1
|
Singh G, Hossain MA, Al-Fahad D, Gupta V, Tandon S, Soni H, Narasimhaji CV, Jaremko M, Emwas AH, Anwar MJ, Azam F. An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms. Biochem Biophys Rep 2024; 40:101854. [PMID: 39498442 PMCID: PMC11532805 DOI: 10.1016/j.bbrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, 110016
| | - Md Alamgir Hossain
- Department of Pharmacy, Jagannath University, 9, 10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Iraq
| | - Vandana Gupta
- Departments of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | | | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51542, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
2
|
Lin Z, Yu Y, Liu R, Zi W. Design, Preparation, and Implementation of Axially Chiral Benzotetramisoles as Lewis Base Catalysts for Asymmetric Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202401181. [PMID: 38725281 DOI: 10.1002/anie.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/21/2024]
Abstract
Developing novel catalysts with potent activity is of great importance in organocatalysis. In this study, we designed and prepared a new class of benzotetramisole Lewis base catalysts (AxBTM) that have both central and axial chirality. This unique feature of these catalysts results in a three-dimensional microenvironment with multi-layers of chirality. The performance of the developed catalysts was tested in a series of cycloaddition reactions. These included the AxBTM-catalyzed (2+2) cycloaddition between α-fluoro-α-aryl anhydride with imines or oxindoles, and the sequential gold/AxBTM-catalyzed (4+2) cycloaddition of enynamides with pentafluorophenyl esters. The interplay between axial and central chirality had a collaborative effect in regulating the stereochemistry in these cycloadditions, leading to high levels of stereoselectivity that would otherwise be challenging to achieve using conventional BTM catalysts. However, the (2+2) and (4+2) cycloadditions have different predilections for axial and central chirality combinations.
Collapse
Affiliation(s)
- Zitong Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ying Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rixin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
3
|
Fram B, Su Y, Truebridge I, Riesselman AJ, Ingraham JB, Passera A, Napier E, Thadani NN, Lim S, Roberts K, Kaur G, Stiffler MA, Marks DS, Bahl CD, Khan AR, Sander C, Gauthier NP. Simultaneous enhancement of multiple functional properties using evolution-informed protein design. Nat Commun 2024; 15:5141. [PMID: 38902262 PMCID: PMC11190266 DOI: 10.1038/s41467-024-49119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
A major challenge in protein design is to augment existing functional proteins with multiple property enhancements. Altering several properties likely necessitates numerous primary sequence changes, and novel methods are needed to accurately predict combinations of mutations that maintain or enhance function. Models of sequence co-variation (e.g., EVcouplings), which leverage extensive information about various protein properties and activities from homologous protein sequences, have proven effective for many applications including structure determination and mutation effect prediction. We apply EVcouplings to computationally design variants of the model protein TEM-1 β-lactamase. Nearly all the 14 experimentally characterized designs were functional, including one with 84 mutations from the nearest natural homolog. The designs also had large increases in thermostability, increased activity on multiple substrates, and nearly identical structure to the wild type enzyme. This study highlights the efficacy of evolutionary models in guiding large sequence alterations to generate functional diversity for protein design applications.
Collapse
Affiliation(s)
- Benjamin Fram
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Yang Su
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ian Truebridge
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- AI Proteins, Boston, MA, USA
| | - Adam J Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Passera
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Eve Napier
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole N Thadani
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Apriori Bio, Cambridge, MA, USA
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristen Roberts
- Selux Diagnostics Inc., 56 Roland Street, Charlestown, MA, USA
| | - Gurleen Kaur
- Selux Diagnostics Inc., 56 Roland Street, Charlestown, MA, USA
| | - Michael A Stiffler
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Dyno Therapeutics, 343 Arsenal Street, Watertown, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher D Bahl
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- AI Proteins, Boston, MA, USA
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas P Gauthier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Ait Elmachkouri Y, Irrou E, Thiruvalluvar AA, Anouar EH, Varadharajan V, Ouachtak H, Mague JT, Sebbar NK, Essassi EM, Labd Taha M. Synthesis, crystal structure, spectroscopic characterization, DFT calculations, Hirshfeld surface analysis, molecular docking, and molecular dynamics simulation investigations of novel pyrazolopyranopyrimidine derivatives. J Biomol Struct Dyn 2023:1-19. [PMID: 37817543 DOI: 10.1080/07391102.2023.2268187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
A series of new pyrazolopyranopyrimidine derivatives (3-9) were synthesized from 5-amino-2,4-dihydro-3-methyl-4-phenylpyrano-[2,3-c]pyrazole-5-carbonitrile (2) by multicomponent reactions (MCR) involving malononitrile, benzaldehyde, and pyrazolone under refluxing ethanol in the presence of piperidine. Compound (2) was then converted to 2-acetylpyrazolopyranopyrimidine (3) through a reaction with acetic anhydride. The deprotection of 3 using ammonium hydroxide in ethanol, leads to 4. Subsequent chlorination of 4 by phosphorus oxychloride affords 5 which was alkylated using methyl iodide and ethyl bromoacetate in DMF, leading to regioisomers 6-9. The products were characterized by spectroscopic techniques (1H and 13C NMR) and confirmed by single crystal X-ray diffraction (XRD) studies for 2, 5, 6, and 9. Moreover, the geometrical parameters, molecular orbital calculations, and spectral data of 2, 5, 6, and 9 were compared by DFT at the B3LYP/6-311G(d,p) level of theory. There is good agreement between the calculated results and the experimental data. The intermolecular contacts for 2, 5, 6, and 9 were studied by Hirshfeld surface analysis. In addition, the molecular docky study was conducted to investigate the binding patterns of 2, 5, 6, and 9 within the binding site of cyclin-dependent kinase 2 (CDK2) and penicillin-binding protein 1 A. After the docking process, molecular dynamics (MD) simulations for 100 ns were performed on CDK2 and PBP 1 A proteins in the complex with 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Younesse Ait Elmachkouri
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Ezaddine Irrou
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | | | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Hassan Ouachtak
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Pharmacochemistry Competence, Center, Drug Science Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Pharmacochemistry Competence, Center, Drug Science Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Labd Taha
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
5
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Zaręba P, Drabczyk AK, Wnorowska S, Wnorowski A, Jaśkowska J. New cyclic arylguanidine scaffolds as a platform for development of antimicrobial and antiviral agents. Bioorg Chem 2023; 139:106730. [PMID: 37473481 DOI: 10.1016/j.bioorg.2023.106730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
According to WHO, infectious diseases are still a significant threat to public health. The combine effects of antibiotic resistance, immunopressure, and mutations within the bacterial and viral genomes necessitates the search for new molecules exhibiting antimicrobial and antiviral activities. Such molecules often contain cyclic guanidine moiety. As part of this work, we investigated the selected antimicrobial and antiviral activity of compounds from the cyclic arylguanidine group. Molecules were designed using molecular modeling and obtained using microwave radiation (MW) and sonochemical ()))) methods, in accordance with the previously developed pathways. The obtained compounds were screened for the ability to inhibit the growth of Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans. The capacity to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell was probed using a bioluminescence immunoassay. The cytotoxicity and hemolytic properties of the most active molecules were also evaluated. The N-[2-(naphthalen-1-yl)ethyl]-5-phenyl-1,4,5,6-tetrahydro-1,3,5-triazin-2-amine 12j showed a high inhibition of Staphylococcus aureus and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL), with no cytotoxic nor hemolytic effect (CC50, HC10 > 32 µm/mL). The CO-ADD platform identified many potentially useful molecules. A particularly rich population was examined in the database of the N.D. Zelinsky Institute of Organic Chemistry, in which 2517 active molecules (MIC ≤ 32 mg/mL) were found, of which about 10% are active at very low concentrations (MIC ≤ 1 mg/mL).
Collapse
Affiliation(s)
- Przemysław Zaręba
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland.
| | - Anna K Drabczyk
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Sylwia Wnorowska
- Department of Medical Chemistry, Faculty of Medical Sciences, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| |
Collapse
|
7
|
Taghipour MJ, Ezzatpanah H, Ghahderijani M. In vitro and in silico studies for the identification of anti-cancer and antibacterial peptides from camel milk protein hydrolysates. PLoS One 2023; 18:e0288260. [PMID: 37437001 DOI: 10.1371/journal.pone.0288260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Today, breast cancer and infectious diseases are very worrying that led to a widespread effort by researchers to discover natural remedies with no side effects to fight them. In the present study, we isolated camel milk protein fractions, casein and whey proteins, and hydrolyzed them using pepsin, trypsin, and both enzymes. Screening of peptides with anti-breast cancer and antibacterial activity against pathogens was performed. Peptides derived from whey protein fraction with the use of both enzymes showed very good activity against MCF-7 breast cancer with cell viability of 7.13%. The separate use of trypsin and pepsin to digest whey protein fraction yielded peptides with high antibacterial activity against S. aureus (inhibition zone of 4.17 ± 0.30 and 4.23 ± 0.32 cm, respectively) and E. coli (inhibition zone of 4.03 ± 0.15 and 4.03 ± 0.05 cm, respectively). Notably, in order to identify the effective peptides in camel milk, its protein sequences were retrieved and enzymatically digested in silico. Peptides that showed both anticancer and antibacterial properties and the highest stability in intestinal conditions were selected for the next step. Molecular interaction analysis was performed on specific receptors associated with breast cancer and/or antibacterial activity using molecular docking. The results showed that P3 (WNHIKRYF) and P5 (WSVGH) peptides had low binding energy and inhibition constant so that they specifically occupied active sites of protein targets. Our results introduced two peptide-drug candidates and new natural food additive that can be delivered to further animal and clinical trials.
Collapse
Affiliation(s)
- Mohammad Javad Taghipour
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Ezzatpanah
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ghahderijani
- Department of Agricultural Systems Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Fram B, Truebridge I, Su Y, Riesselman AJ, Ingraham JB, Passera A, Napier E, Thadani NN, Lim S, Roberts K, Kaur G, Stiffler M, Marks DS, Bahl CD, Khan AR, Sander C, Gauthier NP. Simultaneous enhancement of multiple functional properties using evolution-informed protein design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539914. [PMID: 37214973 PMCID: PMC10197589 DOI: 10.1101/2023.05.09.539914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Designing optimized proteins is important for a range of practical applications. Protein design is a rapidly developing field that would benefit from approaches that enable many changes in the amino acid primary sequence, rather than a small number of mutations, while maintaining structure and enhancing function. Homologous protein sequences contain extensive information about various protein properties and activities that have emerged over billions of years of evolution. Evolutionary models of sequence co-variation, derived from a set of homologous sequences, have proven effective in a range of applications including structure determination and mutation effect prediction. In this work we apply one of these models (EVcouplings) to computationally design highly divergent variants of the model protein TEM-1 β-lactamase, and characterize these designs experimentally using multiple biochemical and biophysical assays. Nearly all designed variants were functional, including one with 84 mutations from the nearest natural homolog. Surprisingly, all functional designs had large increases in thermostability and most had a broadening of available substrates. These property enhancements occurred while maintaining a nearly identical structure to the wild type enzyme. Collectively, this work demonstrates that evolutionary models of sequence co-variation (1) are able to capture complex epistatic interactions that successfully guide large sequence departures from natural contexts, and (2) can be applied to generate functional diversity useful for many applications in protein design.
Collapse
Affiliation(s)
- Benjamin Fram
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ian Truebridge
- Institute for Protein Innovation, Boston, Massachusetts, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
- current address: AI Proteins; Boston, MA, USA
| | - Yang Su
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Adam J. Riesselman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John B. Ingraham
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alessandro Passera
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- current address: Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Eve Napier
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicole N. Thadani
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Kristen Roberts
- Selux Diagnostics, Inc., 56 Roland Street, Charlestown, MA, USA
| | - Gurleen Kaur
- Selux Diagnostics, Inc., 56 Roland Street, Charlestown, MA, USA
| | - Michael Stiffler
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher D. Bahl
- Institute for Protein Innovation, Boston, Massachusetts, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
- current address: AI Proteins; Boston, MA, USA
| | - Amir R. Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nicholas P. Gauthier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
9
|
Chemical composition, antibacterial activity and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Characterization of Streptomyces Species and Validation of Antimicrobial Activity of Their Metabolites through Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Finding new antibacterial agents from natural products is urgently necessary to address the growing cases of antibiotic-resistant pathogens. Actinomycetes are regarded as an excellent source of therapeutically important secondary metabolites including antibiotics. However, they have not yet been characterized and explored in great detail for their utility in developing countries such as Nepal. In silico molecular docking in addition to antimicrobial assays have been used to examine the efficacy of chemical scaffolds biosynthesized by actinomycetes. This paper depicts the characterization of actinomycetes based on their morphology, biochemical tests, and partial molecular sequencing. Furthermore, antimicrobial assays and mass spectrometry-based metabolic profiling of isolates were studied. Seventeen actinomycete-like colonies were isolated from ten soil samples, of which three isolates showed significant antimicrobial activities. Those isolates were subsequently identified to be Streptomyces species by partial 16S rRNA gene sequencing. The most potent Streptomyces species_SB10 has exhibited an MIC and MBC of 1.22 μg/mL and 2.44 μg/mL, respectively, against each Staphylococcus aureus and Shigella sonnei. The extract of S. species_SB10 showed the presence of important metabolites such as albumycin. Ten annotated bioactive metabolites (essramycin, maculosin, brevianamide F, cyclo (L-Phe-L-Ala), cyclo (L-Val-L-Phe), cyclo (L-Leu-L-Pro), cyclo (D-Ala-L-Pro), N6, N6-dimethyladenosine, albumycin, and cyclo (L-Tyr-L-Leu)) were molecularly docked against seven antimicrobial target proteins. Studies on binding energy, docking viability, and protein-ligand molecular interactions showed that those metabolites are responsible for conferring antimicrobial properties. These findings indicate that continuous research on the isolation of the Streptomyces species from Nepal could lead to the discovery of novel and therapeutically relevant antimicrobial agents in the future.
Collapse
|
11
|
In Vitro Activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii- calcoaceticus Complex Collected from 2016 to 2021. Antimicrob Agents Chemother 2022; 66:e0078122. [PMID: 36005804 PMCID: PMC9487466 DOI: 10.1128/aac.00781-22] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sulbactam-durlobactam is a β-lactam-β-lactamase inhibitor combination designed to treat serious Acinetobacter baumannii-calcoaceticus complex (ABC) infections, including carbapenem-non-susceptible and multidrug-resistant (MDR) isolates. The current study characterized the in vitro activity of sulbactam-durlobactam against a collection of 5,032 ABC clinical isolates collected in 33 countries across the Asia/South Pacific region, Europe, Latin America, the Middle East, and North America from 2016 to 2021. The sulbactam-durlobactam MIC50 and MIC90 were 1 and 2 μg/mL, respectively, for all ABC isolates tested. The addition of durlobactam (at a fixed concentration of 4 μg/mL) to sulbactam decreased its MIC50 by 8-fold (from 8 to 1 μg/mL) and its MIC90 by 32-fold (from 64 to 2 μg/mL) for all ABC isolates. The in vitro activity of sulbactam-durlobactam was maintained across individual ABC species, years, global regions of collection, specimen sources, and resistance phenotypes, including MDR and extensively drug-resistant (XDR) isolates. At 4 μg/mL (preliminary sulbactam-durlobactam susceptible MIC breakpoint), sulbactam-durlobactam inhibited 98.3% of all ABC isolates and >96% of sulbactam-, imipenem-, ciprofloxacin-, amikacin-, and minocycline-non-susceptible isolates; as well as colistin-resistant, MDR, and XDR isolates. Most imipenem-non-susceptible ABC isolates (96.8%, 2,488/2,570) were carbapenem-resistant A. baumannii (CRAB); 96.9% (2,410/2,488) of CRAB isolates were sulbactam-durlobactam-susceptible. More than 80% of ABC isolates had sulbactam-durlobactam MIC values that were ≥2 doubling-dilutions (4-fold) lower than sulbactam alone. Only 1.7% (84/5,032) of ABC isolates from 2016 to 2021 had sulbactam-durlobactam MIC values of >4 μg/mL. Of the 84 isolates, 94.0% were A. baumannii, 4.8% were A. pittii, and 1.2% were A. nosocomialis. In summary, sulbactam-durlobactam demonstrated potent antibacterial activity against a 2016 to 2021 collection of geographically diverse clinical isolates of ABC isolates, including carbapenem-non-susceptible and MDR isolates.
Collapse
|
12
|
Rivani E, Endraswari PD, Widodo ADW. Growth kinetics of multiple Acinetobacter baumannii resistotype after meropenem-based antibiotic combination exposure. F1000Res 2022; 11:762. [PMID: 36531260 PMCID: PMC9723411 DOI: 10.12688/f1000research.122221.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 09/10/2024] Open
Abstract
Background: Carbapenems are the treatment of choice for multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii infections, but the emergence of carbapenem-resistant A. baumannii (CRAB) has rendered it ineffective in the vast majority of cases. Combination therapy has grown in popularity over the last decade; this study aims to analyze A.baumannii growth kinetics after exposure to meropenem and ampicillin-sulbactam compared with meropenem and amikacin antibiotic combinations in clinically relevant concentrations. Methods: This experimental laboratory study was conducted on the A.baumannii ATCC 19606 isolate and three clinical isolates that were intermediate or resistant to tested antibiotics. Meropenem and ampicillin-sulbactam, as well as meropenem and amikacin, were tested at four different concentrations against isolates. Turbidity measurements were taken at predetermined time points of 0, 1, 2, 4, 6, 8, and 24 hours following exposure; bacterial concentration was enumerated using the agar plate method, with the results plotted in a time-kill curve. Results: A bactericidal effect was achieved in isolates that were intermediate to ampicillin sulbactam and resistant to meropenem after the administration of meropenem and ampicillin-sulbactam combination with a concentration of 4 µg/ml and 16/8 µg/ml, respectively. The combination of meropenem and ampicillin-sulbactam demonstrated bacteriostatic activity against isolates that were resistant to both antibiotics. Isolates treated with resistant antibiotics showed an increased growth rate compared to the growth control. Conclusion: The combination of meropenem and ampicillin-sulbactam could be a promising combination therapy in treating CRAB infections. The mechanism and degree of antibiotic resistance in the isolates affect the efficacy of antibiotic combinations; further research is needed to corroborate the findings of this study.
Collapse
Affiliation(s)
- Erizka Rivani
- Department of Microbiology, Faculty of Medicine, Sriwijaya University, Palembang, South Sumatera, 30114, Indonesia
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| | - Pepy Dwi Endraswari
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| | - Agung Dwi Wahyu Widodo
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| |
Collapse
|
13
|
Rivani E, Endraswari PD, Widodo ADW. Growth kinetics of multiple Acinetobacter baumannii resistotype after meropenem-based antibiotic combination exposure. F1000Res 2022; 11:762. [PMID: 36531260 PMCID: PMC9723411 DOI: 10.12688/f1000research.122221.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Carbapenems are the treatment of choice for multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii infections, but the emergence of carbapenem-resistant A. baumannii (CRAB) has rendered it ineffective in the vast majority of cases. Combination therapy has grown in popularity over the last decade; this study aims to analyze A.baumannii growth kinetics after exposure to meropenem and ampicillin-sulbactam compared with meropenem and amikacin antibiotic combinations in clinically relevant concentrations. Methods: This experimental laboratory study was conducted on the A. baumannii ATCC 19606 isolate and three clinical isolates that were intermediate or resistant to tested antibiotics. Meropenem and ampicillin-sulbactam, as well as meropenem and amikacin, were tested at four different concentrations against isolates. Turbidity measurements were taken at predetermined time points of 0, 1, 2, 4, 6, 8, and 24 hours following exposure; bacterial concentration was enumerated using the agar plate method, with the results plotted in a time-kill curve. Results: A bactericidal effect was achieved in isolates that were intermediate to ampicillin-sulbactam and resistant to meropenem after the administration of meropenem and ampicillin-sulbactam combination with a concentration of 4 µg/ml and 16/8 µg/ml, respectively. The combination of meropenem and ampicillin-sulbactam demonstrated bacteriostatic activity against isolates that were resistant to both antibiotics. Isolates treated with resistant antibiotics showed an increased growth rate compared to the growth control. Conclusion: The combination of meropenem and ampicillin-sulbactam could be a promising combination therapy in treating CRAB infections. The mechanism and degree of antibiotic resistance in the isolates affect the efficacy of antibiotic combinations; further research is needed to corroborate the findings of this study.
Collapse
Affiliation(s)
- Erizka Rivani
- Department of Microbiology, Faculty of Medicine, Sriwijaya University, Palembang, South Sumatera, 30114, Indonesia
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| | - Pepy Dwi Endraswari
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| | - Agung Dwi Wahyu Widodo
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
- Clinical Microbiology Department, Dr. Soetomo General Academic Hospital, Surabaya, East Java, 60286, Indonesia
| |
Collapse
|
14
|
Investigation of Plant Antimicrobial Peptides against Selected Pathogenic Bacterial Species Using a Peptide-Protein Docking Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1077814. [PMID: 35355819 PMCID: PMC8960006 DOI: 10.1155/2022/1077814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022]
Abstract
Antimicrobial resistance is the key threat to global health due to high morbidity and mortality. The alteration of bacterial proteins, enzymatic degradation, and change of membrane permeability towards antimicrobial agents are the key mechanisms of antimicrobial resistance. Based on the current condition, there is an urgent clinical need to develop new drugs to treat these bacterial infections. In the current study, the binding patterns of selected antimicrobial peptides (AMPs) with different multidrug-resistant bacterial strains have been analyzed. Among ten selected AMPs in this study, napin and snakin-1 exhibited the best scores and binding patterns. Napin exhibited strong interactions with penicillin-binding protein 1a of Acinetobacter baumannii (with a binding score of -158.7 kcal/mol and ten hydrogen bonds), with glucose-1-phosphate thymidylyltransferase of Mycobacterium tuberculosis H37Rv (with a binding score of -107.8 kcal/mol and twelve hydrogen bonds), and with streptomycin 3″-adenylyltransferase protein of Salmonella enterica (with a binding score of -84.2 kcal/mol and four hydrogen bonds). Similarly, snakin-1 showed strong interactions with oxygen-insensitive NADPH nitroreductase of Helicobacter pylori (with a binding score of -105.0 kcal/mol and thirteen hydrogen bonds) and with penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus (with a binding score of -103.8 kcal/mol and twenty-three hydrogen bonds). The docking results were further validated by molecular dynamics simulations. The results of this computational approach support the evidence of efficiency of these AMPs as potent inhibitors of these specific proteins of bacterial strains. However, further validations are required to fully evaluate the potential of selected AMPs as drug candidates against these resistant bacterial strains.
Collapse
|
15
|
Chemical Profile of Ruta graveolens, Evaluation of the Antioxidant and Antibacterial Potential of Its Essential Oil, and Molecular Docking Simulations. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The research aimed to investigate the chemical composition and antioxidant and antibacterial potential of the essential oil (EO) isolated from the aerial parts (flowers, leaves, and stems) of Ruta graveolens L., growing in western Romania. Ruta graveolens L. essential oil (RGEO) was isolated by steam distillation (0.29% v/w), and the content was assessed by gas chromatography-mass spectrometry (GC-MS). Findings revealed that 2-Undecanone (76.19%) and 2-Nonanone (7.83%) followed by 2-Undecanol (1.85%) and 2-Tridecanone (1.42%) are the main detected compounds of the oil. The RGEO exerted broad-spectrum antibacterial and antifungal effects, S. pyogenes, S. aureus, and S. mutans being the most susceptible tested strains. The antioxidant activity of RGEO was assessed by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and β-carotene/linoleic acid bleaching testing. The results indicated moderate radical scavenging and relative antioxidative activity in DPPH and β-carotene bleaching tests. However, between the 8th and 16th days of the incubation period, the inhibition of primary oxidation compounds induced by the RGEO was significantly stronger (p < 0.001) than butylated hydroxyanisole (BHA). Molecular docking analysis highlighted that a potential antimicrobial mechanism of the RGEO could be exerted through the inhibition of D-Alanine-d-alanine ligase (DDl) by several RGEO components. Docking analysis also revealed that a high number RGEO components could exert a potential in vitro protein-targeted antioxidant effect through xanthine oxidase and lipoxygenase inhibition. Consequently, RGEO could be a new natural source of antiseptics and antioxidants, representing an option for the use of synthetic additives in the food and pharmaceutical industry.
Collapse
|
16
|
Loch JI, Imiolczyk B, Sliwiak J, Wantuch A, Bejger M, Gilski M, Jaskolski M. Crystal structures of the elusive Rhizobium etli L-asparaginase reveal a peculiar active site. Nat Commun 2021; 12:6717. [PMID: 34795296 PMCID: PMC8602277 DOI: 10.1038/s41467-021-27105-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes an essential L-asparaginase (ReAV) with no sequence homology to known enzymes with this activity. High-resolution crystal structures of ReAV show indeed a structurally distinct, dimeric enzyme, with some resemblance to glutaminases and β-lactamases. However, ReAV has no glutaminase or lactamase activity, and at pH 9 its allosteric asparaginase activity is relatively high, with Km for L-Asn at 4.2 mM and kcat of 438 s-1. The active site of ReAV, deduced from structural comparisons and confirmed by mutagenesis experiments, contains a highly specific Zn2+ binding site without a catalytic role. The extensive active site includes residues with unusual chemical properties. There are two Ser-Lys tandems, all connected through a network of H-bonds to the Zn center, and three tightly bound water molecules near Ser48, which clearly indicate the catalytic nucleophile.
Collapse
Affiliation(s)
- Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Wantuch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.
| |
Collapse
|
17
|
The LpoA activator is required to stimulate the peptidoglycan polymerase activity of its cognate cell wall synthase PBP1a. Proc Natl Acad Sci U S A 2021; 118:2108894118. [PMID: 34429361 PMCID: PMC8536351 DOI: 10.1073/pnas.2108894118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A cell wall made of the heteropolymer peptidoglycan (PG) surrounds most bacterial cells. This essential surface layer is required to prevent lysis from internal osmotic pressure. The class A penicillin-binding proteins (aPBPs) play key roles in building the PG network. These bifunctional enzymes possess both PG glycosyltransferase (PGT) and transpeptidase (TP) activity to polymerize the wall glycans and cross-link them, respectively. In Escherichia coli and other gram-negative bacteria, aPBP function is dependent on outer membrane lipoproteins. The lipoprotein LpoA activates PBP1a and LpoB promotes PBP1b activity. In a purified system, the major effect of LpoA on PBP1a is TP stimulation. However, the relevance of this activation to the cellular function of LpoA has remained unclear. To better understand why PBP1a requires LpoA for its activity in cells, we identified variants of PBP1a from E. coli and Pseudomonas aeruginosa that function in the absence of the lipoprotein. The changes resulting in LpoA bypass map to the PGT domain and the linker region between the two catalytic domains. Purification of the E. coli variants showed that they are hyperactivated for PGT but not TP activity. Furthermore, in vivo analysis found that LpoA is necessary for the glycan synthesis activity of PBP1a in cells. Thus, our results reveal that LpoA exerts a much greater control over the cellular activity of PBP1a than previously appreciated. It not only modulates PG cross-linking but is also required for its cognate synthase to make PG glycans in the first place.
Collapse
|
18
|
Qureshi KA, Bholay AD, Rai PK, Mohammed HA, Khan RA, Azam F, Jaremko M, Emwas AH, Stefanowicz P, Waliczek M, Kijewska M, Ragab EA, Rehan M, Elhassan GO, Anwar MJ, Prajapati DK. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X 2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci Rep 2021; 11:14539. [PMID: 34267232 PMCID: PMC8282855 DOI: 10.1038/s41598-021-93285-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Streptomyces smyrnaeus UKAQ_23, isolated from the mangrove-sediment, collected from Jubail,Saudi Arabia, exhibited substantial antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), including non-MRSA Gram-positive test bacteria. The novel isolate, under laboratory-scale conditions, produced the highest yield (561.3 ± 0.3 mg/kg fermented agar) of antimicrobial compounds in modified ISP-4 agar at pH 6.5, temperature 35 °C, inoculum 5% v/w, agar 1.5% w/v, and an incubation period of 7 days. The two major compounds, K1 and K2, were isolated from fermented medium and identified as Actinomycin X2 and Actinomycin D, respectively, based on their structural analysis. The antimicrobial screening showed that Actinomycin X2 had the highest antimicrobial activity compared to Actinomycin D, and the actinomycins-mixture (X2:D, 1:1, w/w) against MRSA and non-MRSA Gram-positive test bacteria, at 5 µg/disc concentrations. The MIC of Actinomycin X2 ranged from 1.56-12.5 µg/ml for non-MRSA and 3.125-12.5 µg/ml for MRSA test bacteria. An in-silico molecular docking demonstrated isoleucyl tRNA synthetase as the most-favored antimicrobial protein target for both actinomycins, X2 and D, while the penicillin-binding protein-1a, was the least-favorable target-protein. In conclusion, Streptomyces smyrnaeus UKAQ_23 emerged as a promising source of Actinomycin X2 with the potential to be scaled up for industrial production, which could benefit the pharmaceutical industry.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia.
| | - Avinash D Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University, Nashik, MS, 422002, India
| | - Pankaj K Rai
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences and Engineering Division (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Monika Kijewska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie, Street-14, 50-383, Wroclaw, Poland
| | - Ehab A Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Medhat Rehan
- Department of Genetics, Faculty of Agriculture, Kafr El-Sheikh University, Kafr El-Sheikh, 33516, Egypt
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Qassim, 51452, Saudi Arabia
| | - Gamal O Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, 51911, Saudi Arabia
| | - Dinesh K Prajapati
- Faculty of Biosciences and Biotechnology, Invertis University, Bareilly, UP, 243123, India.
| |
Collapse
|
19
|
CryoEM structure of the antibacterial target PBP1b at 3.3 Å resolution. Nat Commun 2021; 12:2775. [PMID: 33986273 PMCID: PMC8119973 DOI: 10.1038/s41467-021-23063-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 12/02/2022] Open
Abstract
The pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates. Our structural understanding of class A penicillin binding proteins is incomplete due to the difficulty in their crystallization and the complexity of their substrates. Here, authors determine the structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic.
Collapse
|
20
|
Lang Y, Shah NR, Tao X, Reeve SM, Zhou J, Moya B, Sayed ARM, Dharuman S, Oyer JL, Copik AJ, Fleischer BA, Shin E, Werkman C, Basso KB, Lucas DD, Sutaria DS, Mégroz M, Kim TH, Loudon-Hossler V, Wright A, Jimenez-Nieves RH, Wallace MJ, Cadet KC, Jiao Y, Boyce JD, LoVullo ED, Schweizer HP, Bonomo RA, Bharatham N, Tsuji BT, Landersdorfer CB, Norris MH, Shin BS, Louie A, Balasubramanian V, Lee RE, Drusano GL, Bulitta JB. Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clin Pharmacol Ther 2021; 109:1000-1020. [PMID: 33576025 PMCID: PMC10662281 DOI: 10.1002/cpt.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of β-lactam antibiotics and β-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While β-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.
Collapse
Affiliation(s)
- Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Jansen R&D, Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Brett A. Fleischer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea
| | - Victoria Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Rossie H. Jimenez-Nieves
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keisha C. Cadet
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Eric D. LoVullo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Nagakumar Bharatham
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, Buffalo, New York, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael H. Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Venkataraman Balasubramanian
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
21
|
AlMatar M, Albarri O, Makky EA, Var I, Köksal F. A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches. Curr Drug Targets 2020; 21:1326-1343. [PMID: 32564749 DOI: 10.2174/1389450121666200621193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
22
|
In Vitro Activity of Sulbactam-Durlobactam against Acinetobacter baumannii- calcoaceticus Complex Isolates Collected Globally in 2016 and 2017. Antimicrob Agents Chemother 2020; 64:AAC.02534-19. [PMID: 31988095 DOI: 10.1128/aac.02534-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam-β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.
Collapse
|
23
|
Skariyachan S, Gopal D, Kadam SP, Muddebihalkar AG, Uttarkar A, Niranjan V. Carbon fullerene acts as potential lead molecule against prospective molecular targets of biofilm-producing multidrug-resistant Acinetobacter baumanni and Pseudomonas aerugenosa: computational modeling and MD simulation studies. J Biomol Struct Dyn 2020; 39:1121-1137. [PMID: 32036742 DOI: 10.1080/07391102.2020.1726821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to screen putative drug targets associated with biofilm formation of multidrug-resistant Acinetobacter baumannii and Pseudomonas areugenosa and prioritize carbon nano-fullerene as potential lead molecule by structure-based virtual screening. Based on the functional role, 36 and 83 genes that are involved in biofilm formation of A. baumannii and P. areugenosa respectively were selected and metabolic network was computationally constructed. The genes that lack three-dimensional structures were predicted and validated. Carbon nano-fullerene selected as lead molecule and their drug-likeliness and pharmacokinetics properties were computationally predicted. The binding potential of carbon nano-fullerene toward selected drug targets was modeled and compared with the binding of conventional drugs, doripenem, and polymyxin-B with their usual targets. The stabilities of four best-docked complexes were confirmed by molecular dynamic (MD) simulation. This study suggested that selected genes demonstrated relevant interactions in the constructed metabolic pathways. Carbon fullerene exhibited significant binding abilities to most of the prioritized targets in comparison with the binding of last-resort antibiotics and their usual target. The four best ligand-receptor interactions predicted by molecular docking revealed that stability throughout MD simulation. Notably, carbon fullerene exhibited profound binding with outer membrane protein (OmpA) and ribonuclease-HII (rnhB) of A. baumannii and 2-heptyl-4(1H)-quinolone synthase (pqsBC) and chemotaxis protein (wspA) of P. aeruginosa. Thus, the current study suggested that carbon fullerene was probably used as potential lead molecules toward selected targets of A. baumannii and P. aeruginosa and the applied aspects probably scaled up to design promising lead molecules toward these pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, India
| | - Dharshini Gopal
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Sanjana Pratab Kadam
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Aditi G Muddebihalkar
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India.,Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| |
Collapse
|
24
|
Page MGP. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin Infect Dis 2019; 69:S529-S537. [PMID: 31724044 PMCID: PMC6853763 DOI: 10.1093/cid/ciz825] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential nutrient for bacterial growth, replication, and metabolism. Humans store iron bound to various proteins such as hemoglobin, haptoglobin, transferrin, ferritin, and lactoferrin, limiting the availability of free iron for pathogenic bacteria. However, bacteria have developed various mechanisms to sequester or scavenge iron from the host environment. Iron can be taken up by means of active transport systems that consist of bacterial small molecule siderophores, outer membrane siderophore receptors, the TonB-ExbBD energy-transducing proteins coupling the outer and the inner membranes, and inner membrane transporters. Some bacteria also express outer membrane receptors for iron-binding proteins of the host and extract iron directly from these for uptake. Ultimately, iron is acquired and transported into the bacterial cytoplasm. The siderophores are small molecules produced and released by nearly all bacterial species and are classified according to the chemical nature of their iron-chelating group (ie, catechol, hydroxamate, α-hydroxyl-carboxylate, or mixed types). Siderophore-conjugated antibiotics that exploit such iron-transport systems are under development for the treatment of infections caused by gram-negative bacteria. Despite demonstrating high in vitro potency against pathogenic multidrug-resistant bacteria, further development of several candidates had stopped due to apparent adaptive resistance during exposure, lack of consistent in vivo efficacy, or emergence of side effects in the host. However, cefiderocol, with an optimized structure, has advanced and has been investigated in phase 1 to 3 clinical trials. This article discusses the mechanisms implicated in iron uptake and the challenges associated with the design and utilization of siderophore-mimicking antibiotics.
Collapse
Affiliation(s)
- Malcom G P Page
- Life Sciences and Chemistry, Jacobs University, Bremen gGmbh, Bremen, Germany
| |
Collapse
|
25
|
Bakr RO, Fayed MAA, Salem MA, Hussein AS. Tecoma stans: Alkaloid Profile and Antimicrobial Activity. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2019; 11:341-347. [PMID: 31619916 PMCID: PMC6791079 DOI: 10.4103/jpbs.jpbs_79_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM Tecoma stans (L.) Kunth is a promising species in the trumpet creeper family Bignoniaceae. This study aimed at showing the antibacterial and antifungal potentials of T. stans methanolic leaf extract (TSME) correlated to its phytoconstituents. MATERIALS AND METHODS The antimicrobial potential of TSME was evaluated using agar diffusion method. The main alkaloids were separated on silica gel column and identified using nuclear magnetic resonance spectral analysis. Molecular docking was performed for the isolated compounds against MurD ligase, penicillin-binding protein, and dihydropteroate synthase enzyme to rationalize the observed antibacterial effect. RESULTS AND DISCUSSION TSME showed significant antibacterial effect against all tested microorganisms with comparable minimum inhibitory concentration (MIC) to the ampicillin and gentamicin with MIC values ranging between 0.98 and 1.95 µg/mL, in addition to a promising antifungal effect when compared to amphotericin with MIC values 3.9 and 15.63 µg/mL for Aspergillus flavus and Candida albicans, respectively. Several alkaloids were separated, purified, and identified as tecostanine, 4-OH tecomanine, 5-hydroxyskytanthine, and tecomanine, which were previously isolated from T. stans. The docking study showed that the alkaloids bind in a similar fashion to the co-crystallized ligands of the crystal structures of MurD ligase. The binding poses and scores in the case of penicillin-binding protein and dihydropteroate synthase did not match the co-crystallized ligands in their crystal structures. The in silico results suggest an antibacterial mechanism that involves the inhibition of MurD ligase. CONCLUSION T. stans alkaloids could represent the basic skeleton for a powerful antimicrobial agent.
Collapse
Affiliation(s)
- Riham Omar Bakr
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | | - Mohammad Alaraby Salem
- Pharmaceutical chemistry department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ahmed Samir Hussein
- Pharmaceutical chemistry department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
26
|
Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ, Griffen A, Heaton M, Joshi S, Klingeman D, Leys E, Yang Z, Parks JM, Podar M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol 2019; 37:1314-1321. [PMID: 31570900 PMCID: PMC6858544 DOI: 10.1038/s41587-019-0260-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
Most microorganisms from all taxonomic levels are uncultured. Single-cell
genomes and metagenomes continue to increase the known diversity of
Bacteria and Archaea, but while
‘omics can be used to infer physiological or ecological roles for species
in a community, most of those hypothetical roles remain unvalidated. Here we
report an approach to capture specific microorganisms from complex communities
into pure cultures using genome-informed antibody engineering. We apply our
reverse genomics approach to isolate and sequence single cells and to cultivate
three different species-level lineages of human oral Saccharibacteria/TM7. Using
our pure cultures we show that all three saccharibacteria species are epibionts
of diverse Actinobacteria. We also isolate and cultivate human
oral SR1 bacteria, which are members of a lineage of previously uncultured
bacteria. Reverse-genomics-enabled cultivation of microorganisms can be applied
to any species from any environment and has the potential to unlock the
isolation, cultivation and characterization of species from as-yet-uncultured
branches of the microbial tree of life.
Collapse
Affiliation(s)
- Karissa L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - James H Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | | | - Alisha G Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | - Sarah J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Ann Griffen
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Snehal Joshi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Leys
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. .,Department of Microbiology, University of Tennessee, Knoxville, TN, USA. .,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
27
|
Zhang Y, Liu W, Li Y, Yang YW, Dong A, Li Y. 2D Graphdiyne Oxide Serves as a Superior New Generation of Antibacterial Agents. iScience 2019; 19:662-675. [PMID: 31472341 PMCID: PMC6728613 DOI: 10.1016/j.isci.2019.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
Graphdiyne (GDY) as an emerging 2D carbon-network nanomaterial possesses many fascinating properties that lead to numerous exciting applications, but the use of GDY and its derivatives in the antibacterial field has not yet been discovered. In this study, we first report on the use and evaluation of GDY and graphdiyne oxide (GDYO) as antibacterial agents and propose the antibacterial mechanisms of GDY-based nanomaterials. GDYO has been synthesized via the surface oxidation of GDY, and the antibacterial activity of GDYO has been compared with that of GDY through a series of antibacterial tests. Surprisingly, surface oxidation endowed inert GDY with superior antibacterial capability against two representative bacterial models: Escherichia coli and Staphylococcus aureus. Antibacterial mechanism experiments disclose that the antibacterial function of GDYO is a result of reactive oxygen species-dependent oxidation stress when a dispersed GDYO suspension has a direct contact with bacteria especially under visible light irradiation.
Collapse
Affiliation(s)
- Yana Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China
| | - Yongjun Li
- Laboratory of Organic Solids and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China; California NanoSystems Institute and Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 University West Street, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education,Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Yuliang Li
- Laboratory of Organic Solids and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
28
|
Singh A, Tomberg J, Nicholas RA, Davies C. Recognition of the β-lactam carboxylate triggers acylation of Neisseria gonorrhoeae penicillin-binding protein 2. J Biol Chem 2019; 294:14020-14032. [PMID: 31362987 PMCID: PMC6755799 DOI: 10.1074/jbc.ra119.009942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Resistance of Neisseria gonorrhoeae to extended-spectrum cephalosporins (ESCs) has become a major threat to human health. The primary mechanism by which N. gonorrhoeae becomes resistant to ESCs is by acquiring a mosaic penA allele, encoding penicillin-binding protein 2 (PBP2) variants containing up to 62 mutations compared with WT, of which a subset contribute to resistance. To interpret molecular mechanisms underpinning cephalosporin resistance, it is necessary to know how PBP2 is acylated by ESCs. Here, we report the crystal structures of the transpeptidase domain of WT PBP2 in complex with cefixime and ceftriaxone, along with structures of PBP2 in the apo form and with a phosphate ion bound in the active site at resolutions of 1-7-1.9 Å. These structures reveal that acylation of PBP2 by ESCs is accompanied by rotation of the Thr-498 side chain in the KTG motif to contact the cephalosporin carboxylate, twisting of the β3 strand to form the oxyanion hole, and rolling of the β3-β4 loop toward the active site. Recognition of the cephalosporin carboxylate appears to be the key trigger for formation of an acylation-competent state of PBP2. The structures also begin to explain the impact of mutations implicated in ESC resistance. In particular, a G545S mutation may hinder twisting of β3 because its side chain hydroxyl forms a hydrogen bond with Thr-498. Overall, our data suggest that acylation is initiated by conformational changes elicited or trapped by binding of ESCs and that these movements are restricted by mutations associated with resistance against ESCs.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425. Tel.:
843-876-2302; Fax:
843-792-8568; E-mail:
| |
Collapse
|
29
|
Egan AJF, Maya-Martinez R, Ayala I, Bougault CM, Banzhaf M, Breukink E, Vollmer W, Simorre JP. Induced conformational changes activate the peptidoglycan synthase PBP1B. Mol Microbiol 2018; 110:335-356. [PMID: 30044025 PMCID: PMC6220978 DOI: 10.1111/mmi.14082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 12/25/2022]
Abstract
Bacteria surround their cytoplasmic membrane with an essential, stress‐bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh‐like structure. Growing and dividing cells expand their PG layer using inner‐membrane anchored PG synthases, including Penicillin‐binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram‐negative bacteria, growth of the mainly single layered PG is regulated by outer membrane‐anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi‐functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross‐linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.
Collapse
Affiliation(s)
- Alexander J F Egan
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Roberto Maya-Martinez
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Catherine M Bougault
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Manuel Banzhaf
- European Molecular Biology Laboratory Heidelberg, Genome Biology Unit, Meyerhofstraße 1, 69117, Heidelberg, Germany.,Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham , B15 2TT, UK
| | - Eefjan Breukink
- Bijvoet Center for Biomolecular Research, Department of Biochemistry of Membranes, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
30
|
Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, Köhler T. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob Agents Chemother 2018; 62:e00097-18. [PMID: 29555629 PMCID: PMC5971595 DOI: 10.1128/aac.00097-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The conjugation of siderophores to antimicrobial molecules is an attractive strategy to overcome the low outer membrane permeability of Gram-negative bacteria. In this Trojan horse approach, the transport of drug conjugates is redirected via TonB-dependent receptors (TBDR), which are involved in the uptake of essential nutrients, including iron. Previous reports have demonstrated the involvement of the TBDRs PiuA and PirA from Pseudomonas aeruginosa and their orthologues in Acinetobacter baumannii in the uptake of siderophore-beta-lactam drug conjugates. By in silico screening, we further identified a PiuA orthologue, termed PiuD, present in clinical isolates, including strain LESB58. The piuD gene in LESB58 is located at the same genetic locus as piuA in strain PAO1. PiuD has a similar crystal structure as PiuA and is involved in the transport of the siderophore-drug conjugates BAL30072, MC-1, and cefiderocol in strain LESB58. To screen for additional siderophore-drug uptake systems, we overexpressed 28 of the 34 TBDRs of strain PAO1 and identified PfuA, OptE, OptJ, and the pyochelin receptor FptA as novel TBDRs conferring increased susceptibility to siderophore-drug conjugates. The existence of a TBDR repertoire in P. aeruginosa able to transport siderophore-drug molecules potentially decreases the likelihood of resistance emergence during therapy.
Collapse
Affiliation(s)
- Alexandre Luscher
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lucile Moynié
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lena Mazza
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - James H Naismith
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | - Thilo Köhler
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
32
|
Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur J Med Chem 2018; 146:15-37. [DOI: 10.1016/j.ejmech.2018.01.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
|
33
|
Frequency and Mechanism of Spontaneous Resistance to Sulbactam Combined with the Novel β-Lactamase Inhibitor ETX2514 in Clinical Isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2018; 62:AAC.01576-17. [PMID: 29133555 DOI: 10.1128/aac.01576-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
The novel diazabicyclooctenone ETX2514 is a potent, broad-spectrum serine β-lactamase inhibitor that restores sulbactam activity against resistant Acinetobacter baumannii The frequency of spontaneous resistance to sulbactam-ETX2514 in clinical isolates was found to be 7.6 × 10-10 to <9.0 × 10-10 at 4× MIC and mapped to residues near the active site of penicillin binding protein 3 (PBP3). Purified mutant PBP3 proteins demonstrated reduced affinity for sulbactam. In a sulbactam-sensitive isolate, resistance also mapped to stringent response genes associated with resistance to PBP2 inhibitors, suggesting that in addition to β-lactamase inhibition, ETX2514 may enhance sulbactam activity in A. baumannii via inhibition of PBP2.
Collapse
|
34
|
Sathiyamoorthy K, Vijayalakshmi J, Tirupati B, Fan L, Saper MA. Structural analyses of the Haemophilus influenzae peptidoglycan synthase activator LpoA suggest multiple conformations in solution. J Biol Chem 2017; 292:17626-17642. [PMID: 28887305 DOI: 10.1074/jbc.m117.804997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Indexed: 11/06/2022] Open
Abstract
In many Gram-negative bacteria, the peptidoglycan synthase PBP1A requires the outer membrane lipoprotein LpoA for constructing a functional peptidoglycan required for bacterial viability. Previously, we have shown that the C-terminal domain of Haemophilus influenzae LpoA (HiLpoA) has a highly conserved, putative substrate-binding cleft between two α/β lobes. Here, we report a 2.0 Å resolution crystal structure of the HiLpoA N-terminal domain. Two subdomains contain tetratricopeptide-like motifs that form a concave groove, but their relative orientation differs by ∼45° from that observed in an NMR structure of the Escherichia coli LpoA N domain. We also determined three 2.0-2.8 Å resolution crystal structures containing four independent full-length HiLpoA molecules. In contrast to an elongated model previously suggested for E. coli LpoA, each HiLpoA formed a U-shaped structure with a different C-domain orientation. This resulted from both N-domain twisting and rotation of the C domain (up to 30°) at the end of the relatively immobile interdomain linker. Moreover, a previously predicted hinge between the lobes of the LpoA C domain exhibited variations of up to 12°. Small-angle X-ray scattering data revealed excellent agreement with a model calculated by normal mode analysis from one of the full-length HiLpoA molecules but even better agreement with an ensemble of this molecule and two of the partially extended normal mode analysis-predicted models. The different LpoA structures helped explain how an outer membrane-anchored LpoA can either withdraw from or extend toward the inner membrane-bound PBP1A through peptidoglycan gaps and hence regulate the synthesis of peptidoglycan necessary for bacterial viability.
Collapse
Affiliation(s)
| | | | | | - Lixin Fan
- the Small-Angle X-ray Scattering Core Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702
| | - Mark A Saper
- From the Program in Biophysics and .,the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-5606 and
| |
Collapse
|
35
|
Talele TT. Natural-Products-Inspired Use of the gem-Dimethyl Group in Medicinal Chemistry. J Med Chem 2017; 61:2166-2210. [DOI: 10.1021/acs.jmedchem.7b00315] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, United States
| |
Collapse
|
36
|
Decuyper L, Jukič M, Sosič I, Žula A, D'hooghe M, Gobec S. Antibacterial and β-Lactamase Inhibitory Activity of Monocyclic β-Lactams. Med Res Rev 2017; 38:426-503. [DOI: 10.1002/med.21443] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Lena Decuyper
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Marko Jukič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Aleš Žula
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Stanislav Gobec
- Faculty of Pharmacy; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
37
|
Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61:AAC.02531-16. [PMID: 28137795 DOI: 10.1128/aac.02531-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
The outer membrane of Gram-negative bacteria presents an efficient barrier to the permeation of antimicrobial molecules. One strategy pursued to circumvent this obstacle is to hijack transport systems for essential nutrients, such as iron. BAL30072 and MC-1 are two monobactams conjugated to a dihydroxypyridone siderophore that are active against Pseudomonas aeruginosa and Acinetobacter baumannii Here, we investigated the mechanism of action of these molecules in A. baumannii We identified two novel TonB-dependent receptors, termed Ab-PiuA and Ab-PirA, that are required for the antimicrobial activity of both agents. Deletion of either piuA or pirA in A. baumannii resulted in 4- to 8-fold-decreased susceptibility, while their overexpression in the heterologous host P. aeruginosa increased susceptibility to the two siderophore-drug conjugates by 4- to 32-fold. The crystal structures of PiuA and PirA from A. baumannii and their orthologues from P. aeruginosa were determined. The structures revealed similar architectures; however, structural differences between PirA and PiuA point to potential differences between their cognate siderophore ligands. Spontaneous mutants, selected upon exposure to BAL30072, harbored frameshift mutations in either the ExbD3 or the TonB3 protein of A. baumannii, forming the cytoplasmic-membrane complex providing the energy for the siderophore translocation process. The results of this study provide insight for the rational design of novel siderophore-drug conjugates against problematic Gram-negative pathogens.
Collapse
|
38
|
Raut AV, Yadav HM, Gnanamani A, Pushpavanam S, Pawar SH. Synthesis and characterization of chitosan-TiO 2:Cu nanocomposite and their enhanced antimicrobial activity with visible light. Colloids Surf B Biointerfaces 2016; 148:566-575. [PMID: 27693718 DOI: 10.1016/j.colsurfb.2016.09.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
In the present investigation, novel strategy for the preparation of hybrid nanocomposite containing organic polymer (Chitosan) and inorganic (TiO2:Cu) nanoparticles (NPs) has been developed and demonstrated its biomedical application. The sol-gel and ultra-sonication method assisted for the preparation of uniformly distributed Chitosan-TiO2:Cu (CS-CT) nanocomposite. The structural properties of prepared CS-CT nanocomposite were studied by XRD and FTIR techniques. The XPS was used to estimate elemental composition of the nanocomposite. Thermal properties were studied using TGA. TEM and SEM analysis showed the non-spherical nature of NPs with the average mean diameter 16nm. The optical properties were analyzed with UV-vis diffuse reflectance spectroscopy to confirm optical absorption in the visible region of light. Where CS-CT showed 200% enhanced light mediated photocatalytic antimicrobial activity against microorganism (Escherichia coli and Staphylococcus aureus) as compared with control. The antimicrobial activity of CS-CT nanocomposite in presence of light is found to be enhanced than that of its components, this is due to synergistic effect of organic and inorganic material complimenting each other's activity. The OH radicals release studied by PL spectroscopy on the surface of nanocomposite was used to examine antibacterial activity. Cytotoxicity assessment of CS-CT on human fibroblast cells was performed by MTT assay.
Collapse
Affiliation(s)
- A V Raut
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, M.S., India
| | - H M Yadav
- Department of Materials Science & Engineering, University of Seoul, Seoul 02504, South Korea
| | - A Gnanamani
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 600036, TN, India
| | - S Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, TN, India
| | - S H Pawar
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur 416006, M.S., India.
| |
Collapse
|
39
|
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5010012. [PMID: 27025527 PMCID: PMC4810414 DOI: 10.3390/antibiotics5010012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
Collapse
|
40
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother 2015; 70:1420-8. [PMID: 25634992 DOI: 10.1093/jac/dku568] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The spread of NDM-1 amongst Enterobacteriaceae has highlighted a significant threat to the clinical management of serious infections. The combination of aztreonam and avibactam, a non-β-lactam β-lactamase inhibitor, may provide a much-needed therapeutic alternative. This combination was potent against most NDM-containing Enterobacteriaceae, although activity was diminished against many Escherichia coli isolates. These E. coli isolates were characterized to elucidate the mechanism of decreased susceptibility to aztreonam/avibactam. METHODS MIC determinations were performed using broth microdilution, and whole-genome sequencing was performed to enable sequence-based analyses. RESULTS The decreased susceptibility was not due to avibactam being unable to inhibit the serine β-lactamases found in the E. coli isolates. Rather, it was manifested by a four-amino-acid insertion in PBP3. This same insertion was also found in non-NDM-containing E. coli that had reduced susceptibility to aztreonam/avibactam. Construction of an isogenic mutant confirmed that this insertion resulted in decreased susceptibility to aztreonam and several cephalosporins, but had no impact on carbapenem potency. Structural analysis suggests that this insertion will impact the accessibility of the β-lactam drugs to the transpeptidase pocket of PBP3. CONCLUSIONS The acquisition of β-lactamases is the predominant mechanism of β-lactam resistance in Enterobacteriaceae. We have demonstrated that small PBP3 changes will affect the susceptibility to a broad range of β-lactams. These changes were identified in multiple MLST lineages of E. coli, and were enriched in NDM-containing isolates. However, they were not present in other key species of Enterobacteriaceae despite significant conservation among the PBP3 proteins.
Collapse
Affiliation(s)
- Richard A Alm
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Michele R Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| | - Sushmita D Lahiri
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA, USA
| |
Collapse
|
42
|
Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants. Anal Biochem 2014; 463:15-22. [DOI: 10.1016/j.ab.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022]
|
43
|
June CM, Vaughan RM, Ulberg LS, Bonomo RA, Witucki LA, Leonard DA. A fluorescent carbapenem for structure function studies of penicillin-binding proteins, β-lactamases, and β-lactam sensors. Anal Biochem 2014; 463:70-4. [PMID: 25058926 DOI: 10.1016/j.ab.2014.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/12/2014] [Indexed: 11/29/2022]
Abstract
By reacting fluorescein isothiocyanate with meropenem, we have prepared a carbapenem-based fluorescent β-lactam. Fluorescein-meropenem binds both penicillin-binding proteins and β-lactam sensors and undergoes a typical acylation reaction in the active site of these proteins. The probe binds the class D carbapenemase OXA-24/40 with close to the same affinity as meropenem and undergoes a complete catalytic hydrolysis reaction. The visible light excitation and strong emission of fluorescein render this molecule a useful structure-function probe through its application in sodium dodecyl sulfate-polyacrylamide gel electrophoresis assays as well as solution-based kinetic anisotropy assays. Its classification as a carbapenem β-lactam and the position of its fluorescent modification render it a useful complement to other fluorescent β-lactams, most notably Bocillin FL. In this study, we show the utility of fluorescein-meropenem by using it to detect mutants of OXA-24/40 that arrest at the acyl-intermediate state with carbapenem substrates but maintain catalytic competency with penicillin substrates.
Collapse
Affiliation(s)
- Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert M Vaughan
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Lucas S Ulberg
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Laurie A Witucki
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA.
| |
Collapse
|
44
|
Jean NL, Bougault CM, Lodge A, Derouaux A, Callens G, Egan AJF, Ayala I, Lewis RJ, Vollmer W, Simorre JP. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure 2014; 22:1047-54. [PMID: 24954617 PMCID: PMC4111904 DOI: 10.1016/j.str.2014.04.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/27/2023]
Abstract
The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A. LpoA’s N-terminal domain features an all-α-helical fold similar to TPR domains The C-terminal domain of E. coli LpoA contains two extensive flexible regions Full-length LpoA adopts an elongated structure with low interdomain flexibility LpoA can span the periplasm to stimulate the peptidoglycan synthase PBP1A
Collapse
Affiliation(s)
- Nicolas L Jean
- University Grenoble Alpes, Institut de Biologie Structurale, F-38027 Grenoble, France; CEA, DSV, Institut de Biologie Structurale, F-38027 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38027 Grenoble, France
| | - Catherine M Bougault
- University Grenoble Alpes, Institut de Biologie Structurale, F-38027 Grenoble, France; CEA, DSV, Institut de Biologie Structurale, F-38027 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38027 Grenoble, France
| | - Adam Lodge
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Adeline Derouaux
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Gilles Callens
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Alexander J F Egan
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Isabel Ayala
- University Grenoble Alpes, Institut de Biologie Structurale, F-38027 Grenoble, France; CEA, DSV, Institut de Biologie Structurale, F-38027 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38027 Grenoble, France
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| | - Jean-Pierre Simorre
- University Grenoble Alpes, Institut de Biologie Structurale, F-38027 Grenoble, France; CEA, DSV, Institut de Biologie Structurale, F-38027 Grenoble, France; CNRS, Institut de Biologie Structurale, F-38027 Grenoble, France.
| |
Collapse
|
45
|
Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, Schloesser M, Dumas J, Kerff F, Nguyen-Distèche M, Charlier P. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One 2014; 9:e98042. [PMID: 24875494 PMCID: PMC4038516 DOI: 10.1371/journal.pone.0098042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022] Open
Abstract
In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357–577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module of unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388–165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357–577 dimerization.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
- * E-mail:
| | - Adeline Derouaux
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Claudine Fraipont
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Marine Joris
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Raphaël Herman
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Mathieu Rocaboy
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Marie Schloesser
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Jacques Dumas
- Sanofi R&D, protein production, 13 quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Frédéric Kerff
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Martine Nguyen-Distèche
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingénierie des Protéines, Université de Liège, Institut de Physique B5a et Institut de Chimie B6a, Sart Tilman, Liège, Belgium
| |
Collapse
|
46
|
Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One 2014; 9:e97202. [PMID: 24810745 PMCID: PMC4014608 DOI: 10.1371/journal.pone.0097202] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/16/2014] [Indexed: 01/26/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.
Collapse
|
47
|
Starr J, Brown MF, Aschenbrenner L, Caspers N, Che Y, Gerstenberger BS, Huband M, Knafels JD, Lemmon MM, Li C, McCurdy SP, McElroy E, Rauckhorst MR, Tomaras AP, Young JA, Zaniewski RP, Shanmugasundaram V, Han S. Siderophore Receptor-Mediated Uptake of Lactivicin Analogues in Gram-Negative Bacteria. J Med Chem 2014; 57:3845-55. [DOI: 10.1021/jm500219c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jeremy Starr
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Matthew F. Brown
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Lisa Aschenbrenner
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Ye Che
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Brian S. Gerstenberger
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Michael Huband
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - John D. Knafels
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - M. Megan Lemmon
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Chao Li
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Sandra P. McCurdy
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Eric McElroy
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Mark R. Rauckhorst
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Andrew P. Tomaras
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Jennifer A. Young
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Richard P. Zaniewski
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Veerabahu Shanmugasundaram
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Medicinal Chemistry, ⧧Computational Chemistry, §Antibacterials Research
Unit, and ¶Structural Biology, Pfizer Global Research and Development, Eastern
Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
48
|
Docking studies in target proteins involved in antibacterial action mechanisms: extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules 2014; 19:1672-84. [PMID: 24481116 PMCID: PMC6270753 DOI: 10.3390/molecules19021672] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 11/25/2022] Open
Abstract
In the present work, the knowledge on target proteins of standard antibiotics was extended to antimicrobial mushroom compounds. Docking studies were performed for 34 compounds in order to evaluate their affinity to bacterial proteins that are known targets for some antibiotics with different mechanism of action: inhibitors of cell wall synthesis, inhibitors of protein synthesis, inhibitors of nucleic acids synthesis and antimetabolites. After validation of the molecular docking approach, virtual screening of all the compounds was performed against penicillin binding protein 1a (PBP1a), alanine racemase (Alr), d-alanyl-d-alanine synthetase (Ddl), isoleucyl-tRNA sinthetase (IARS), DNA gyrase subunit B, topoisomerase IV (TopoIV), dihydropteroate synthetase (DHPS) and dihydrofolate reductase (DHFR) using AutoDock4. Overall, it seems that for the selected mushroom compounds (namely, enokipodins, ganomycins and austrocortiluteins) the main mechanism of the action is the inhibition of cell wall synthesis, being Alr and Ddl probable protein targets.
Collapse
|
49
|
Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD. β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme. J Am Chem Soc 2013; 135:18358-69. [PMID: 24219313 PMCID: PMC4042847 DOI: 10.1021/ja403598g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - David C. McLeod
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Kerri M. Smith
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yan Xu
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Tao Che
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
- Center for Drug Discovery, Design, and Development, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
50
|
Abstract
There has been considerable effort expended in the investigation of the potential of siderophore conjugates of antibiotics to circumvent the permeability barrier imposed by the outer membrane of Gram-negative bacteria. There is also a small group of natural conjugates, the sideromycins. Among the synthetic analogues that have been investigated are conjugates of nucleosides, glycopeptides, macrolides, fluroquinolones, and, above all, β-lactams. Despite this effort, few compounds have progressed beyond experimental studies. One compound, the siderophore monosulfactam BAL30072, is in early clinical studies.
Collapse
|