1
|
Rennie BE, Price JS, Emslie DJH, Morris RH. Trans Ligand Determines the Stability of Paramagnetic Manganese(II) Hydrides of the Type trans-[MnH(L)(dmpe) 2] + Where L is PMe 3, C 2H 4, or CO. Inorg Chem 2023; 62:8123-8135. [PMID: 36812512 DOI: 10.1021/acs.inorgchem.2c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Paramagnetic metal hydride (PMH) complexes play important roles in catalytic applications and bioinorganic chemistry. 3d PMH chemistry has largely focused on Ti, Mn, Fe, and Co. Various MnII PMHs have been proposed as intermediates in catalysis, but isolated MnII PMHs are limited to dimeric high-spin MnII structures with bridging hydrides. In this paper, a series of the first low-spin monomeric MnII PMH complexes are generated by chemical oxidation of their MnI analogues. This series is of the type trans-[MnH(L)(dmpe)2]+/0 where the trans ligand L is PMe3, C2H4, or CO [dmpe is 1,2-bis(dimethylphosphino)ethane], and the thermal stability of the MnII hydride complexes was found to be strongly dependent on the identity of the trans ligand. When L is PMe3, the complex is the first example of an isolated monomeric MnII hydride complex. In contrast, when L is C2H4 or CO, the complexes are only stable at low temperatures; upon warming to room temperature, the former decomposed to afford [Mn(dmpe)3]+, accompanied by ethane and ethylene, whereas the latter eliminated H2, generating [Mn(MeCN)(CO)(dmpe)2]+ or a mixture of products including [Mn(κ1-PF6)(CO)(dmpe)2], depending on the reaction conditions. All PMHs were characterized by low-temperature electron paramagnetic resonance (EPR) spectroscopy, and stable [MnH(PMe3)(dmpe)2]+ was further characterized by UV-vis and IR spectroscopy, Superconducting Quantum Interference Device magnetometry, and single-crystal X-ray diffraction. Noteworthy spectral properties are the significant EPR superhyperfine coupling to the hydride (∼85 MHz) and an increase (+33 cm-1) in the Mn-H IR stretch upon oxidation. Density functional theory calculations were also employed to gain insights into the acidity and bond strengths of the complexes. MnII-H bond dissociation free energies are estimated to decrease in the series of complexes from 60 (L = PMe3) to 47 kcal/mol (L = CO).
Collapse
Affiliation(s)
- Benjamin E Rennie
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S3H6, Canada
| | - Jeffrey S Price
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S4M1, Canada
| | - David J H Emslie
- Department of Chemistry, McMaster University, Hamilton, Ontario L8S4M1, Canada
| | - Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
2
|
Wang W, Wang Q, Ding X, Liu X, Sun P, Wang X. Synthesis and Chemical Redox Studies of Half-Sandwich Chromium Carbonyl Azobenzenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qianqian Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xuguang Ding
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiangjun Liu
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Peiyang Sun
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Bu D, Bu D, Chen W, Huang C, Li L, Lei H, Huang S. Metal–Organic Frameworks with Mixed-Anion Secondary Building Units as Efficient Photocatalysts for Hydrogen Generation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Hogarth G, Orton G, Ghosh S, Sarker JC, Pugh D, Richmond MG, Hartl F, Alker L. Biomimetics of [FeFe]-hydrogenases incorporating redox-active ligands: Synthesis, redox and spectroelectrochemistry of diiron-dithiolate complexes with ferrocenyl-diphosphines as Fe4S4 surrogates. Dalton Trans 2022; 51:9748-9769. [DOI: 10.1039/d2dt00419d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-ase biomimics containing a redox-active ferrocenyl diphosphine have been prepared and their ability to reduce protons and oxidise H2 studied, including 1,1’-bis(diphenylphosphino)ferrocene (dppf) complexes Fe2(CO)4(-dppf)(-S(CH2)nS) (n = 2, edt; n...
Collapse
|
5
|
Redman HJ, Huang P, Haumann M, Cheah MH, Berggren G. Lewis acid protection turns cyanide containing [FeFe]-hydrogenase mimics into proton reduction catalysts. Dalton Trans 2022; 51:4634-4643. [PMID: 35212328 PMCID: PMC8939051 DOI: 10.1039/d1dt03896f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sustainable sources of hydrogen are a vital component of the envisioned energy transition. Understanding and mimicking the [FeFe]-hydrogenase provides a route to achieving this goal. In this study we re-visit a molecular mimic of the hydrogenase, the propyl dithiolate bridged complex [Fe2(μ-pdt)(CO)4(CN)2]2−, in which the cyanide ligands are tuned via Lewis acid interactions. This system provides a rare example of a cyanide containing [FeFe]-hydrogenase mimic capable of catalytic proton reduction, as demonstrated by cyclic voltammetry. EPR, FTIR, UV-vis and X-ray absorption spectroscopy are employed to characterize the species produced by protonation, and reduction or oxidation of the complex. The results reveal that biologically relevant iron-oxidation states can be generated, potentially including short-lived mixed valent Fe(i)Fe(ii) species. We propose that catalysis is initiated by protonation of the diiron complex and the resulting di-ferrous bridging hydride species can subsequently follow two different pathways to promote H2 gas formation depending on the applied reduction potential. Mimicking the hydrogen-bonding interactions of the [FeFe]-hydrogenase active-site using Lewis acids transforms an otherwise unstable cyanide containing hydrogenase mimic into a proton reduction catalyst.![]()
Collapse
Affiliation(s)
- Holly J Redman
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mun Hon Cheah
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
6
|
Arnett CH, Bogacz I, Chatterjee R, Yano J, Oyala PH, Agapie T. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. J Am Chem Soc 2020; 142:18795-18813. [PMID: 32976708 DOI: 10.1021/jacs.0c05920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(μ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron μ-carbyne complex (P6ArC)Fe2(μ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(μ-C)(μ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the μ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(μ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(μ-H)]+1 and [(P6ArC)Fe2(μ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Shimamura T, Maeno Y, Kubo K, Kume S, Greco C, Mizuta T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans 2019; 48:16595-16603. [PMID: 31651000 DOI: 10.1039/c9dt03427g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge. The molecular structure of 3 indicated that the trigonal plane of the NEt2 group was forced to face the Fe-Fe bond to avoid steric congestion with the naphthylene group linking the two phosphide groups. The NEt2 group could be protonated by p-toluenesulfonic acid. Density functional theory (DFT) calculations confirmed that the proton of the N(H)Et2 group adopted a position close to the bridging hydride. The DFT results for the ferrocene analogue 1, in which the 1,8-naphthylene group of 3 was replaced with the 1,1'-ferrocenylene group, also revealed that the most stable orientation of the protonated NHEt2 group was that in the protonated 3. As a result, electrochemical proton reduction reactions using complexes 1 and 3 proceeded with similar catalytic efficiencies. Unfortunately, the catalytic efficiencies (CEs) of these complexes were much lower than those of the complexes with a proton relay system of the terminal hydrogen, indicating that the reactive properties of the bridging hydride in the present proton relay system cannot exceed those of the terminal hydride.
Collapse
Affiliation(s)
- Takehiko Shimamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Kiernicki JJ, Shanahan JP, Zeller M, Szymczak NK. Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides. Chem Sci 2019; 10:5539-5545. [PMID: 31293738 PMCID: PMC6553361 DOI: 10.1039/c9sc00561g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Geometrically flexible 9-borabicyclo[3.3.1]nonyl units within the secondary coordination sphere enable isolation of high-spin Fe(ii)-dihydrides stabilized by boron-hydride interactions and a rare example of an isolable S = 3/2 reduction product. The borane-capped Fe(ii)-dihydride: (1) rapidly deprotonates E-H (E = N, O, P, S) bonds to afford borane-stabilized Fe adducts and (2) releases H2 upon exposure to π-acids. The Lewis acids provide an avenue for redox-leveling in analogy to the near constant operating potential for N2 reduction in nitrogenase.
Collapse
Affiliation(s)
- John J Kiernicki
- University of Michigan , 930 N. University , Ann Arbor , MI 48109 , USA .
| | - James P Shanahan
- University of Michigan , 930 N. University , Ann Arbor , MI 48109 , USA .
| | - Matthias Zeller
- H. C. Brown Laboratory , Purdue University , 560 Oval Dr , West Lafayette , IN 47907 , USA
| | | |
Collapse
|
9
|
Unwin DG, Ghosh S, Ridley F, Richmond MG, Holt KB, Hogarth G. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe2(CO)3(μ-dithiolate)(μ,κ1,κ2-triphos). Dalton Trans 2019; 48:6174-6190. [DOI: 10.1039/c9dt00700h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of Fe2(triphos)(CO)3(μ-dithiolate) complexes have been prepared and studied as models of the diiron centre in [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- David G. Unwin
- Department of Chemistry
- University College London
- London
- UK
| | - Shishir Ghosh
- Department of Chemistry
- University College London
- London
- UK
- Department of Chemistry
| | - Faith Ridley
- Department of Chemistry
- University College London
- London
- UK
| | | | | | | |
Collapse
|
10
|
Zhao Y, Yu X, Hu H, Hu X, Raje S, Angamuthu R, Tung CH, Wang W. Synthetic [FeFe]-H2ase models bearing phosphino thioether chelating ligands. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Chu KT, Liu YC, Chung MW, Poerwoprajitno AR, Lee GH, Chiang MH. Energy-Efficient Hydrogen Evolution by Fe-S Electrocatalysts: Mechanistic Investigations. Inorg Chem 2018; 57:7620-7630. [PMID: 29893554 DOI: 10.1021/acs.inorgchem.8b00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intrinsic catalytic property of a Fe-S complex toward H2 evolution was investigated in a wide range of acids. The title complex exhibited catalytic events at -1.16 and -1.57 V (vs Fc+/Fc) in the presence of trifluoromethanesulfonic acid (HOTf) and trifluoroacetic acid (TFA), respectively. The processes corresponded to the single reduction of the Fe-hydride-S-proton and Fe-hydride species, respectively. When anilinium acid was used, the catalysis occurred at -1.16 V, identical with the working potential of the HOTf catalysis, although the employment of anilinium acid was only capable of achieving the Fe-hydride state on the basis of the spectral and calculated results. The thermodynamics and kinetics of individual steps of the catalysis were analyzed by density functional theory (DFT) calculations and electroanalytical simulations. The stepwise CCE or CE (C, chemical; E, electrochemical) mechanism was operative from the HOTf or TFA source, respectively. In contrast, the involvement of anilinium acid most likely initiated a proton-coupled electron transfer (PCET) pathway that avoided the disfavored intermediate after the initial protonation. Via the PCET pathway, the heterogeneous electron transfer rate was increased and the overpotential was decreased by 0.4 V in comparison with the stepwise pathways. The results showed that the PCET-involved catalysis exhibited substantial kinetic and thermodynamic advantages in comparison to the stepwise pathway; thus, an efficient catalytic system for proton reduction was established.
Collapse
Affiliation(s)
- Kai-Ti Chu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Yu-Chiao Liu
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | - Min-Wen Chung
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| | | | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry , Academia Sinica , Nankang, Taipei 115 , Taiwan
| |
Collapse
|
12
|
Wang W, Li J, Yin L, Zhao Y, Ouyang Z, Wang X, Wang Z, Song Y, Power PP. Half-Sandwich Metal Carbonyl Complexes as Precursors to Functional Materials: From a Near-Infrared-Absorbing Dye to a Single-Molecule Magnet. J Am Chem Soc 2017; 139:12069-12075. [DOI: 10.1021/jacs.7b06795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenqing Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China
| | - Jing Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Zhao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinping Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - You Song
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China
| | - Philip P. Power
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Wright JA, Peck JNT, Cottrell SP, Jablonskytė A, Oganesyan VS, Pickett CJ, Jayasooriya UA. Muonium Chemistry at Diiron Subsite Analogues of [FeFe]-Hydrogenase. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph A. Wright
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | - Jamie N. T. Peck
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
- Rutherford Appleton Laboratory; Harwell Oxford Didcot OX11 0QX UK
| | | | - Aušra Jablonskytė
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | - Vasily S. Oganesyan
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | - Christopher J. Pickett
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| | - Upali A. Jayasooriya
- Energy Materials Laboratory; School of Chemistry; University of East Anglia; Norwich NR4 7TJ UK
| |
Collapse
|
14
|
Wright JA, Peck JNT, Cottrell SP, Jablonskytė A, Oganesyan VS, Pickett CJ, Jayasooriya UA. Muonium Chemistry at Diiron Subsite Analogues of [FeFe]-Hydrogenase. Angew Chem Int Ed Engl 2016; 55:14580-14583. [PMID: 27739628 PMCID: PMC5484327 DOI: 10.1002/anie.201607109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 11/29/2022]
Abstract
The chemistry of metal hydrides is implicated in a range of catalytic processes at metal centers. Gaining insight into the formation of such sites by protonation and/or electronation is therefore of significant value in fully exploiting the potential of such systems. Here, we show that the muonium radical (Mu.), used as a low isotopic mass analogue of hydrogen, can be exploited to probe the early stages of hydride formation at metal centers. Mu. undergoes the same chemical reactions as H. and can be directly observed due to its short lifetime (in the microseconds) and unique breakdown signature. By implanting Mu. into three models of the [FeFe]‐hydrogenase active site we have been able to detect key muoniated intermediates of direct relevance to the hydride chemistry of these systems.
Collapse
Affiliation(s)
- Joseph A Wright
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Jamie N T Peck
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | | | - Aušra Jablonskytė
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Vasily S Oganesyan
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Christopher J Pickett
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Upali A Jayasooriya
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
15
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Ulloa OA, Huynh MT, Richers CP, Bertke JA, Nilges MJ, Hammes-Schiffer S, Rauchfuss TB. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. J Am Chem Soc 2016; 138:9234-45. [PMID: 27328053 DOI: 10.1021/jacs.6b04579] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.
Collapse
Affiliation(s)
- Olbelina A Ulloa
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mioy T Huynh
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Casseday P Richers
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jeffery A Bertke
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Mark J Nilges
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Biomimetics of the [FeFe]-hydrogenase enzyme: Identification of kinetically favoured apical-basal [Fe2(CO)4(μ-H){κ2-Ph2PC(Me2)PPh2}(μ-pdt)]+ as a proton-reduction catalyst. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.09.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Arthurs RA, Ismail M, Prior CC, Oganesyan VS, Horton PN, Coles SJ, Richards CJ. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality. Chemistry 2016; 22:3065-72. [DOI: 10.1002/chem.201504458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Ross A. Arthurs
- School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Muhammad Ismail
- School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
- Department of Chemistry; Karakoram International University; University Road Gilgit- 15100 Pakistan
| | - Christopher C. Prior
- School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Vasily S. Oganesyan
- School of Chemistry; University of East Anglia; Norwich Research Park Norwich NR4 7TJ UK
| | - Peter N. Horton
- EPSRC National Crystallography Service; School of Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | - Simon J. Coles
- EPSRC National Crystallography Service; School of Chemistry; University of Southampton; Highfield Southampton SO17 1BJ UK
| | | |
Collapse
|
19
|
Prior C, Webster LR, Ibrahim SK, Wright JA, Alghamdi AF, Oganesyan VS, Pickett CJ. EPR detection and characterisation of a paramagnetic Mo(iii) dihydride intermediate involved in electrocatalytic hydrogen evolution. Dalton Trans 2016; 45:2399-403. [PMID: 26763207 DOI: 10.1039/c5dt04432d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EPR spectroscopy and theoretical data show that the slow heterogeneous electron-transfer kinetics associated with the reduction of an 18-electron Mo(IV) acetato dihydride are a consequence of an η(2)-η(1) rearrangement of the carboxylate ligand which gives a unique paramagnetic 17-electron Mo(III) dihydride.
Collapse
Affiliation(s)
- Christopher Prior
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hunt NT, Wright JA, Pickett C. Detection of Transient Intermediates Generated from Subsite Analogues of [FeFe] Hydrogenases. Inorg Chem 2015; 55:399-410. [DOI: 10.1021/acs.inorgchem.5b02477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neil T. Hunt
- Department of Physics, University of Strathclyde, SUPA, Glasgow G4 0NG, United Kingdom
| | - Joseph A. Wright
- Energy Materials Laboratory, School of
Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher Pickett
- Energy Materials Laboratory, School of
Chemistry, University of East Anglia (UEA), Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
21
|
Yang D, Li Y, Wang B, Zhao X, Su L, Chen S, Tong P, Luo Y, Qu J. Synthesis and Electrocatalytic Property of Diiron Hydride Complexes Derived from a Thiolate-Bridged Diiron Complex. Inorg Chem 2015; 54:10243-9. [DOI: 10.1021/acs.inorgchem.5b01508] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Linan Su
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Si Chen
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
22
|
Filippi G, Arrigoni F, Bertini L, De Gioia L, Zampella G. DFT Dissection of the Reduction Step in H2 Catalytic Production by [FeFe]-Hydrogenase-Inspired Models: Can the Bridging Hydride Become More Reactive Than the Terminal Isomer? Inorg Chem 2015; 54:9529-42. [DOI: 10.1021/acs.inorgchem.5b01495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulia Filippi
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnologies
and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
23
|
Zheng X, Wang X, Zhang Z, Sui Y, Wang X, Power PP. Access to Stable Metalloradical Cations with Unsupported and Isomeric Metal-Metal Hemi-Bonds. Angew Chem Int Ed Engl 2015; 54:9084-7. [DOI: 10.1002/anie.201503392] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/09/2015] [Indexed: 11/08/2022]
|
24
|
Zheng X, Wang X, Zhang Z, Sui Y, Wang X, Power PP. Access to Stable Metalloradical Cations with Unsupported and Isomeric Metal-Metal Hemi-Bonds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Li S, Wang X, Zhang Z, Zhao Y, Wang X. Isolation and structural characterization of a mainly ligand-based dimetallic radical. Dalton Trans 2015; 44:19754-7. [PMID: 26511528 DOI: 10.1039/c5dt03578c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isolation and crystal structure of a mainly ligand-based dimetallic radical of ruthenium together with induced sp3 C–H bond activation were described.
Collapse
Affiliation(s)
- Shuyu Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Xingyong Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Zaichao Zhang
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huai'an 223300
- China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
| |
Collapse
|
26
|
Mirmohades M, Pullen S, Stein M, Maji S, Ott S, Hammarström L, Lomoth R. Direct observation of key catalytic intermediates in a photoinduced proton reduction cycle with a diiron carbonyl complex. J Am Chem Soc 2014; 136:17366-9. [PMID: 25419868 DOI: 10.1021/ja5085817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure and reactivity of intermediates in the photocatalytic cycle of a proton reduction catalyst, [Fe2(bdt)(CO)6] (bdt = benzenedithiolate), were investigated by time-resolved spectroscopy. The singly reduced catalyst [Fe2(bdt)(CO)6](-), a key intermediate in photocatalytic H2 formation, was generated by reaction with one-electron reductants in laser flash-quench experiments and could be observed spectroscopically on the nanoseconds to microseconds time scale. From UV/vis and IR spectroscopy, [Fe2(bdt)(CO)6](-) is readily distinguished from the two-electron reduced catalyst [Fe2(bdt)(CO)6](2-) that is obtained inevitably in the electrochemical reduction of [Fe2(bdt)(CO)6]. For the disproportionation rate constant of [Fe2(bdt)(CO)6](-), an upper limit on the order of 10(7) M(-1) s(-1) was estimated, which precludes a major role of [Fe2(bdt)(CO)6](2-) in photoinduced proton reduction cycles. Structurally [Fe2(bdt)(CO)6](-) is characterized by a rather asymmetrically distorted geometry with one broken Fe-S bond and six terminal CO ligands. Acids with pK(a) ≤ 12.7 protonate [Fe2(bdt)(CO)6](-) with bimolecular rate constants of 4 × 10(6), 7 × 10(6), and 2 × 10(8) M(-1) s(-1) (trichloroacetic, trifluoroacetic, and toluenesulfonic acids, respectively). The resulting hydride complex [Fe2(bdt)(CO)6H] is therefore likely to be an intermediate in photocatalytic cycles. This intermediate resembles structurally and electronically the parent complex [Fe2(bdt)(CO)6], with very similar carbonyl stretching frequencies.
Collapse
Affiliation(s)
- Mohammad Mirmohades
- Ångström Laboratory, Department of Chemistry, Uppsala University , Box 523, 75120 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Rittle J, McCrory CL, Peters JC. A 10(6)-fold enhancement in N2-binding affinity of an Fe2(μ-H)2 core upon reduction to a mixed-valence Fe(II)Fe(I) state. J Am Chem Soc 2014; 136:13853-62. [PMID: 25184795 PMCID: PMC4183624 DOI: 10.1021/ja507217v] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 01/19/2023]
Abstract
Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron-molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N2 to NH3 is unknown. One role of these ligands may be to facilitate N2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by two bridging hydride ligands. These compounds bind either one or two molecules of N2 depending on the redox state of the Fe2(μ-H)2 unit. An unusual example of a mixed-valent Fe(II)(μ-H)2Fe(I) is described that displays a 10(6)-fold enhancement of N2 binding affinity over its oxidized congener, quantified by spectroscopic and electrochemical techniques. Furthermore, these compounds show promise as functional models of nitrogenase as substantial amounts of NH3 are produced upon exposure to proton and electron equivalents. The Fe(μ-H)Fe(N2) sub-structure featured herein was previously unknown. This subunit may be relevant to consider in nitrogenases during turnover.
Collapse
Affiliation(s)
- Jonathan Rittle
- Division
of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| | - Charles
C. L. McCrory
- Division
of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division
of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East
California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Jablonskytė A, Wright JA, Fairhurst SA, Webster LR, Pickett CJ. [FeFe] hydrogenase: protonation of {2Fe3S} systems and formation of super-reduced hydride states. Angew Chem Int Ed Engl 2014; 53:10143-6. [PMID: 25079249 PMCID: PMC4497599 DOI: 10.1002/anie.201406210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/29/2022]
Abstract
The synthesis and crystallographic characterization of a complex possessing a well-defined {2Fe3S(μ-H)} core gives access to a paramagnetic bridging hydride with retention of the core geometry. Chemistry of this 35-electron species within the confines of a thin-layer FTIR spectro-electrochemistry cell provides evidence for a unprecedented super-reduced Fe(I)(μ-H)Fe(I) intermediate.
Collapse
Affiliation(s)
- Aušra Jablonskytė
- Energy Materials Laboratory, School of Chemistry, University of East AngliaNorwich Research Park, Norwich NR4 7TJ (UK)
| | - Joseph A Wright
- Energy Materials Laboratory, School of Chemistry, University of East AngliaNorwich Research Park, Norwich NR4 7TJ (UK)
| | | | - Lee R Webster
- Energy Materials Laboratory, School of Chemistry, University of East AngliaNorwich Research Park, Norwich NR4 7TJ (UK)
| | - Christopher J Pickett
- Energy Materials Laboratory, School of Chemistry, University of East AngliaNorwich Research Park, Norwich NR4 7TJ (UK)
| |
Collapse
|
29
|
Jablonskytė A, Wright JA, Fairhurst SA, Webster LR, Pickett CJ. [FeFe] Hydrogenase: Protonation of {2Fe3S} Systems and Formation of Super-reduced Hydride States. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Huynh MT, Wang W, Rauchfuss TB, Hammes-Schiffer S. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Inorg Chem 2014; 53:10301-11. [PMID: 25207842 PMCID: PMC4186672 DOI: 10.1021/ic5013523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The [FeFe]-hydrogenase enzymes catalyze
hydrogen oxidation and production efficiently with binuclear Fe metal
centers. Recently the bioinspired H2-producing model system
Fe2(adt)(CO)2(dppv)2 (adt=azadithiolate
and dppv=diphosphine) was synthesized and studied experimentally.
In this system, the azadithiolate bridge facilitates the formation
of a doubly protonated ammonium-hydride species through a proton relay.
Herein computational methods are utilized to examine this system in
the various oxidation states and protonation states along proposed
mechanistic pathways for H2 production. The calculated
results agree well with the experimental data for the geometries,
CO vibrational stretching frequencies, and reduction potentials. The
calculations illustrate that the NH···HFe dihydrogen
bonding distance in the doubly protonated species is highly sensitive
to the effects of ion-pairing between the ammonium and BF4– counterions, which are present in the crystal
structure, in that the inclusion of BF4– counterions leads to a significantly longer dihydrogen bond. The
non-hydride Fe center was found to be the site of reduction for terminal
hydride species and unsymmetric bridging hydride species, whereas
the reduced symmetric bridging hydride species exhibited spin delocalization
between the Fe centers. According to both experimental measurements
and theoretical calculations of the relative pKa values, the Fed center of the neutral species
is more basic than the amine, and the bridging hydride species is
more thermodynamically stable than the terminal hydride species. The
calculations implicate a possible pathway for H2 evolution
that involves an intermediate with H2 weakly bonded to
one Fe, a short H2 distance similar to the molecular bond
length, the spin density delocalized over the two Fe centers, and
a nearly symmetrically bridged CO ligand. Overall, this study illustrates
the mechanistic roles of the ammonium-hydride interaction, flexibility
of the bridging CO ligand, and intramolecular electron transfer between
the Fe centers in the catalytic cycle. Such insights will assist in
the design of more effective bioinspired catalysts for H2 production. Theoretical calculations
in conjunction with supporting experimental data are used to analyze
the mechanistic pathway for hydrogen evolution catalyzed by the bioinspired
model Fe2(adt)(CO)2(dppv)2. This
study elucidates the site of reduction and the pKa values associated with formation of the singly and doubly
protonated species, as well as the roles of the ammonium-hydride interaction,
flexibility of the bridging CO ligand, and intramolecular electron
transfer between the Fe centers in the catalytic cycle for H2 production.
Collapse
Affiliation(s)
- Mioy T Huynh
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
31
|
Newman GL, Rahman JMA, Gluyas JBG, Yufit DS, Howard JAK, Low PJ. Alkynyl-Phosphine Substituted Fe2S2 Clusters: Synthesis, Structure and Spectroelectrochemical Characterization of a Cluster with a Class III Mixed-Valence [FeFe]3+ Core. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Kabir SE, Sanchez BE. Hydrogenase biomimetics: Fe2(CO)4(μ-dppf)(μ-pdt) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) both a proton-reduction and hydrogen oxidation catalyst. Chem Commun (Camb) 2014; 50:945-7. [PMID: 24301100 DOI: 10.1039/c3cc46456c] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe2(CO)4(μ-dppf)(μ-pdt) catalyses the conversion of protons and electrons into hydrogen and also the reverse reaction thus mimicing both types of binuclear hydrogenase enzymes.
Collapse
Affiliation(s)
- Shishir Ghosh
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Manor BC, Ringenberg MR, Rauchfuss TB. Borane-protected cyanides as surrogates of H-bonded cyanides in [FeFe]-hydrogenase active site models. Inorg Chem 2014; 53:7241-7. [PMID: 24992155 PMCID: PMC4364604 DOI: 10.1021/ic500470z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Triarylborane Lewis acids bind [Fe2(pdt)(CO)4(CN)2](2-) [1](2-) (pdt(2-) = 1,3-propanedithiolate) and [Fe2(adt)(CO)4(CN)2](2-) [3](2-) (adt(2-) = 1,3-azadithiolate, HN(CH2S(-))2) to give the 2:1 adducts [Fe2(xdt)(CO)4(CNBAr3)2](2-). Attempts to prepare the 1:1 adducts [1(BAr3)](2-) (Ar = Ph, C6F5) were unsuccessful, but related 1:1 adducts were obtained using the bulky borane B(C6F4-o-C6F5)3 (BAr(F)*3). By virtue of the N-protection by the borane, salts of [Fe2(pdt)(CO)4(CNBAr3)2](2-) sustain protonation to give hydrides that are stable (in contrast to [H1](-)). The hydrides [H1(BAr3)2](-) are 2.5-5 pKa units more acidic than the parent [H1](-). The adducts [1(BAr3)2](2-) oxidize quasi-reversibly around -0.3 V versus Fc(0/+) in contrast to ca. -0.8 V observed for the [1](2-/-) couple. A simplified synthesis of [1](2-), [3](2-), and [Fe2(pdt)(CO)5(CN)](-) ([2](-)) was developed, entailing reaction of the diiron hexacarbonyl complexes with KCN in MeCN.
Collapse
Affiliation(s)
- Brian C. Manor
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mark R. Ringenberg
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Li P, Amirjalayer S, Hartl F, Lutz M, Bruin BD, Becker R, Woutersen S, Reek JNH. Direct Probing of Photoinduced Electron Transfer in a Self-Assembled Biomimetic [2Fe2S]-Hydrogenase Complex Using Ultrafast Vibrational Spectroscopy. Inorg Chem 2014; 53:5373-83. [DOI: 10.1021/ic500777d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ping Li
- Homogeneous & Supramolecular Catalysis, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- Molecular
Photonics, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Martin Lutz
- Crystal
and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bas de Bruin
- Homogeneous & Supramolecular Catalysis, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - René Becker
- Homogeneous & Supramolecular Catalysis, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Molecular
Photonics, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Homogeneous & Supramolecular Catalysis, van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
35
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Dugan T, Bill E, MacLeod KC, Brennessel WW, Holland PL. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes. Inorg Chem 2014; 53:2370-80. [PMID: 24555749 PMCID: PMC3993920 DOI: 10.1021/ic4013137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 01/05/2023]
Abstract
Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.
Collapse
Affiliation(s)
- Thomas
R. Dugan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Eckhard Bill
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim
an der Ruhr, Germany
| | - K. Cory MacLeod
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Patrick L. Holland
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
37
|
Affiliation(s)
- Daniel L. DuBois
- Center for Molecular Electrocatalysis, Chemical and Materials
Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, K2-57, Richland, Washington 99352, United States
| |
Collapse
|
38
|
Alvarez MA, García ME, Menéndez S, Ruiz MA. Reactions of the Carbyne-Bridged Radical Complex [Mo2(η5-C5H5)2(μ-CPh)(μ-PCy2)(μ-CO)]+ with Bidentate Ligands Having E–H Bonds (E = O, S, N). Organometallics 2014. [DOI: 10.1021/om401192m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Angeles Alvarez
- Departamento
de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Esther García
- Departamento
de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Sonia Menéndez
- Departamento
de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Miguel A. Ruiz
- Departamento
de Química
Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
39
|
Davydov RM, McLaughlin MP, Bill E, Hoffman BM, Holland PL. Generation of high-spin iron(I) in a protein environment using cryoreduction. Inorg Chem 2013; 52:7323-5. [PMID: 24004284 DOI: 10.1021/ic4011339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High-spin Fe(1+) sites are potentially important in iron-sulfur proteins but are rare in synthetic compounds and unknown in metalloproteins. Here, we demonstrate a spectroscopically characterized example of high-spin non-heme Fe(1+) in a protein environment. Cryoreduction of Fe(2+)-substituted azurin at 77 K with (60)Co γ radiation generates a new species with a S = (3)/2 (high-spin) Fe(1+) center having D > 0 and E/D ~ 0.25. This transient species is stable in a glycerol-water glass only up to ~170 K. A combination of electron paramagnetic resonance and Mössbauer spectroscopies provides a powerful means of identifying a transient high-spin Fe(1+) site in a protein scaffold.
Collapse
Affiliation(s)
- Roman M Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
40
|
Lai KT, Ho WC, Chiou TW, Liaw WF. Formation of [NiIII(κ1-S2CH)(P(o-C6H3-3-SiMe3-2-S)3)]− via CS2 Insertion into Nickel(III) Hydride Containing [NiIII(H)(P(o-C6H3-3-SiMe3-2-S)3)]−. Inorg Chem 2013; 52:4151-3. [DOI: 10.1021/ic400293k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kuan-Ting Lai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chieh Ho
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzung-Wen Chiou
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
41
|
Wang W, Nilges MJ, Rauchfuss TB, Stein M. Isolation of a Mixed Valence Diiron Hydride: Evidence for a Spectator Hydride in Hydrogen Evolution Catalysis. J Am Chem Soc 2013; 135:3633-9. [DOI: 10.1021/ja312458f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wenguang Wang
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United
States
| | - Mark J. Nilges
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United
States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United
States
| | - Matthias Stein
- Max Planck Institute
for Dynamics
of Complex Technical Systems, Sandtorstraβe 1, 39106 Magdeburg,
Germany
| |
Collapse
|
42
|
Karnahl M, Tschierlei S, Erdem ÖF, Pullen S, Santoni MP, Reijerse EJ, Lubitz W, Ott S. Mixed-valence [Fe(I)Fe(II)] hydrogenase active site model complexes stabilized by a bidentate carborane bis-phosphine ligand. Dalton Trans 2013; 41:12468-77. [PMID: 22955116 DOI: 10.1039/c2dt31192e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of [FeFe]-hydrogenase active site analogues, with the general formula [Fe(2)(dt)(CO)(4)(BC)] 1-3 (dt = dithiolate, pdt = propyl-1,3-dt (1), bdt = benzene-1,2-dt (2), edt = ethyl-1,2-dt (3); BC = 1,2-bisdiphenylphosphine-1,2-o-carborane), has been prepared and structurally characterized. While the electrochemical reductions of 1-3 are largely invariant to the different nature of their dt bridges, the oxidations differ by more than 120 mV in between the series. Remarkably, all three compounds are reversibly oxidized, with complex 1 that contains the most electron-donating pdt ligand at the mildest potential of -0.09 V vs. Fc/Fc(+). The one-electron oxidized state 1(ox) is stable for several minutes and was spectroscopically characterized by FTIR and EPR. EPR spectroscopy provided evidence that in the mixed-valence [Fe(I)Fe(II)] state most of the spin density is located on the iron with the BC-ligand. This is monitored through the strong (31)P hyperfine coupling of the phenyl groups of the BC ligand, while further delocalization into the o-carborane unit is negligible.
Collapse
Affiliation(s)
- Michael Karnahl
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Alvarez MA, García ME, García-Vivó D, Menéndez S, Ruiz MA. Electronic Structure and Reactivity of the Carbyne-Bridged Dimolybdenum Radical [Mo2(η5-C5H5)2(μ-CPh)(μ-PCy2)(μ-CO)]+. Organometallics 2012. [DOI: 10.1021/om300989j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M. Angeles Alvarez
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Esther García
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Sonia Menéndez
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Miguel A. Ruiz
- Departamento de Química Orgánica
e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
44
|
Plois M, Hujo W, Grimme S, Schwickert C, Bill E, de Bruin B, Pöttgen R, Wolf R. Offenschalige Polyhydridokomplexe von 3d-Metallionen mit demfac-[RuH3(PR3)3]−-Baustein. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Plois M, Hujo W, Grimme S, Schwickert C, Bill E, de Bruin B, Pöttgen R, Wolf R. Open-Shell First-Row Transition-Metal Polyhydride Complexes Based on thefac-[RuH3(PR3)3]−Building Block. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201205209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Carroll ME, Barton BE, Rauchfuss TB, Carroll PJ. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. J Am Chem Soc 2012; 134:18843-52. [PMID: 23126330 DOI: 10.1021/ja309216v] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This report compares biomimetic hydrogen evolution reaction catalysts with and without the amine cofactor (adt(NH)): Fe(2)(adt(NH))(CO)(2)(dppv)(2) (1(NH)) and Fe(2)(pdt)(CO)(2)(dppv)(2) (2) [(adt(NH))(2-) = HN(CH(2)S)(2)(2-), pdt(2-) = 1,3-(CH(2))(3)S(2)(2-), and dppv = cis-C(2)H(2)(PPh(2))(2)]. These compounds are spectroscopically, structurally, and stereodynamically very similar but exhibit very different catalytic properties. Protonation of 1(NH) and 2 gives three isomeric hydrides each, beginning with the kinetically favored terminal hydride, which converts sequentially to sym and unsym isomers of the bridging hydrides. In the case of 1(NH), the corresponding ammonium hydrides are also observed. In the case of the terminal amine hydride [t-H1(NH)]BF(4), the ammonium/amine hydride equilibrium is sensitive to counteranions and solvent. The species [t-H1(NH(2))](BF(4))(2) represents the first example of a crystallographically characterized terminal hydride produced by protonation. The NH---HFe distance of 1.88(7) Å indicates dihydrogen-bonding. The bridging hydrides [μ-H1(NH)](+) and [μ-H2](+) reduce near -1.8 V, about 150 mV more negative than the reductions of the terminal hydride [t-H1(NH)](+) and [t-H2](+) at -1.65 V. Reductions of the amine hydrides [t-H1(NH)](+) and [t-H1(NH(2))](2+) are irreversible. For the pdt analogue, the [t-H2](+/0) couple is unaffected by weak acids (pK(a)(MeCN) = 15.3) but exhibits catalysis with HBF(4)·Et(2)O, albeit with a turnover frequency (TOF) around 4 s(-1) and an overpotential greater than 1 V. The voltammetry of [t-H1(NH)](+) is strongly affected by relatively weak acids and proceeds at 5000 s(-1) with an overpotential of 0.7 V. The ammonium hydride [t-H1(NH(2))](2+) is a faster catalyst, with an estimated TOF of 58 000 s(-1) and an overpotential of 0.5 V.
Collapse
Affiliation(s)
- Maria E Carroll
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Illinois 61801, United States
| | | | | | | |
Collapse
|
47
|
Kinney RA, Saouma CT, Peters JC, Hoffman BM. Modeling the signatures of hydrides in metalloenzymes: ENDOR analysis of a Di-iron Fe(μ-NH)(μ-H)Fe core. J Am Chem Soc 2012; 134:12637-47. [PMID: 22823933 PMCID: PMC3433054 DOI: 10.1021/ja303739g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of 35 GHz pulsed EPR and ENDOR spectroscopies has established that the biomimetic model complex L(3)Fe(μ-NH)(μ-H)FeL(3) (L(3) = [PhB(CH(2)PPh(2))(3)](-)) complex, 3, is a novel S = (1)/(2) type-III mixed-valence di-iron II/III species, in which the unpaired electron is shared equally between the two iron centers. (1,2)H and (14,15)N ENDOR measurements of the bridging imide are consistent with an allyl radical molecular orbital model for the two bridging ligands. Both the (μ-H) and the proton of the (μ-NH) of the crystallographically characterized 3 show the proposed signature of a 'bridging' hydride that is essentially equidistant between two 'anchor' metal ions: a rhombic dipolar interaction tensor, T ≈ [T, -T, 0]. The point-dipole model for describing the anisotropic interaction of a bridging H as the sum of the point-dipole couplings to the 'anchor' metal ions reproduces this signature with high accuracy, as well as the axial tensor of a terminal hydride, T ≈ [-T, -T, 2T], thus validating both the model and the signatures. This validation in turn lends strong support to the assignment, based on such a point-dipole analysis, that the molybdenum-iron cofactor of nitrogenase contains two [Fe-H(-)-Fe] bridging-hydride fragments in the catalytic intermediate that has accumulated four reducing equivalents (E(4)). Analysis further reveals a complementary similarity between the isotropic hyperfine couplings for the bridging hydrides in 3 and E(4). This study provides a foundation for spectroscopic study of hydrides in a variety of reducing metalloenzymes in addition to nitrogenase.
Collapse
Affiliation(s)
- R Adam Kinney
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | | |
Collapse
|
48
|
Hsieh CH, Erdem ÖF, Harman SD, Singleton ML, Reijerse E, Lubitz W, Popescu CV, Reibenspies JH, Brothers SM, Hall MB, Darensbourg MY. Structural and Spectroscopic Features of Mixed Valent FeIIFeI Complexes and Factors Related to the Rotated Configuration of Diiron Hydrogenase. J Am Chem Soc 2012; 134:13089-102. [DOI: 10.1021/ja304866r] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chung-Hung Hsieh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Scott D. Harman
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L. Singleton
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36,
45470 Muelheim a.d. Ruhr, Germany
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426,
United States
| | - Joseph H. Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Scott M. Brothers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
49
|
van der Eide EF, Yang P, Walter ED, Liu T, Bullock RM. Dinuclear Metalloradicals Featuring Unsupported Metal-Metal Bonds. Angew Chem Int Ed Engl 2012; 51:8361-4. [DOI: 10.1002/anie.201203531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Indexed: 11/05/2022]
|
50
|
van der Eide EF, Yang P, Walter ED, Liu T, Bullock RM. Dinuclear Metalloradicals Featuring Unsupported Metal-Metal Bonds. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|