, Rocca R, Catalano R, Romeo I, Talarico C, Ortuso F, Artese A, Alcaro S. Computer-based techniques for lead identification and optimization II: Advanced search methods. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This paper focuses on advanced computational techniques for identifying and optimizing lead molecules, such as metadynamics and a novel dynamic 3D pharmacophore analysis method called Dynophores. In this paper, the first application of the funnel metadynamics of the Berberine binding to G-quadruplex DNA is depicted, disclosing hints for drug design, in particular clarifying water’s role and suggesting the design of derivatives able to replace the solvent-mediated interactions between ligand and DNA to achieve more potent and selective activity. Secondly, the novel dynamic pharmacophore approach is an extension of the classic 3D pharmacophores, with statistical and sequential information about the conformational flexibility of a molecular system derived from molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Antonio Lupia
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Federica Moraca
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- Department of Chemical Sciences , University of Napoli Federico II , Via Cinthia 4 , I-80126 Napoli , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Donatella Bagetta
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Annalisa Maruca
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | | | - Roberta Rocca
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- Department of Experimental and Clinical Medicine , Magna Graecia University and Translational Medicinal Oncology Unit, Salvatore Venuta University Campus , Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Raffaella Catalano
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Isabella Romeo
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Carmine Talarico
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
| | - Francesco Ortuso
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Anna Artese
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| | - Stefano Alcaro
- Department of Health Sciences , University “Magna Græcia” of Catanzaro , Viale Europa , 88100 Catanzaro , Italy
- “Magna Græcia” University of Catanzaro , Net4Science Academic Spin-Off , “S. Venuta” Catanzaro , Italy
| |
Collapse
|
15
|
Brotzakis ZF, Limongelli V, Parrinello M. Accelerating the Calculation of Protein–Ligand Binding Free Energy and Residence Times Using Dynamically Optimized Collective Variables. J Chem Theory Comput 2018; 15:743-750. [DOI: 10.1021/acs.jctc.8b00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Z. Faidon Brotzakis
- Department of Chemistry and Applied Bioscience, ETH Zürich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Institute of Computational Science, Universitá della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science—Center for Computational Medicine in Cardiology, Universitá della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, I-80131 Naples, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Bioscience, ETH Zürich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Institute of Computational Science, Universitá della Svizzera Italiana (USI), Via Giuseppe Buffi 13, CH-6900 Lugano, Ticino, Switzerland
- Instituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
16
|
Takemoto M, Lee Y, Ishitani R, Nureki O. Free Energy Landscape for the Entire Transport Cycle of Triose-Phosphate/Phosphate Translocator. Structure 2018; 26:1284-1296.e4. [DOI: 10.1016/j.str.2018.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
|
17
|
Yuan X, Raniolo S, Limongelli V, Xu Y. The Molecular Mechanism Underlying Ligand Binding to the Membrane-Embedded Site of a G-Protein-Coupled Receptor. J Chem Theory Comput 2018; 14:2761-2770. [PMID: 29660291 DOI: 10.1021/acs.jctc.8b00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of P2Y1 receptor (P2Y1R), a class A GPCR, revealed a special extra-helical site for its antagonist, BPTU, which locates in-between the membrane and the protein. However, due to the limitation of crystallization experiments, the membrane was mimicked by use of detergents, and the information related to the binding of BPTU to the receptor in the membrane environment is rather limited. In the present work, we conducted a total of ∼7.5 μs all-atom simulations in explicit solvent using conventional molecular dynamics and multiple enhanced sampling methods, with models of BPTU and a POPC bilayer, both in the absence and presence of P2Y1R. Our simulations revealed that BPTU prefers partitioning into the interface of polar/lipophilic region of the lipid bilayer before associating with the receptor. Then, it interacts with the second extracellular loop of the receptor and reaches the binding site through the lipid-receptor interface. In addition, by use of funnel-metadynamics simulations which efficiently enhance the sampling of bound and unbound states, we provide a statistically accurate description of the underlying binding free energy landscape. The calculated absolute ligand-receptor binding affinity is in excellent agreement with the experimental data (Δ Gb0_theo = -11.5 kcal mol-1, Δ Gb0_exp= -11.7 kcal mol-1). Our study broadens the view of the current experimental/theoretical models and our understanding of the protein-ligand recognition mechanism in the lipid environment. The strategy used in this work is potentially applicable to investigate ligands association/dissociation with other membrane-embedded sites, allowing identification of compounds targeting membrane receptors of pharmacological interest.
Collapse
Affiliation(s)
- Xiaojing Yuan
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Stefano Raniolo
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , Università della Svizzera Italiana (USI) , CH-6900 Lugano , Switzerland.,Department of Pharmacy , University of Naples "Federico II" , I-80131 Naples , Italy
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica , Chinese Academy of Sciences (CAS) , Shanghai 201203 , China.,School of Pharmacy , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
18
|
Magalhães J, Annunziato G, Franko N, Pieroni M, Campanini B, Bruno A, Costantino G. Integration of Enhanced Sampling Methods with Saturation Transfer Difference Experiments to Identify Protein Druggable Pockets. J Chem Inf Model 2018; 58:710-723. [DOI: 10.1021/acs.jcim.7b00733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Joana Magalhães
- Food and Drug Department, P4T group, Parco Area Delle Scienze 27/A−43124, Parma, Italy
| | | | - Nina Franko
- Food and Drug Department, Laboratory of Biochemistry and Molecular Biology, Parco Area Delle Scienze 23/A−43124, Parma, Italy
| | - Marco Pieroni
- Food and Drug Department, P4T group, Parco Area Delle Scienze 27/A−43124, Parma, Italy
| | - Barbara Campanini
- Food and Drug Department, Laboratory of Biochemistry and Molecular Biology, Parco Area Delle Scienze 23/A−43124, Parma, Italy
| | - Agostino Bruno
- Food and Drug Department, P4T group, Parco Area Delle Scienze 27/A−43124, Parma, Italy
- Experimental Therapeutics Program, IFOM−The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16−20139, Milano, Italy
| | - Gabriele Costantino
- Food and Drug Department, P4T group, Parco Area Delle Scienze 27/A−43124, Parma, Italy
| |
Collapse
|
19
|
Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:909-926. [PMID: 29113819 DOI: 10.1016/j.bbamem.2017.10.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022]
Abstract
The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables.
Collapse
|
20
|
Setiadi J, Kuyucak S. Elucidation of the Role of a Conserved Methionine in Glutamate Transporters and Its Implication for Force Fields. J Phys Chem B 2017; 121:9526-9531. [PMID: 28945385 DOI: 10.1021/acs.jpcb.7b07366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate transport through the excitatory amino acid transporters is coupled to the cotransport of three Na+ ions, the binding sites (Na1-Na3) of which are conserved from archaea to mammalians. Molecular dynamics (MD) simulations reproduce the Na1 and Na3 binding sites observed in the crystal structures but fail in the case of Na2. A distinguishing feature of the Na2 site is that an S atom from a conserved methionine residue is in the coordination shell of Na+. We perform MD simulations on the recent GltTk structure and show that the problem with the Na2 site arises from using an inadequate partial charge for S. When methionine is appropriately parametrized, both the position and the binding free energy of Na+ at the Na2 site can be reproduced in good agreement with the experimental data. Other properties of methionine, such as its dipole moment and the solvation energy of its side chain analog, also benefit from this reparametrization. Thus, the Na2 site in glutamate transporters provides a good opportunity for a proper parametrization of methionine in MD force fields.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
21
|
Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S. Selective ion binding and transport by membrane proteins – A computational perspective. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Saleh N, Ibrahim P, Saladino G, Gervasio FL, Clark T. An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands. J Chem Inf Model 2017; 57:1210-1217. [PMID: 28453271 DOI: 10.1021/acs.jcim.6b00772] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol-1). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.
Collapse
Affiliation(s)
- Noureldin Saleh
- Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg , Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Passainte Ibrahim
- Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg , Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Giorgio Saladino
- Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London , London WC1H 0AJ, United Kingdom.,Institute of Structural and Molecular Biology, University College London , London WC1E 6BT, United Kingdom
| | - Timothy Clark
- Computer-Chemie-Centrum and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg , Nägelsbachstraße 25, 91052 Erlangen, Germany
| |
Collapse
|
23
|
Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. J Am Chem Soc 2017; 139:4780-4788. [PMID: 28290199 DOI: 10.1021/jacs.6b12950] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s-1. This is in good agreement with the experimental value (koff = 0.14 s-1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.
Collapse
Affiliation(s)
- Rodrigo Casasnovas
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900, Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, Naples I-80131, Italy
| | - Pratyush Tiwary
- Department of Chemistry, Columbia University , New York, New York, 10027, United States
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana , via G. Buffi 13, Lugano CH-6900, Switzerland
| |
Collapse
|
24
|
Incerti M, Russo S, Callegari D, Pala D, Giorgio C, Zanotti I, Barocelli E, Vicini P, Vacondio F, Rivara S, Castelli R, Tognolini M, Lodola A. Metadynamics for Perspective Drug Design: Computationally Driven Synthesis of New Protein-Protein Interaction Inhibitors Targeting the EphA2 Receptor. J Med Chem 2017; 60:787-796. [PMID: 28005388 DOI: 10.1021/acs.jmedchem.6b01642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metadynamics (META-D) is emerging as a powerful method for the computation of the multidimensional free-energy surface (FES) describing the protein-ligand binding process. Herein, the FES of unbinding of the antagonist N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan (UniPR129) from its EphA2 receptor was reconstructed by META-D simulations. The characterization of the free-energy minima identified on this FES proposes a binding mode fully consistent with previously reported and new structure-activity relationship data. To validate this binding mode, new N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan derivatives were designed, synthesized, and tested for their ability to displace ephrin-A1 from the EphA2 receptor. Among them, two antagonists, namely compounds 21 and 22, displayed high affinity versus the EphA2 receptor and resulted endowed with better physicochemical and pharmacokinetic properties than the parent compound. These findings highlight the importance of free-energy calculations in drug design, confirming that META-D simulations can be used to successfully design novel bioactive compounds.
Collapse
Affiliation(s)
- Matteo Incerti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Simonetta Russo
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elisabetta Barocelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Paola Vicini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Massimiliano Tognolini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University , Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
25
|
Lopata A, Leveles I, Bendes ÁÁ, Viskolcz B, Vértessy BG, Jójárt B, Tóth J. A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes. J Biol Chem 2016; 291:26320-26331. [PMID: 27815500 DOI: 10.1074/jbc.m116.734012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent.
Collapse
Affiliation(s)
- Anna Lopata
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Ibolya Leveles
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Ábris Ádám Bendes
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Béla Viskolcz
- the Institute of Chemistry, University of Miskolc, Miskolc, Hungary H3529
| | - Beáta G Vértessy
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117.,the Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary H1111, and
| | - Balázs Jójárt
- Department of Chemical Informatics, University of Szeged, Szeged, Hungary H6725
| | - Judit Tóth
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117,
| |
Collapse
|
26
|
Sgrignani J, Grazioso G, De Amici M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016; 55:5191-200. [PMID: 27534275 DOI: 10.1021/acs.biochem.6b00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
27
|
Lelimousin M, Limongelli V, Sansom MSP. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J Am Chem Soc 2016; 138:10611-22. [PMID: 27459426 PMCID: PMC5010359 DOI: 10.1021/jacs.6b05602] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.
Collapse
Affiliation(s)
- Mickaël Lelimousin
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,CERMAV, Université Grenoble Alpes and CNRS , BP 53, F-38041 Grenoble Cedex 9, France
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
28
|
Karmakar T, Roy S, Balaram H, Prakash MK, Balasubramanian S. Product Release Pathways in Human and Plasmodium falciparum Phosphoribosyltransferase. J Chem Inf Model 2016; 56:1528-38. [PMID: 27404508 DOI: 10.1021/acs.jcim.6b00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atomistic molecular dynamics (MD) simulations coupled with the metadynamics technique were carried out to delineate the product (PPi.2Mg and IMP) release mechanisms from the active site of both human (Hs) and Plasmodium falciparum (Pf) hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT). An early movement of PPi.2Mg from its binding site has been observed. The swinging motion of the Asp side chain (D134/D145) in the binding pocket facilitates the detachment of IMP, which triggers the opening of flexible loop II, the gateway to the bulk solvent. In PfHGXPRT, PPi.2Mg and IMP are seen to be released via the same path in all of the biased MD simulations. In HsHGPRT too, the product molecules follow similar routes from the active site; however, an alternate but minor escape route for PPi.2Mg has been observed in the human enzyme. Tyr 104 and Phe 186 in HsHGPRT and Tyr 116 and Phe 197 in PfHGXPRT are the key residues that mediate the release of IMP, whereas the motion of PPi.2Mg away from the reaction center is guided by the negatively charged Asp and Glu and a few positively charged residues (Lys and Arg) that line the product release channels. Mutations of a few key residues present in loop II of Trypanosoma cruzi (Tc) HGPRT have been shown to reduce the catalytic efficiency of the enzyme. Herein, in silico mutation of corresponding residues in loop II of HsHGPRT and PfHGXPRT resulted in partial opening of the flexible loop (loop II), thus exposing the active site to bulk water, which offers a rationale for the reduced catalytic activity of these two mutant enzymes. Investigations of the product release from these HsHGPRT and PfHGXPRT mutants delineate the role of these important residues in the enzymatic turnover.
Collapse
Affiliation(s)
- Tarak Karmakar
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Sourav Roy
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Hemalatha Balaram
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Meher K Prakash
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, ‡Molecular Biology and Genetics Unit, and §Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064, India
| |
Collapse
|
29
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
30
|
Saleh N, Saladino G, Gervasio FL, Haensele E, Banting L, Whitley DC, Sopkova-de Oliveira Santos J, Bureau R, Clark T. A Three-Site Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors. Angew Chem Int Ed Engl 2016; 55:8008-12. [DOI: 10.1002/anie.201602729] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstrasse 25 91052 Erlangen Germany
| | - Giorgio Saladino
- Department of Chemistry and Institute of Structural and Molecular Biology; University College London; London WC1E 6BT UK
| | - Francesco L. Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology; University College London; London WC1E 6BT UK
| | - Elke Haensele
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - Lee Banting
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - David C. Whitley
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | | | - Ronan Bureau
- UNICAEN, CERMN; UPRES EA 4258, FR CNRS 3038 INC3M -; Normandie Univ.; Boulevard Becquerel 14032 CAEN Cedex France
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstrasse 25 91052 Erlangen Germany
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| |
Collapse
|
31
|
Saleh N, Saladino G, Gervasio FL, Haensele E, Banting L, Whitley DC, Sopkova-de Oliveira Santos J, Bureau R, Clark T. A Three-Site Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Noureldin Saleh
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstrasse 25 91052 Erlangen Germany
| | - Giorgio Saladino
- Department of Chemistry and Institute of Structural and Molecular Biology; University College London; London WC1E 6BT UK
| | - Francesco L. Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology; University College London; London WC1E 6BT UK
| | - Elke Haensele
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - Lee Banting
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | - David C. Whitley
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| | | | - Ronan Bureau
- UNICAEN, CERMN; UPRES EA 4258, FR CNRS 3038 INC3M -; Normandie Univ.; Boulevard Becquerel 14032 CAEN Cedex France
| | - Timothy Clark
- Computer-Chemie-Centrum; Friedrich-Alexander-Universität Erlangen-Nürnberg; Nägelsbachstrasse 25 91052 Erlangen Germany
- School of Pharmacy and Biomedical Sciences; University of Portsmouth; Portsmouth PO1 2DT UK
| |
Collapse
|
32
|
Schneider S, Provasi D, Filizola M. The Dynamic Process of Drug-GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics. Methods Mol Biol 2016; 1335:277-94. [PMID: 26260607 DOI: 10.1007/978-1-4939-2914-6_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Major advances in G Protein-Coupled Receptor (GPCR) structural biology over the past few years have yielded a significant number of high-resolution crystal structures for several different receptor subtypes. This dramatic increase in GPCR structural information has underscored the use of automated docking algorithms for the discovery of novel ligands that can eventually be developed into improved therapeutics. However, these algorithms are often unable to discriminate between different, yet energetically similar, poses because of their relatively simple scoring functions. Here, we describe a metadynamics-based approach to study the dynamic process of ligand binding to/unbinding from GPCRs with a higher level of accuracy and yet satisfying efficiency.
Collapse
Affiliation(s)
- Sebastian Schneider
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1677, New York, NY, 10029-6574, USA
| | | | | |
Collapse
|
33
|
LeVine MV, Cuendet MA, Khelashvili G, Weinstein H. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 2016; 116:6552-87. [PMID: 26892914 DOI: 10.1021/acs.chemrev.5b00627] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane.
Collapse
Affiliation(s)
- Michael V LeVine
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Michel A Cuendet
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, ‡HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University , New York, New York 10065, United States
| |
Collapse
|
34
|
Bisha I, Magistrato A. The molecular mechanism of secondary sodium symporters elucidated through the lens of the computational microscope. RSC Adv 2016. [DOI: 10.1039/c5ra22131e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transport of molecules across cellular membranes is a key biological process for normal cell function. In this review we describe current state-of-the-art knowledge on molecular mechanism of secondary active transporters obtained by molecular simulations studies.
Collapse
Affiliation(s)
- Ina Bisha
- Theoretical Chemical Biology and Protein Modelling Group
- Technische Universität München
- 85354 Freising
- Germany
| | | |
Collapse
|
35
|
Grazioso G, Sgrignani J, Capelli R, Matera C, Dallanoce C, De Amici M, Cavalli A. Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics. J Chem Inf Model 2015; 55:2528-39. [PMID: 26569022 DOI: 10.1021/acs.jcim.5b00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.
Collapse
Affiliation(s)
- Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Jacopo Sgrignani
- Institute of Research in Biomedicine (IRB) , Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Romina Capelli
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Carlo Matera
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica "Pietro Pratesi", Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Andrea Cavalli
- Drug Discovery and Development-Computation, Istituto Italiano di Tecnologia , Via Morego 30, 16163 Genoa, Italy.,Department of Pharmacy and Biotecnology, University of Bologna , Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
36
|
Setiadi J, Heinzelmann G, Kuyucak S. Computational Studies of Glutamate Transporters. Biomolecules 2015; 5:3067-86. [PMID: 26569328 PMCID: PMC4693270 DOI: 10.3390/biom5043067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.
Collapse
Affiliation(s)
- Jeffry Setiadi
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| | - Germano Heinzelmann
- Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - Serdar Kuyucak
- School of Physics, University of Sydney, New South Wales, Sydney 2006, Australia.
| |
Collapse
|
37
|
Venkatesan S, Saha K, Sohail A, Sandtner W, Freissmuth M, Ecker GF, Sitte HH, Stockner T. Refinement of the Central Steps of Substrate Transport by the Aspartate Transporter GltPh: Elucidating the Role of the Na2 Sodium Binding Site. PLoS Comput Biol 2015; 11:e1004551. [PMID: 26485255 PMCID: PMC4618328 DOI: 10.1371/journal.pcbi.1004551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023] Open
Abstract
Glutamate homeostasis in the brain is maintained by glutamate transporter mediated accumulation. Impaired transport is associated with several neurological disorders, including stroke and amyotrophic lateral sclerosis. Crystal structures of the homolog transporter GltPh from Pyrococcus horikoshii revealed large structural changes. Substrate uptake at the atomic level and the mechanism of ion gradient conversion into directional transport remained enigmatic. We observed in repeated simulations that two local structural changes regulated transport. The first change led to formation of the transient Na2 sodium binding site, triggered by side chain rotation of T308. The second change destabilized cytoplasmic ionic interactions. We found that sodium binding to the transiently formed Na2 site energized substrate uptake through reshaping of the energy hypersurface. Uptake experiments in reconstituted proteoliposomes confirmed the proposed mechanism. We reproduced the results in the human glutamate transporter EAAT3 indicating a conserved mechanics from archaea to humans. We used the archaeal homolog GltPh of the human glutamate transporters to refine our understanding how large scale conformational changes are translated into substrate translocation. We identified the structural changes that accompany substrate transport and convert the energy stored in the ion gradient into a directional transport. Insights into the mechanics of these transporters are likely to increase our understanding of how they contribute to excitotoxicity and to develop drugs, which preclude the underlying accumulation of glutamate in the synaptic cleft.
Collapse
Affiliation(s)
- SanthoshKannan Venkatesan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kusumika Saha
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Azmat Sohail
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard F. Ecker
- Division of Drug Design & Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Harald H. Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
38
|
Simonin A, Montalbetti N, Gyimesi G, Pujol-Giménez J, Hediger MA. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2. J Biol Chem 2015; 290:30464-74. [PMID: 26483543 DOI: 10.1074/jbc.m115.689836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates L-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for L-aspartate over D-aspartate and L-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Collapse
Affiliation(s)
- Alexandre Simonin
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Nicolas Montalbetti
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Gergely Gyimesi
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Jonai Pujol-Giménez
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| | - Matthias A Hediger
- From the Institute of Biochemistry and Molecular Medicine and Swiss National Center of Competence in Research, National Center of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
39
|
Hänelt I, Jensen S, Wunnicke D, Slotboom DJ. Low Affinity and Slow Na+ Binding Precedes High Affinity Aspartate Binding in the Secondary-active Transporter GltPh. J Biol Chem 2015; 290:15962-72. [PMID: 25922069 DOI: 10.1074/jbc.m115.656876] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/30/2022] Open
Abstract
GltPh from Pyrococcus horikoshii is a homotrimeric Na(+)-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na(+) and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na(+) binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m(-1)s(-1)). At least two sodium ions bind before aspartate. The binding of Na(+) requires a very high activation energy (Ea 106.8 kJ mol(-1)) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na(+) concentration present. Binding of aspartate was not observed in the absence of Na(+), whereas in the presence of high Na(+) concentrations (above the Kd for Na(+)) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 10(5) m(-1)s(-1)), with low Ea and Q10 values (42.6 kJ mol(-1) and 1.8, respectively). We conclude that Na(+) binding is most likely the rate-limiting step for substrate binding.
Collapse
Affiliation(s)
- Inga Hänelt
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sonja Jensen
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dorith Wunnicke
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dirk Jan Slotboom
- From the Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Li J, Wen PC, Moradi M, Tajkhorshid E. Computational characterization of structural dynamics underlying function in active membrane transporters. Curr Opin Struct Biol 2015; 31:96-105. [PMID: 25913536 PMCID: PMC4476910 DOI: 10.1016/j.sbi.2015.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
Active transport of materials across the cellular membrane is one the most fundamental processes in biology. In order to accomplish this task, membrane transporters rely on a wide range of conformational changes spanning multiple time and size scales. These molecular events govern key functional aspects in membrane transporters, namely, coordinated gating motions underlying the alternating access mode of operation, and coupling of uphill transport of substrate to various sources of energy, for example, transmembrane electrochemical gradients and ATP binding and hydrolysis. Computational techniques such as molecular dynamics simulations and free energy calculations have equipped us with a powerful repertoire of biophysical tools offering unparalleled spatial and temporal resolutions that can effectively complement experimental methodologies, and therefore help fill the gap of knowledge in understanding the molecular basis of function in membrane transporters.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Po-Chao Wen
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mahmoud Moradi
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
41
|
Cavalli A, Spitaleri A, Saladino G, Gervasio FL. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms. Acc Chem Res 2015; 48:277-85. [PMID: 25496113 DOI: 10.1021/ar500356n] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONSPECTUS: This Account highlights recent advances and discusses major challenges in the field of drug-target recognition, binding, and unbinding studied using metadynamics-based approaches, with particular emphasis on their role in structure-based design. Computational chemistry has significantly contributed to drug design and optimization in an extremely broad range of areas, including prediction of target druggability and drug likeness, de novo design, fragment screening, ligand docking, estimation of binding affinity, and modulation of ADMET (absorption, distribution, metabolism, excretion, toxicity) properties. Computationally driven drug discovery must continuously adapt to keep pace with the evolving knowledge of the factors that modulate the pharmacological action of drugs. There is thus an urgent need for novel computational approaches that integrate the vast amount of complex information currently available for small (bio)organic compounds, biologically relevant targets and their complexes, while also accounting accurately for the thermodynamics and kinetics of drug-target association, the intrinsic dynamical behavior of biomolecular systems, and the complexity of protein-protein networks. Understanding the mechanism of drug binding to and unbinding from biological targets is fundamental for optimizing lead compounds and designing novel biologically active ones. One major challenge is the accurate description of the conformational complexity prior to and upon formation of drug-target complexes. Recently, enhanced sampling methods, including metadynamics and related approaches, have been successfully applied to investigate complex mechanisms of drugs binding to flexible targets. Metadynamics is a family of enhanced sampling techniques aimed at enhancing the rare events and reconstructing the underlying free energy landscape as a function of a set of order parameters, usually referred to as collective variables. Studies of drug binding mechanisms have predicted the most probable association and dissociation pathways and the related binding free energy profile. In addition, the availability of an efficient open-source implementation, running on cost-effective GPU (i.e., graphical processor unit) architectures, has considerably decreased the learning curve and the computational costs of the methods, and increased their adoption by the community. Here, we review the recent contributions of metadynamics and other enhanced sampling methods to the field of drug-target recognition and binding. We discuss how metadynamics has been used to search for transition states, to predict binding and unbinding paths, to treat conformational flexibility, and to compute free energy profiles. We highlight the importance of such predictions in drug discovery. Major challenges in the field and possible solutions will finally be discussed.
Collapse
Affiliation(s)
- Andrea Cavalli
- Department
of Pharmacy and Biotechnology, University of Bologna, via Belmeloro
6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Spitaleri
- CompuNet, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Giorgio Saladino
- Department
of Chemistry and Institute of Structural and Molecular Biology, University College London, WC1E 6BT London, United Kingdom
| | - Francesco L. Gervasio
- Department
of Chemistry and Institute of Structural and Molecular Biology, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
42
|
Heinzelmann G, Kuyucak S. Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3. Biophys J 2015; 106:2675-83. [PMID: 24940785 DOI: 10.1016/j.bpj.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022] Open
Abstract
The uptake of glutamate in nerve synapses is carried out by the excitatory amino acid transporters (EAATs), involving the cotransport of a proton and three Na(+) ions and the countertransport of a K(+) ion. In this study, we use an EAAT3 homology model to calculate the pKa of several titratable residues around the glutamate binding site to locate the proton carrier site involved in the translocation of the substrate. After identifying E374 as the main candidate for carrying the proton, we calculate the protonation state of this residue in different conformations of EAAT3 and with different ligands bound. We find that E374 is protonated in the fully bound state, but removing the Na2 ion and the substrate reduces the pKa of this residue and favors the release of the proton to solution. Removing the remaining Na(+) ions again favors the protonation of E374 in both the outward- and inward-facing states, hence the proton is not released in the empty transporter. By calculating the pKa of E374 with a K(+) ion bound in three possible sites, we show that binding of the K(+) ion is necessary for the release of the proton in the inward-facing state. This suggests a mechanism in which a K(+) ion replaces one of the ligands bound to the transporter, which may explain the faster transport rates of the EAATs compared to its archaeal homologs.
Collapse
Affiliation(s)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
43
|
Formoso E, Limongelli V, Parrinello M. Energetics and structural characterization of the large-scale functional motion of adenylate kinase. Sci Rep 2015; 5:8425. [PMID: 25672826 PMCID: PMC4325324 DOI: 10.1038/srep08425] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022] Open
Abstract
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.
Collapse
Affiliation(s)
- Elena Formoso
- 1] Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, via G. Buffi 13, CH-6900 Lugano, Switzerland [2] Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Vittorio Limongelli
- 1] Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science, via G. Buffi 13, CH-6900 Lugano, Switzerland [2] Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, I-80131 Naples, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana, via G. Buffi 13, CH-6900 Lugano, Switzerland
| |
Collapse
|
44
|
Tiwary P, Limongelli V, Salvalaglio M, Parrinello M. Kinetics of protein-ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci U S A 2015; 112:E386-91. [PMID: 25605901 PMCID: PMC4321287 DOI: 10.1073/pnas.1424461112] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to predict the mechanisms and the associated rate constants of protein-ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin-benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate k off is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate k on. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein-ligand systems and a valid support for drug design.
Collapse
Affiliation(s)
- Pratyush Tiwary
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8006 Zurich, Switzerland; Università della Svizzera Italiana, Faculty of Informatics, Institute of Computational Science, CH-6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Università della Svizzera Italiana, Faculty of Informatics, Institute of Computational Science, CH-6900 Lugano, Switzerland; Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; and
| | - Matteo Salvalaglio
- Università della Svizzera Italiana, Faculty of Informatics, Institute of Computational Science, CH-6900 Lugano, Switzerland; Institute of Process Engineering, Eidgenössische Technische Hochschule Zürich, 8006 Zurich, Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, 8006 Zurich, Switzerland; Università della Svizzera Italiana, Faculty of Informatics, Institute of Computational Science, CH-6900 Lugano, Switzerland;
| |
Collapse
|
45
|
Troussicot L, Guillière F, Limongelli V, Walker O, Lancelin JM. Funnel-Metadynamics and Solution NMR to Estimate Protein–Ligand Affinities. J Am Chem Soc 2015; 137:1273-81. [DOI: 10.1021/ja511336z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Troussicot
- Institut
des Sciences Analytiques, UMR 5280, CNRS, Université de Lyon, Université Lyon 1, ENS Lyon -5, rue de la Doua, F-69100 Villeurbanne, France
| | - Florence Guillière
- Institut
des Sciences Analytiques, UMR 5280, CNRS, Université de Lyon, Université Lyon 1, ENS Lyon -5, rue de la Doua, F-69100 Villeurbanne, France
| | - Vittorio Limongelli
- Faculty
of Informatics, Institute of Computational Science, Università della Svizzera Italiana (USI), via G. Buffi 13, CH-6900 Lugano, Switzerland
- Department
of Pharmacy, University of Naples “Federico II”, via D. Montesano
49, I-80131 Naples, Italy
| | - Olivier Walker
- Institut
des Sciences Analytiques, UMR 5280, CNRS, Université de Lyon, Université Lyon 1, ENS Lyon -5, rue de la Doua, F-69100 Villeurbanne, France
| | - Jean-Marc Lancelin
- Institut
des Sciences Analytiques, UMR 5280, CNRS, Université de Lyon, Université Lyon 1, ENS Lyon -5, rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
46
|
Sgrignani J, Grazioso G, De Amici M, Colombo G. Inactivation of TEM-1 by Avibactam (NXL-104): Insights from Quantum Mechanics/Molecular Mechanics Metadynamics Simulations. Biochemistry 2014; 53:5174-85. [DOI: 10.1021/bi500589x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Marco De Amici
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
47
|
Franco D, Vargiu AV, Magistrato A. Ru[(bpy)2(dppz)]2+ and Rh[(bpy)2(chrysi)]3+ Targeting Double Strand DNA: The Shape of the Intercalating Ligand Tunes the Free Energy Landscape of Deintercalation. Inorg Chem 2014; 53:7999-8008. [DOI: 10.1021/ic5008523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Duvan Franco
- International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136, Trieste, Italy
| | - Attilio V. Vargiu
- Dipartimento
di Fisica, Università di Cagliari, s.p. Monserrato-Sestu km 0.700, I-09042 Monserrato, Italy
| | - Alessandra Magistrato
- CNR-IOM-DEMOCRITOS c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
48
|
Di Leva FS, Novellino E, Cavalli A, Parrinello M, Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res 2014; 42:5447-55. [PMID: 24753420 PMCID: PMC4027208 DOI: 10.1093/nar/gku247] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1: ), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1: to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1: is able to bind both to the groove and to the 3' end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies.
Collapse
Affiliation(s)
- Francesco Saverio Di Leva
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, I-16163 Genoa, Italy Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, via Belmeloro, 6, I-40126 Bologna, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, via G. Buffi, 13, CH-6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, I-80131 Naples, Italy
| |
Collapse
|
49
|
Heinzelmann G, Kuyucak S. Molecular dynamics simulations of the mammalian glutamate transporter EAAT3. PLoS One 2014; 9:e92089. [PMID: 24643009 PMCID: PMC3958442 DOI: 10.1371/journal.pone.0092089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are membrane proteins that enable sodium-coupled uptake of glutamate and other amino acids into neurons. Crystal structures of the archaeal homolog GltPh have been recently determined both in the inward- and outward-facing conformations. Here we construct homology models for the mammalian glutamate transporter EAAT3 in both conformations and perform molecular dynamics simulations to investigate its similarities and differences from GltPh. In particular, we study the coordination of the different ligands, the gating mechanism and the location of the proton and potassium binding sites in EAAT3. We show that the protonation of the E374 residue is essential for binding of glutamate to EAAT3, otherwise glutamate becomes unstable in the binding site. The gating mechanism in the inward-facing state of EAAT3 is found to be different from that of GltPh, which is traced to the relocation of an arginine residue from the HP1 segment in GltPh to the TM8 segment in EAAT3. Finally, we perform free energy calculations to locate the potassium binding site in EAAT3, and find a high-affinity site that overlaps with the Na1 and Na3 sites in GltPh.
Collapse
Affiliation(s)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
50
|
Neurotransmitter transporters: structure meets function. Structure 2014; 21:694-705. [PMID: 23664361 DOI: 10.1016/j.str.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/15/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
At synapses, sodium-coupled transporters remove released neurotransmitters, thereby recycling them and maintaining a low extracellular concentration of the neurotransmitter. The molecular mechanism underlying sodium-coupled neurotransmitter uptake is not completely understood. Several structures of homologs of human neurotransmitter transporters have been solved with X-ray crystallography. These crystal structures have spurred a plethora of computational and experimental work to elucidate the molecular mechanism underlying sodium-coupled transport. Here, we compare the structures of GltPh, a glutamate transporter homolog, and LeuT, a homolog of neurotransmitter transporters for the biogenic amines and inhibitory molecules GABA and glycine. We relate these structures to data obtained from experiments and computational simulations, to draw conclusions about the mechanism of uptake by sodium-coupled neurotransmitter transporters. Here, we propose how sodium and substrate binding is coupled and how binding of sodium and substrate opens and closes the gates in these transporters, thereby leading to an efficient coupled transport.
Collapse
|