1
|
Wang R, Gu S, Li D, Wang C, Zhai C, Sun Y, Wang X, Huang H, Guo Z, He Y. Facile one-step synthesis of mesoporous Pt-based alloy nanospheres for ethanol electrooxidation. Chem Commun (Camb) 2023; 60:122-125. [PMID: 38038120 DOI: 10.1039/d3cc04416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mesoporous Pt-based alloy nanospheres were prepared via a one-step soft-template strategy. The regulation of electronic structure, lattice contraction and abundant active sites endowed the mesoporous Pt-based catalysts with remarkable electrochemical activity towards ethanol oxidation reaction.
Collapse
Affiliation(s)
- Ruyi Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Shichun Gu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Dexiang Li
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Chaoman Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Chongyuan Zhai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Kunming Hendera Technology Co. Ltd, Kunming 650106, China
| | - Yu Sun
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Xue Wang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Hui Huang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Kunming Hendera Technology Co. Ltd, Kunming 650106, China
| | - Zhongcheng Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Kunming Hendera Technology Co. Ltd, Kunming 650106, China
| | - Yapeng He
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
- Kunming Hendera Technology Co. Ltd, Kunming 650106, China
| |
Collapse
|
2
|
Lee H, Matthews KC, Zhan X, Warner JH, Ren H. Precision Synthesis of Bimetallic Nanoparticles via Nanofluidics in Nanopipets. ACS NANO 2023; 17:22499-22507. [PMID: 37926957 DOI: 10.1021/acsnano.3c06011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bimetallic nanoparticles often show properties superior to their single-component counterparts. However, the large parameter space, including size, structure, composition, and spatial arrangement, impedes the discovery of the best nanoparticles for a given application. High-throughput methods that can control the composition and spatial arrangement of the nanoparticles are desirable for accelerated materials discovery. Herein, we report a methodology for synthesizing bimetallic alloy nanoparticle arrays with precise control over their composition and spatial arrangement. A dual-channel nanopipet is used, and nanofluidic control in the nanopipet further enables precise tuning of the electrodeposition rate of each element, which determines the final composition of the nanoparticle. The composition control is validated by finite element simulation as well as electrochemical and elemental analyses. The scope of the particles demonstrated includes Cu-Ag, Cu-Pt, Au-Pt, Cu-Pb, and Co-Ni. We further demonstrate surface patterning using Cu-Ag alloys with precise control of the location and composition of each pixel. Additionally, combining the nanoparticle alloy synthesis method with scanning electrochemical cell microscopy (SECCM) allows for fast screening of electrocatalysts. The method is generally applicable for synthesizing metal nanoparticles that can be electrodeposited, which is important toward developing automated synthesis and screening systems for accelerated material discovery in electrocatalysis.
Collapse
Affiliation(s)
- Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kevin C Matthews
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xun Zhan
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie H Warner
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Wieser P, Moser D, Gollas B, Amenitsch H. Monitoring of Pore Orientation by in Operando Grazing Incidence Small-Angle X-ray Scattering during Templated Electrodeposition of Mesoporous Pt Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47604-47614. [PMID: 37769130 PMCID: PMC10571001 DOI: 10.1021/acsami.3c03316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
We have used in operando grazing incidence small-angle X-ray scattering (GISAXS) to monitor structural changes during templated electrodeposition of mesoporous platinum films on gold electrodes from a ternary lyotropic liquid crystalline mixture of aqueous hexachloroplatinic acid and the diblock copolymer surfactant Brij56. While the cylindrical micelles of the lyotropic liquid crystal (LLC) in the hexagonal phase have a center-to-center distance of 7.5 nm with a preferential alignment parallel to the electrode surface, the electrodeposited platinum films contain highly ordered mesopores arranged in a 2D hexagonal structure, with a center-to-center distance of about 8.5 nm and a preferential orientation perpendicular to the electrode surface. The progression of structural changes of the LLC template and the deposited mesoporous Pt could be monitored for the first time in operando by GISAXS: within the first 14 s of deposition, a nucleation burst of Pt coincides with a loss of preferential alignment of the LLC. Initially, the morphology of the 2-dimensionally nucleated Pt replicates the Au substrate. During the following 5 to 7 min, the growth morphology of the Pt film changes, and vertically aligned mesopores form. Our results indicate mutual interaction between the species involved in the electrodeposition and the LLC template, leading to a partial loss of horizontal orientation of the LLC during Pt nucleation before vertical rearrangement of the micelles to the electrode surface. The vertically aligned mesopores in the Pt and the possibility to produce freestanding films make these materials interesting in fields such as electrocatalysis, energy harvesting, and nanofluidics.
Collapse
Affiliation(s)
- Philipp
Aldo Wieser
- Institute
of Inorganic Chemistry, Graz University
of Technology, Graz 8010, Austria
| | - David Moser
- Institute
of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz 8010, Austria
| | - Bernhard Gollas
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Graz 8010, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, Graz 8010, Austria
| |
Collapse
|
4
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Geng WC, Li JJ, Sang JL, Xia YX, Li YJ. Engineering composition-varied Au/PtTe hetero-junction-abundant nanotrough arrays as robust electrocatalysts for ethanol electrooxidation. J Colloid Interface Sci 2023; 646:616-624. [PMID: 37210909 DOI: 10.1016/j.jcis.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Pt-based multi-metallic electrocatalysts containing hetero-junctions are found to have superior catalytic performance to composition-equivalent counterparts. However, in bulk solution, controllable preparation of Pt-based hetero-junction electrocatalyst is an extremely random work owing to the complexity of solution reactions. Herein, we develop an interface-confined transformation strategy, subtly achieving Au/PtTe hetero-junction-abundant nanostructures by employing interfacial Te nanowires as sacrificing templates. By controlling the reaction conditions, composition-varied Au/PtTe can be easily obtained, such as Au75/Pt20Te5, Au55/Pt34Te11, and Au5/Pt69Te26. Moreover, each Au/PtTe hetero-junction nanostructure appears to be an array consisting of side-by-side Au/PtTe nanotrough units and can be directly used as a catalyst layer without further post-treatment. All Au/PtTe hetero-junction nanostructures show better catalytic activity towards ethanol electrooxidation than commercial Pt/C because of the combining contributions of Au/Pt hetero-junctions and the collective effects of multi-metallic elements, where Au75/Pt20Te5 exhibits the best electrocatalytic performance among three Au/PtTe nanostructures owing to its optimal composition. This study may provide technically feasible guidance for further maximizing the catalytic activity of Pt-based hybrid catalysts.
Collapse
Affiliation(s)
- Wen-Chao Geng
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou 450000, China
| | - Jing-Jing Li
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ji-Long Sang
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu-Xin Xia
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yong-Jun Li
- State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Hammoud L, Strebler C, Toufaily J, Hamieh T, Keller V, Caps V. The role of the gold-platinum interface in AuPt/TiO 2-catalyzed plasmon-induced reduction of CO 2 with water. Faraday Discuss 2023; 242:443-463. [PMID: 36205304 DOI: 10.1039/d2fd00094f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bimetallic gold-platinum nanoparticles have been widely studied in the fields of nanoalloys, catalysis and plasmonics. Many preparation methods can lead to the formation of these bimetallic nanoparticles (NPs), and the structure and related properties of the nanoalloy often depend on the preparation method used. Here we investigate the ability of thermal dimethylformamide (DMF) reduction to prepare bimetallic gold-platinum sub-nm clusters supported on titania. We find that deposition of Pt preferentially occurs on gold. Formation of sub-nm clusters (vs. NPs) appears to be dependent on the metal concentration used: clusters can be obtained for metal loadings up to 4 wt% but 7-8 nm NPs are formed for metal loadings above 8 wt%, as shown using high resolution transmission electron microscopy (HRTEM). X-ray photoelectron spectroscopy (XPS) shows electron-rich Au and Pt components in a pure metallic form and significant platinum enrichment of the surface, which increases with increasing Pt/Au ratio and suggests the presence of Au@Pt core-shell type structures. By contrast, titania-supported bimetallic particles (typically >7 nm) obtained by sodium borohydride (NaBH4) reduction in DMF, contain Au/Pt Janus-type objects in addition to oxidized forms of Pt as evidenced by HRTEM, which is in agreement with the lower Pt surface enrichment found by XPS. Both types of supported nanostructures contain a gold-platinum interface, as shown by the chemical interface damping, i.e. gold plasmon damping by Pt, found using UV-visible spectroscopy. Evaluation of the materials for plasmon-induced continuous flow CO2 reduction with water, shows that: (1) subnanometer metallic clusters are not suitable for CO2 reduction with water, producing hydrogen from the competing water reduction instead, thereby highlighting the plasmonic nature of the reaction; (2) the highest methane production rates are obtained for the highest Pt enrichments of the surface, i.e. the core-shell-like structures achieved by the thermal DMF reduction method; (3) selectivity towards CO2 reduction vs. the competing water reduction is enhanced by loading of the plasmonic NPs, i.e. coverage of the titania semi-conductor by plasmonic NPs. Full selectivity is achieved for loadings above 6 wt%, regardless of the NPs composition and alloy structure.
Collapse
Affiliation(s)
- Leila Hammoud
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Claire Strebler
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon
| | - Tayssir Hamieh
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Rafic Hariri Campus, Hadath, Lebanon.,Faculty of Science and Engineering, Maastricht University, 6200 MD, Maastrich, P.O. Box 616, The Netherlands
| | - Valérie Keller
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Valérie Caps
- ICPEES (CNRS UMR 7515/Université de Strasbourg), 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| |
Collapse
|
7
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Ni M, Sun L, Liu B. Mesoporous Gold Nanostructures: Synthesis and Beyond. J Phys Chem Lett 2022; 13:4410-4418. [PMID: 35549343 DOI: 10.1021/acs.jpclett.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mesoporous metal nanostructures have offered multiple advantages that cannot be realized elsewhere. These materials have been attracting more research attention in catalysis and electrocatalysis owing to their functional structures and compositions. Of the various mesoporous metals available, mesoporous gold (mesoAu) nanostructures are of special interest in surface-enhanced Raman scattering (SERS) and related applications because of their strong electromagnetic field (localized surface plasmon resonance). In the last few decades, various synthesis strategies have been developed to prepare mesoAu nanostructures with controllable morphologies that exhibit fascinating physicochemical properties and increase applications in SERS, catalysis, and electrocatalysis. In this Perspective, we systematically summarize recent advances in synthesis and applications of mesoAu nanostructures. Four synthesis strategies, including dealloying, nanocasting, electrochemical deposition, and intermediate template, are discussed in detail. Moreover, physicochemical properties and promising applications of mesoAu nanostructures are presented. Finally, we describe current challenges and give a general outlook to explore further directions in synthesis and applications of mesoAu nanostructures.
Collapse
Affiliation(s)
- Mei Ni
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Chen Y, Zhang J, Ding Z, Chen L, Wang H, Zhang M, Feng X. Three-Phases Interface Induced Local Alkalinity Generation Enables Electrocatalytic Glucose Oxidation in Neutral Electrolyte. Front Bioeng Biotechnol 2022; 10:909187. [PMID: 35573243 PMCID: PMC9096097 DOI: 10.3389/fbioe.2022.909187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalytic glucose oxidation is crucial to the development of non-enzymatic sensors, an attractive alternative for enzymatic biosensors. However, due to OH- consumption during the catalytic process, non-enzymatic detection generally requires electrolytes having an alkaline pH value, limiting its practical application since biofluids are neutral. Herein, via interfacial microenvironment design, we addressed this limitation by developing a non-enzymatic sensor with an air-solid-liquid triphase interface electrodes that synergistically integrates the functions of local alkalinity generation and electrocatalytic glucose oxidation. A sufficiently high local pH value was achieved via oxygen reduction reaction at the triphase interface, which consequently enabled the electrochemical oxidation (detection) of glucose in neutral solution. Moreover, we found that the linear detection range and sensitivity of triphase non-enzymatic sensor can be tuned by changing the electrocatalysts of the detection electrode. The triphase electrode architecture provides a new platform for further exploration and promotes practical application of non-enzymatic sensors.
Collapse
Affiliation(s)
- Yangru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Haili Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Man Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.,Innovation Center for Chemical Science, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chen F, Song T. AuPt Bimetallic Nanozymes for Enhanced Glucose Catalytic Oxidase. Front Chem 2022; 10:854516. [PMID: 35265588 PMCID: PMC8899206 DOI: 10.3389/fchem.2022.854516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 12/07/2022] Open
Abstract
Au metal nanoparticles as artificial nanozymes have attracted wide interest in biotechnology due to high stability and easy synthesis. Unfortunately, its catalytic activity is limited by the uniform surface electron distribution, fundamentally affecting the oxidation efficiency of glucose. Here, we synthesized AuPt bimetallic nanoparticles with unique surface electron structure due to the coupling effect of the two metal components, achieving improved glucose catalytic oxidase. Because of the effective work function difference between the two metals in AuPt, the electrons will transfer from Au to accumulate on Pt, simultaneously contributing to the substantial enhancement of Au-induced glucose oxidase and Pt-induced catalase performance. We systematically studied the enzyme-catalytic efficiency of AuPt with varied two metal proportions, in which Au:Pt at 3:1 showed the highest catalytic efficiency of glucose oxidase in solution. The AuPt nanoparticles were further co-cultured with cells and also showed excellent biological activity for glucose oxidase. This work demonstrates that the physicochemical properties between different metals can be exploited for engineering high-performance metal nanoparticle-based nanozymes, which opens up a new way to rationally design and optimize artificial nanozymes to mimic natural enzymes.
Collapse
Affiliation(s)
- Feixiang Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- *Correspondence: Feixiang Chen,
| | - Tianlin Song
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Zhong X, Yuan P, Wei Y, Liu D, Losic D, Li M. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3949-3960. [PMID: 35015494 DOI: 10.1021/acsami.1c18788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aerobic oxidation of 5-hydroxymethylfurfural (HMF), a key platform compound derived from biomass, to 2,5-furandicarboxylic acid (FDCA) is a highly important reaction in the production of green and sustainable chemicals. Here, we developed a highly efficient and stable halloysite-supported Pt-Au alloy catalyst for the selective oxidation of HMF to FDCA. The catalyst was synthesized through the organosilane functionalization of halloysite nanotubes, followed by the in situ formation and dispersion of Pt-Au alloy nanoparticles on the internal and external surfaces of nanotubes. The composition, morphology, and structure of the prepared catalyst were characterized. The catalyst with the optimal composition of Pt/Au molar ratio of 1/4 and metal loading of 1.5 wt % exhibited outstanding catalytic activity for the oxidation of HMF to FDCA using O2 as an oxidant with 100% conversion of HMF and 99% selectivity of FDCA. This excellent catalytic performance is mainly attributed to the high dispersion and alloying effects of bimetallic nanoparticles, which promoted the activation of reactants or intermediates and further improved FDCA selectivity. Furthermore, the halloysite-supported Pt/Au bimetallic catalyst showed high stability and reusability. This study provides a promising strategy by combining clay mineral halloysite and bimetallic alloys for developing efficient catalysts with high FDCA selectivity and stability for the oxidation of HMF to FDCA.
Collapse
Affiliation(s)
- Xuemin Zhong
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yanfu Wei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mengyuan Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ke F, Zhou C, Zheng M, Li H, Bao J, Zhu C, Song Y, Xu WW, Zhu M. The alloying-induced electrical conductivity of metal-chalcogenolate nanowires. Chem Commun (Camb) 2021; 57:8774-8777. [PMID: 34378573 DOI: 10.1039/d1cc01849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alloying is one of the most effective strategies to change the properties of inorganic-organic hybrid materials, but there are few reports of the alloying of one-dimensional nanowires with precise atomic structure due to the difficulties in obtaining the single crystals of nanowires themselves. Herein, we describe the synthesis and characterization of an alloyed one-dimensional Ag-Cu nanowire [Ag2.5Cu1.5(S-Adm)4]n. Compared with the unalloyed [Ag4(S-Adm)4]n, our novel alloyed nanowire exhibits good conductivity, and its resistivity (as a powder) was determined to be 107 Ω m by impedance analysis-consistent with that of a semiconductor. Accordingly, based on these properties combined with its excellent thermal stability and high-yielding, gram-scale synthesis, [Ag2.5Cu1.5(S-Adm)4]n is proposed for electronic-device applications.
Collapse
Affiliation(s)
- Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yue YN, Wang ZL, Yang LR, Zhao YJ, Wang H, Lu JX. L-cysteine-functionalized CuPt: A chiral electrode for the asymmetric electroreduction of aromatic ketones. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Barman BK, Sarkar B, Nandan R, Nanda KK. Ruthenium nanodendrites on reduced graphene oxide: an efficient water and 4-nitrophenol reduction catalyst. NEW J CHEM 2021. [DOI: 10.1039/d0nj05565d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient protocol is reported for the elegant design of reduced graphene oxide (rGO)-supported Ru nanodendrites for promotion of electrochemical water reduction in a wide pH range as well as for environmental remediation.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Bidushi Sarkar
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Ravi Nandan
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| | - Karuna Kar Nanda
- Materials Research Centre
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
15
|
Wang Q, Wang Z, Dong Q, Yu R, Zhu H, Zou Z, Yu H, Huang K, Jiang X, Xiong X. NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Praveen R, Ramaraj R. Electrocatalysis of Methanol on the Platinum‐Gold Bimetallic Microstructures Codeposited with Silicate Sol‐gel on Indium Tin Oxide Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raju Praveen
- Department of Physical Chemistry Centre for Photoelectrochemistry, School of Chemistry Madurai Kamaraj University Madurai 625 021 India
| | - Ramasamy Ramaraj
- Department of Physical Chemistry Centre for Photoelectrochemistry, School of Chemistry Madurai Kamaraj University Madurai 625 021 India
| |
Collapse
|
17
|
Kani K, Henzie J, Dag Ö, Wood K, Iqbal M, Lim H, Jiang B, Salomon C, Rowan AE, Hossain MSA, Na J, Yamauchi Y. Electrochemical Synthesis of Mesoporous Architectured Ru Films Using Supramolecular Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002489. [PMID: 32767535 DOI: 10.1002/smll.202002489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical synthesis of mesoporous ruthenium (Ru) films using sacrificial self-assembled block polymer micelles templates, and its electrochemical surface oxidation to RuOx is described. Unlike standard methods such as thermal oxidation, the electrochemical oxidation method described here retains the mesoporous structure. Ru oxide materials serve as high-performance supercapacitor electrodes due to their excellent pseudocapacitive behavior. The mesoporous architectured film shows superior specific capacitance (467 F g-1Ru ) versus a nonporous Ru/RuOx electrode (28 F g-1Ru ) that is prepared via the same method but omitting the pore-directing polymer. Ultrahigh surface area materials will play an essential role in increasing the capacitance of this class of energy storage devices because the pseudocapacitive redox reaction occurs on the surface of electrodes.
Collapse
Affiliation(s)
- Kenya Kani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ömer Dag
- Department of Chemistry and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawara Rd, Lucas Heights, NSW, 2234, Australia
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, 4030000, Chile
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-dareo, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
18
|
Abstract
Interest in chemical hydrogen storage has increased, because the supply of fossil fuels are limited and the harmful effects of burning fossil fuels on the environment have become a focus of public concern. Hydrogen, as one of the energy carriers, is useful for the sustainable development. However, it is widely known that controlled storage and release of hydrogen are the biggest barriers in large-scale application of hydrogen energy. Ammonia borane (NH3BH3, AB) is deemed as one of the most promising hydrogen storage candidates on account of its high hydrogen to mass ratio and environmental benignity. Development of efficient catalysts to further improve the properties of chemical kinetics in the dehydrogenation of AB under appropriate conditions is of importance for the practical application of this system. In previous studies, a variety of noble metal catalysts and their supported metal catalysts (Pt, Pd, Au, Rh, etc.) have presented great properties in decomposing the chemical hydride to generate hydrogen, thus, promoting their application in dehydrogenation of AB is urgent. We analyzed the hydrolysis of AB from the mechanism of hydrogen release reaction to understand more deeply. Based on these characteristics, we aimed to summarize recent advances in the development of noble metal catalysts, which had excellent activity and stability for AB dehydrogenation, with prospect towards realization of efficient noble metal catalysts.
Collapse
|
19
|
Zou Y, Zhou X, Ma J, Yang X, Deng Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications. Chem Soc Rev 2020; 49:1173-1208. [PMID: 31967137 DOI: 10.1039/c9cs00334g] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesoporous metal-based materials (MMBMs) have received unprecedented attention in catalysis, sensing, and energy storage and conversion owing to their unique electronic structures, uniform mesopore size and high specific surface area. In the last decade, great progress has been made in the design and application of MMBMs; in particular, many novel assembly engineering methods and strategies based on amphiphilic block copolymers as structure-directing agents have also been developed for the "bottom-up" construction of a variety of MMBMs. Development of MMBMs is therefore of significant importance from both academic and practical points of view. In this review, we provide a systematic elaboration of the molecular assembly methods and strategies for MMBMs, such as tuning the driving force between amphiphilic block copolymers and various precursors (i.e., metal salts, nanoparticles/clusters and polyoxometalates) for pore characteristics and physicochemical properties. The structure-performance relationship of MMBMs (e.g., pore size, surface area, crystallinity and crystal structure) based on various spectroscopy analysis techniques and density functional theory (DFT) calculation is discussed and the influence of the surface/interfacial properties of MMBMs (e.g., active surfaces, heterojunctions, binding sites and acid-base properties) in various applications is also included. The prospect of accurately designing functional mesoporous materials and future research directions in the field of MMBMs is pointed out in this review, and it will open a new avenue for the inorganic-organic assembly in various fields.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xinran Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Junhao Ma
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China. and State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
20
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
21
|
El-Maghrabey M, El-Shaheny R, Belal F, Kishikawa N, Kuroda N. Green Sensors for Environmental Contaminants. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-45116-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zhao X, Wang W, Liu L, Hu Y, Xu Z, Liu L, Wu N, Li N. Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor. NANOTECHNOLOGY 2019; 30:495501. [PMID: 31443101 DOI: 10.1088/1361-6528/ab3e1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the capability of inducing small particle sizes of supported metal in graphite oxide (GO), the γ-ray irradiation method applied for preparing graphite oxide-gold (GO-Au) nanocomposites as electrochemical immunosensors has attracted specific attention recently. To study the accurate factors influencing the precise morphology and final performance of the prepared composites in the γ-irradiation system, we proposed a facile method to investigate the evolution of the GO structure, size and dispersion of Au nanoparticles (AuNPs) produced with the addition of isopropyl alcohol to the system. The GO-Au nanocomposites were characterized by Fourier transform infrared spectroscopy, x-ray diffraction spectra, Raman spectra, x-ray photoelectron spectroscopy and high resolution transmission electron microscopy. These nanocomposites with sandwich morphology exhibited an excellent immunosensor performance with a low detection limit of 15.8 pg ml-1 (S/N = 3) and a wide linear range from 1 to 40 ng ml-1 for detecting carcinoembryonic antigens. The enhanced biosensing performance is attributed to the synergistic effect of γ-irradiation and the precise structure of GO, which endows the smaller size and more uniform distribution of AuNPs on the GO as well as the good signal amplification capability. Furthermore, adopting the γ-irradiation method and use of GO as a precursor is propitious for application in large-scale production because of its high-efficiency and high-yielding characteristics.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
He Z, Yang Y, Liang HW, Liu JW, Yu SH. Nanowire Genome: A Magic Toolbox for 1D Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902807. [PMID: 31566828 DOI: 10.1002/adma.201902807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Indexed: 06/10/2023]
Abstract
1D nanomaterials with high aspect ratio, i.e., nanowires and nanotubes, have inspired considerable research interest thanks to the fact that exotic physical and chemical properties emerge as their diameters approach or fall into certain length scales, such as the wavelength of light, the mean free path of phonons, the exciton Bohr radius, the critical size of magnetic domains, and the exciton diffusion length. On the basis of their components, aspect ratio, and properties, there may be imperceptible connections among hundreds of nanowires prepared by different strategies. Inspired by the heredity system in life, a new concept termed the "nanowire genome" is introduced here to clarify the relationships between hundreds of nanowires reported previously. As such, this approach will not only improve the tools incorporating the prior nanowires but also help to precisely synthesize new nanowires and even assist in the prediction on the properties of nanowires. Although the road from start-ups to maturity is long and fraught with challenges, the genetical syntheses of more than 200 kinds of nanostructures stemming from three mother nanowires (Te, Ag, and Cu) are summarized here to demonstrate the nanowire genome as a versatile toolbox. A summary and outlook on future challenges in this field are also presented.
Collapse
Affiliation(s)
- Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Yang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hai-Wei Liang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
24
|
Self-standing hollow porous AuPt nanospheres and their enhanced electrocatalytic performance. J Colloid Interface Sci 2019; 554:396-403. [PMID: 31310878 DOI: 10.1016/j.jcis.2019.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022]
Abstract
In this paper, we present a template method to fabricate AuPt hollow nanospheres by depositing Au inner layer and dendritic Pt outer layer onto PS template. The as-prepared AuPt hollow nanospheres can form self-standing hollow nanostructures under thermal treatment which is confirmed by small-angle X-ray scattering results. We believe that the self-standing structural features of them result from different thermal stability of Au and Pt elements. The small-angle X-ray diffraction measurements and X-ray photoelectron spectroscopy of binding energies certify the existing interaction between Au and Pt. It is suggested that Pt mole contents of AuPt hollow nanospheres can be varied by changing H2PtCl4 concentration during chemical deposition process. The methanol electrochemical oxidation reaction indicates these as-prepared AuPt hollow nanospheres possessing excellent potential applications on catalysts. Moreover, synthesis of multilayer hollow porous nanospheres such as Pt@Au@Pt proves that our method greatly enriches the species of the self-standing, hollow and porous functional nanomaterials.
Collapse
|
25
|
Xie C, Niu Z, Kim D, Li M, Yang P. Surface and Interface Control in Nanoparticle Catalysis. Chem Rev 2019; 120:1184-1249. [DOI: 10.1021/acs.chemrev.9b00220] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenlu Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Zhiqiang Niu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dohyung Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mufan Li
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Bai G, Liu C, Gao Z, Lu B, Tong X, Guo X, Yang N. Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902951. [PMID: 31353799 DOI: 10.1002/smll.201902951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Maximizing activity of Pt catalysts toward methanol oxidation reaction (MOR) together with minimized poisoning of adsorbed CO during MOR still remains a big challenge. In the present work, uniform and well-distributed Pt nanoparticles (NPs) grown on an atomic carbon layer, that is in situ formed by means of dry-etching of silicon carbide nanoparticles (SiC NPs) with CCl4 gas, are explored as potential catalysts for MOR. Significantly, as-synthesized catalysts exhibit remarkably higher MOR catalytic activity (e.g., 647.63 mA mg-1 at a peak potential of 0.85 V vs RHE) and much improved anti-CO poisoning ability than the commercial Pt/C catalysts, Pt/carbon nanotubes, and Pt/graphene catalysts. Moreover, the amount of expensive Pt is a few times lower than that of the commercial and reported catalyst systems. As confirmed from density functional theory (DFT) calculations and X-ray absorption fine structure (XAFS) measurements, such high performance is due to reduced adsorption energy of CO on the Pt NPs and an increased amount of adsorbed energy OH species that remove adsorbed CO fast and efficiently. Therefore, these catalysts can be utilized for the development of large-scale and industry-orientated direct methanol fuel cells.
Collapse
Affiliation(s)
- Gailing Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, 030008, China
| | - Chang Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Baoying Lu
- Guangxi University of Science and Technology, Liuzhou, 545000, China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiangyun Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen, 57076, Germany
| |
Collapse
|
27
|
Abstract
Platinum nanomaterials provide an excellent catalytic activity for diverse applications and given its high cost, platinum alloys and bi-metallic nanomaterials with transition metals are appealing for low cost and catalytic specificity. Here the synthesis of hierarchically porous Pt–Cu macrobeams and macrotubes templated from Magnus’s salt derivative needles is demonstrated. The metal composition was controlled through the combination of [PtCl4]2− with [Pt(NH3)4]2+ and [Cu(NH3)4]2+ ions in different ratios to form salt needle templates. Polycrystalline Pt–Cu porous macrotubes and macrobeams 10’ s–100’ s μm long with square cross-sections were formed through chemical reduction with dimethylamine borane (DMAB) and NaBH4, respectively. Specific capacitance as high as 20.7 F/g was demonstrated with cyclic voltammetry. For macrotubes and macrobeams synthesized from Pt2−:Pt2+:Cu2+ salt ratios of 1:1:0, 2:1:1, 3:1:2, and 1:0:1, DMAB reduced 3:1:2 macrotubes demonstrated the highest ethanol oxidation peak currents of 12.0 A/g at 0.5 mV/s and is attributed to the combination of a highly porous structure and platinum enriched surface. Salt templates with electrochemical reduction are suggested as a rapid, scalable, and tunable platform to achieve a wide range of 3-dimensional porous metal, alloy, and multi-metallic nanomaterials for catalysis, sensor, and energy storage applications.
Collapse
|
28
|
Xu GR, Zhai YN, Li FM, Zhao GT, Li SN, Yao HC, Jiang JX, Chen Y. Cyanogel auto-reduction induced synthesis of PdCo nanocubes on carbon nanobowls: a highly active electrocatalyst for ethanol electrooxidation. NANOSCALE 2019; 11:13477-13483. [PMID: 31287477 DOI: 10.1039/c9nr04767k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Direct ethanol fuel cells (DEFCs) with a high conversion efficiency are quite promising candidates for energy conversion devices. Herein, we have successfully synthesized PdCo alloy nanocubes supported on carbon nanobowl (denoted as Pd2Co1/CNB) nanohybrids by using the cyanogel auto-reduction method at high temperature. The morphology, composition and structure of Pd2Co1/CNB nanohybrids are characterized in detail, revealing that PdCo nanocubes have a high alloying degree and special {110} facets. In cyclic voltammetry measurements, Pd2Co1/CNB nanohybrids show a mass activity of 1089.0 A g Pd-1 and a specific activity of 40.03 mA cm-2 for ethanol electrooxidation at peak potential, which are much higher than that of the commercial Pd/C electrocatalyst (278.2 A gPd-1 and 8.22 mA cm-2). Additionally, chronoamperometry measurements show that Pd2Co1/CNB nanohybrids have excellent durability for ethanol electrooxidation. A high alloying degree, special {110} facets and the CNB supporting material contribute to the high activity and durability of Pd2Co1/CNB nanohybrids, making them a highly promising Pt-alternative electrocatalyst for ethanol electrooxidation in DEFCs.
Collapse
Affiliation(s)
- Guang-Rui Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Ya-Nan Zhai
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Guang-Tao Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Shu-Ni Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Hong-Chang Yao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
29
|
In situ redox growth of mesoporous Pd-Cu 2O nanoheterostructures for improved glucose oxidation electrocatalysis. Sci Bull (Beijing) 2019; 64:764-773. [PMID: 36659546 DOI: 10.1016/j.scib.2019.04.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effects caused by crystalline defects and mismatch of electronic structure at metal-oxide nanojunctions. To deeply understand the interfacial effects, we engineered crystalline-defect Pd-Cu2O interfaces through non-epitaxial growth by a facile redox route. The Pd-Cu2O nanoheterostructures exhibit much higher electrocatalytic activity toward glucose oxidation than their single counterparts and their physical mixture, which makes it have a promising potential for practical application of glucose biosensors. Experimental study and density functional theory (DFT) calculations demonstrated that the interfacial electron accumulation and the shifting up of d bands center of Cu-Pd toward the Fermi level were responsible for excellent electrocatalytic activity. Further study found that Pd(3 1 0) facets exert a strong metal-oxide interface interaction with Cu2O(1 1 1) facets due to their lattice mismatch. This leads to the sinking of O atoms and protruding of Cu atoms of Cu2O, and the Pd crystalline defects, further resulting in electron accumulation at the interface and the shifting up of d bands center of Cu-Pd, which is different from previously reported charge transfer between the interfaces. Our findings could contribute to design and development of advanced metal-oxide heterostructured electrocatalysts.
Collapse
|
30
|
Garip AK. The composition effect for the thermal properties of PdnAg(42-n)Pt13 ternary nanoalloys: a molecular dynamics study. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1627347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ali Kemal Garip
- Department of Physics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
31
|
Zhang Q, Kusada K, Wu D, Ogiwara N, Yamamoto T, Toriyama T, Matsumura S, Kawaguchi S, Kubota Y, Honma T, Kitagawa H. Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chem Sci 2019; 10:5133-5137. [PMID: 31183065 PMCID: PMC6524567 DOI: 10.1039/c9sc00496c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
Au and Ru are elements that are immiscible in the bulk state and have the largest gap in reduction potential among noble metals. Here, for the first time, Au x Ru1-x solid-solution alloy nanoparticles (NPs) were successfully synthesized over the whole composition range through a chemical reduction method. Powder X-ray diffraction and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that Au and Ru atoms are homogeneously mixed at the atomic level. We investigated the catalytic performance of Au x Ru1-x NPs for the oxygen evolution reaction, for which Ru is well known to be one of the best monometallic catalysts, and we found that even alloying with a small amount of Au could significantly enhance the catalytic performance.
Collapse
Affiliation(s)
- Quan Zhang
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa- Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan . ;
| | - Kohei Kusada
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa- Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan . ;
| | - Dongshuang Wu
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa- Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan . ;
| | - Naoki Ogiwara
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa- Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan . ;
| | - Tomokazu Yamamoto
- Department of Applied Quantum Physics and Nuclear Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
- The Ultramicroscopy Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Syo Matsumura
- Department of Applied Quantum Physics and Nuclear Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
- The Ultramicroscopy Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka 819-0395 , Japan
- INAMORI Frontier Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI) , SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5198 , Japan
| | - Yoshiki Kubota
- Department of Physical Science , Graduate School of Science , Osaka Prefecture University , 1-1 Gakuen-cho, Naka-ku, Sakai , Osaka 599-8531 , Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Insitute (JASRI) , SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5198 , Japan
| | - Hiroshi Kitagawa
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa- Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan . ;
- INAMORI Frontier Research Center , Kyushu University , Motooka 744, Nishi-ku , Fukuoka 819-0395 , Japan
| |
Collapse
|
32
|
Chae IS, Hong GH, Song D, Kang YS, Kang SW. Enhanced Olefin and CO2 Permeance Through Mesopore-Confined Ionic Liquid Membrane. Macromol Res 2019. [DOI: 10.1007/s13233-019-7036-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Saptiama I, Kaneti YV, Yuliarto B, Kumada H, Tsuchiya K, Fujita Y, Malgras V, Fukumitsu N, Sakae T, Hatano K, Ariga K, Sugahara Y, Yamauchi Y. Biomolecule-Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption. Chemistry 2019; 25:4843-4855. [PMID: 30652362 DOI: 10.1002/chem.201900177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 11/08/2022]
Abstract
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2 O3 ) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2 O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2 O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2 O3 nanosheets possess high surface areas up to 425 and 371 m2 g-1 , respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2 O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1-40.8 mg g-1 . The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.
Collapse
Affiliation(s)
- Indra Saptiama
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan.,Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency (BATAN), Puspiptek Area, Serpong, South Tangerang, Indonesia
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Brian Yuliarto
- Engineering Physics Department and Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Hiroaki Kumada
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kunihiko Tsuchiya
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki, 311-1393, Japan
| | - Yoshitaka Fujita
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki, 311-1393, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Nobuyoshi Fukumitsu
- Department of Radiotherapy, Kobe Proton Center, 1-6-8, Minatoshima Minamimachi, Kobe, Hyogo, 650-0047, Japan
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0827, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry and, Department of Nanoscience and Nanoengineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia.,Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
34
|
Wu F, Niu W, Lai J, Zhang W, Luque R, Xu G. Highly Excavated Octahedral Nanostructures Integrated from Ultrathin Mesoporous PtCu 3 Nanosheets: Construction of Three-Dimensional Open Surfaces for Enhanced Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804407. [PMID: 30724461 DOI: 10.1002/smll.201804407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Developing electrocatalysts with ultrathin nanostructures and high mesoporosity is a relevant high-priority research direction toward enhancing the performance of noble metals. Herein, mesoporous, highly excavated octahedral PtCu3 nanostructures are prepared by a facile one-pot synthesis. The mesoporous, highly excavated octahedral PtCu3 nanostructures are built with mutually perpendicular interlaced mesoporous nanosheets with a thickness of ≈4.5 nm. Benefiting from its mesoporous features, three-dimensional (3D) open surfaces, ultrathin nanosheets, and a Cu-rich surface, PtCu3 exhibits excellent electrocatalytic performance and high antipoisoning activity toward the methanol oxidation reaction.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianping Lai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| | - Rafael Luque
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Departamento de Química Orgánica, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie (C-3), Km 396, Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Anhui, 230026, China
| |
Collapse
|
35
|
Shen WJ, Sang JL, Cai L, Li YJ. Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193518110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Wang H, Yu H, Wang Z, Li Y, Xu Y, Li X, Xue H, Wang L. Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804769. [PMID: 30637929 DOI: 10.1002/smll.201804769] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Indexed: 05/03/2023]
Abstract
Electrochemical reduction of N2 to NH3 provides an alternative strategy to replace the industrial Haber-Bosch process for facile and sustainable production of NH3 . The development of efficient electrocatalysts for the nitrogen reduction reaction (NRR) is highly desired. Herein, a micelle-assisted electrodeposition method is presented for the direct fabrication of porous Au film on Ni foam (pAu/NF). Benefiting from its interconnected porous architectonics, the pAu/NF exhibits superior NRR performance with a high NH3 yield rate of 9.42 µg h-1 cm-2 and a superior Faradaic efficiency of 13.36% at -0.2 V versus reversible hydrogen electrode under the neutral electrolyte (0.1 m Na2 SO4 ). The proposed micelle-assisted electrodeposition strategy is highly valuable for future design of active NRR catalysts with desired compositions toward various electrocatalysis fields.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Yinghao Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
37
|
Navarro-Senent C, Fornell J, Isarain-Chávez E, Quintana A, Menéndez E, Foerster M, Aballe L, Weschke E, Nogués J, Pellicer E, Sort J. Large Magnetoelectric Effects in Electrodeposited Nanoporous Microdisks Driven by Effective Surface Charging and Magneto-Ionics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44897-44905. [PMID: 30520631 DOI: 10.1021/acsami.8b17442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A synergetic approach to enhance magnetoelectric effects (i.e., control of magnetism with voltage) and improve energy efficiency in magnetically actuated devices is presented. The investigated material consists of an ordered array of Co-Pt microdisks, in which nanoporosity and partial oxidation are introduced during the synthetic procedure to synergetically boost the effects of electric field. The microdisks are grown by electrodeposition from an electrolyte containing an amphiphilic polymeric surfactant. The bath formulation is designed to favor the incorporation of oxygen in the form of cobalt oxide. A pronounced reduction of coercivity (88%) and a remarkable increase of Kerr signal amplitude (60%) are observed at room temperature upon subjecting the microdisks to negative voltages through an electrical double layer. These large voltage-induced changes in the magnetic properties of the microdisks are due to (i) the high surface-area-to-volume ratio with ultranarrow pore walls (sub-10 nm) that promote enhanced electric charge accumulation and (ii) magneto-ionic effects, where voltage-driven O2- migration promotes a partial reduction of CoO to Co at room temperature. This simple and versatile procedure to fabricate patterned "nano-in-micro" magnetic motifs with adjustable voltage-driven magnetic properties is very appealing for energy-efficient magnetic recording systems and other magnetoelectronic devices.
Collapse
Affiliation(s)
- Cristina Navarro-Senent
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Jordina Fornell
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Eloy Isarain-Chávez
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Alberto Quintana
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Enric Menéndez
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Michael Foerster
- Alba Synchrotron Light Facility, CELLS , Cerdanyola del Vallès, E-08280 Barcelona , Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, CELLS , Cerdanyola del Vallès, E-08280 Barcelona , Spain
| | - Eugen Weschke
- Helmholtz-Zentrum Berlin für Materialien und Energie , Albert-Einstein-Strasse 15 , D-12489 Berlin , Germany
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) , CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, E-08193 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , E-08010 Barcelona , Spain
| | - Eva Pellicer
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
| | - Jordi Sort
- Departament de Física , Universitat Autònoma de Barcelona , Cerdanyola del Vallès, E-08193 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , E-08010 Barcelona , Spain
| |
Collapse
|
38
|
Kang Y, Jiang B, Alothman ZA, Badjah AY, Naushad M, Habila M, Wabaidur S, Henzie J, Li H, Yamauchi Y. Mesoporous PtCu Alloy Nanoparticles with Tunable Compositions and Particles Sizes Using Diblock Copolymer Micelle Templates. Chemistry 2018; 25:343-348. [DOI: 10.1002/chem.201804305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yunqing Kang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University Shanghai 200234 P.R. China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Zeid A. Alothman
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ahmad Yacine Badjah
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mu Naushad
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohamed Habila
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Saikh Wabaidur
- Advanced Material Research ChairChemistry DepartmentCollege of ScienceKing Saud University, P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Joel Henzie
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal University Shanghai 200234 P.R. China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for, Bioengineering and Nanotechnology (AIBN)The University of Queensland Brisbane QLD 4072 Australia
- Department of Plant & Environmental New ResourcesKyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 446-701 South Korea
| |
Collapse
|
39
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
40
|
Hussain G, Aldous L, Silvester DS. Preparation of platinum-based 'cauliflower microarrays' for enhanced ammonia gas sensing. Anal Chim Acta 2018; 1048:12-21. [PMID: 30598141 DOI: 10.1016/j.aca.2018.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 09/21/2018] [Indexed: 12/01/2022]
Abstract
In amperometric gas sensors, the flux of gas to electrode surfaces determines the analytical response and detection limit. For trace concentration detection, the resulting low current prevents the miniaturisation of such sensors. Therefore, in this study, we have developed repeating arrays of nanostructures which maximise flux towards their surface. Unique platinum 3D cauliflower-shaped deposits with individual floret-shaped segments have been produced in a single step electrodeposition process. The confined walls of recessed microelectrode arrays (10 μm in diameter, 90 electrodes) are utilized to produce these structures with a high surface area. Distinct segments are observed, with the gaps corresponding to electrodes adjacent in the microarray; thus the majority of the deposits face the primary diffusion zones. The sizes and shapes of the deposits are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and the largest structures are found to be 22 ± 1 μm in width and 7.9 ± 0.2 μm in height over the microhole. These modified electrodes are employed to detect ammonia using the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C2mim][NTf2], as an electrolyte. Current responses on the cauliflower arrays were seven times higher for linear sweep voltammetry and ca. 12 times higher for chronoamperometry, relative to the bare microrrays, and limits of detection were less than 1 part per million of ammonia (gas phase concentration). This work highlights the use of modified microarrays with highly accessible 3D structures for enhanced electroanalytical detection of analyte species at ultra low concentrations.
Collapse
Affiliation(s)
- Ghulam Hussain
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia
| | - Leigh Aldous
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Debbie S Silvester
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| |
Collapse
|
41
|
Prabu N, Jeyakumar D, Maduraiveeran G, Sasidharan M. Surface‐Roughened Pt‐Decorated Pd Nanoparticles as Efficient Electrocatalysts for Direct Alcohol Fuel Cells. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Natarajan Prabu
- Functional Materials Division CSIR – Central Electrochemical Research Institute 630 006 Karaikudi Tamil Nadu India
- Research Institute and Department of Chemistry SRM Institute of Science and Technology 603 203 Chennai Tamil Nadu India
| | - Duraisamy Jeyakumar
- Functional Materials Division CSIR – Central Electrochemical Research Institute 630 006 Karaikudi Tamil Nadu India
| | - Govindhan Maduraiveeran
- Research Institute and Department of Chemistry SRM Institute of Science and Technology 603 203 Chennai Tamil Nadu India
| | - Manickam Sasidharan
- Research Institute and Department of Chemistry SRM Institute of Science and Technology 603 203 Chennai Tamil Nadu India
| |
Collapse
|
42
|
Baba D, Kim J, Henzie J, Li C, Jiang B, Dag Ö, Yamauchi Y, Asahi T. Electrochemical deposition of large-sized mesoporous nickel films using polymeric micelles. Chem Commun (Camb) 2018; 54:10347-10350. [PMID: 30151527 DOI: 10.1039/c8cc04070b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stable mesoporous nickel (Ni) films can be prepared using polystyrene-b-poly-(oxyethylene) (PS-b-PEO) micelles as sacrificial templates. In this method, positively charged Ni precursors form hydrogen bonds with the PEO segments of the micelles, which are then co-electrodeposited on the surface of a working electrode. Changing the applied voltage during electrodeposition modifies the deposition rate and ultimately controls the architecture of the mesoporous Ni film.
Collapse
Affiliation(s)
- Daisuke Baba
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Yang Z, Han X, Lee HK, Phan-Quang GC, Koh CSL, Lay CL, Lee YH, Miao YE, Liu T, Phang IY, Ling XY. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. NANOSCALE 2018; 10:16005-16012. [PMID: 30113061 DOI: 10.1039/c8nr04053b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoporous gold (NPG) promises efficient light-to-heat transformation, yet suffers limited photothermal conversion efficiency owing to the difficulty in controlling its morphology for the direct modulation of thermo-plasmonic properties. Herein, we showcase a series of shape-controlled NPG nanoparticles with distinct bowl- (NPG-B), tube- (NPG-T) and plate-like (NPG-P) structures for quantitative temperature regulation up to 140 °C in <1 s using laser irradiation. Notably, NPG-B exhibits the highest photothermal efficiency of 68%, which is >12 and 39 percentage points better than those of other NPG shapes (NPG-T, 56%; NPG-P, 49%) and Au nanoparticles (29%), respectively. We attribute NPG-B's superior photothermal performance to its >13% enhanced light absorption cross-section compared to other Au nanostructures. We further realize an ultrasensitive heat-mediated light-to-mechanical "kill switch" by integrating NPG-B with a heat-responsive shape-memory polymer (SMP/NPG-B). This SMP/NPG-B hybrid is analogous to a photo-triggered mechanical arm, and can be activated swiftly in <4 s simply by remote laser irradiation. Achieving remotely-activated "kill switch" is critical in case of emergencies such as gas leaks, where physical access is usually prohibited or dangerous. Our work offers valuable insights into the structural design of NPG for optimal light-to-heat conversion, and creates opportunities to formulate next-generation smart materials for on-demand and multi-directional responsiveness.
Collapse
Affiliation(s)
- Zhe Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li C, Iqbal M, Lin J, Luo X, Jiang B, Malgras V, Wu KCW, Kim J, Yamauchi Y. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Acc Chem Res 2018; 51:1764-1773. [PMID: 29984987 DOI: 10.1021/acs.accounts.8b00119] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Well-constructed porous materials take an essential role in a wide range of applications, including energy conversion and storage systems, electrocatalysis, photocatalysis, and sensing. Although the tailored design of various nanoarchitectures has made substantial progress, simpler preparation methods are compelled to meet large-scale production requirements. Recently, advanced electrochemical deposition techniques have had a significant impact in terms of precise control upon the nanoporous architecture (i.e., pore size, surface area, pore structure, etc.), enabling access to a wide range of compositions. In this Account, we showcase the uniqueness of electrochemical deposition techniques, detail their implementation toward the synthesis of novel nanoporous metals, and finally outline the future research directions. Nanoporous metallic structures are attractive in that they can provide high surface area and large pore volume, easing mass transport of reactants and providing high accessibility to catalytically active metal surface. The great merit of the electrochemical deposition approach does not only lie in its versatility, being applicable to a wide range of compositions, but also in the nanoscale precision it affords when it comes to crystal growth control, which cannot be easily achieved by other bottom-up or top-down approaches. In this Account, we describe the significant progress made in the field of nanoporous metal designed through electrochemical deposition approaches using hard templates (i.e., porous silica, 3D templates of polymer and silica colloids) and soft templates (i.e., lyotropic liquid crystals, polymeric micelles). In addition, we will point out how it accounts for precise control over the crystal growth and describe the unique physical and chemical properties emerging from these novel materials. Up to date, our group has reported the synthesis of several nanoporous metals and alloys (e.g., Cu, Ru, Rh, Pd, Pt, Au, and their corresponding alloys) under various conditions through electrochemical deposition, while investigating their various potential applications. The orientation of the channel structure, the composition, and the nanoporosity can be easily controlled by selecting the appropriate surfactants or block copolymers. The inherent properties of the final product, such as framework crystallinity, catalytic activity, and resistance to oxidation, are depending on both the composition and pore structure, which in turn require suitable electrochemical conditions. This Account is divided into three main sections: (i) a history of electrochemical deposition using hard and soft templates, (ii) a description of the important mechanisms involved in the preparation of nanoporous materials, and (iii) a conclusion and future perspectives. We believe that this Account will promote a deeper understanding of the synthesis of nanoporous metals using electrochemical deposition methods, thus enabling new pathways to control nanoporous architectures and optimize their performance toward promising applications such as catalysis, energy storage, sensors, and so forth.
Collapse
Affiliation(s)
- Cuiling Li
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muhammad Iqbal
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jianjian Lin
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Jiang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Jeonghun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
46
|
|
47
|
Burpo FJ, Nagelli EA, Morris LA, Woronowicz K, Mitropoulos AN. Salt-Mediated Au-Cu Nanofoam and Au-Cu-Pd Porous Macrobeam Synthesis. Molecules 2018; 23:E1701. [PMID: 30002301 PMCID: PMC6099500 DOI: 10.3390/molecules23071701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Multi-metallic and alloy nanomaterials enable a broad range of catalytic applications with high surface area and tuning reaction specificity through the variation of metal composition. The ability to synthesize these materials as three-dimensional nanostructures enables control of surface area, pore size and mass transfer properties, electronic conductivity, and ultimately device integration. Au-Cu nanomaterials offer tunable optical and catalytic properties at reduced material cost. The synthesis methods for Au-Cu nanostructures, especially three-dimensional materials, has been limited. Here, we present Au-Cu nanofoams and Au-Cu-Pd macrobeams synthesized from salt precursors. Salt precursors formed from the precipitation of square planar ions resulted in short- and long-range ordered crystals that, when reduced in solution, form nanofoams or macrobeams that can be dried or pressed into freestanding monoliths or films. Metal composition was determined with X-ray diffraction and energy dispersive X-ray spectroscopy. Nitrogen gas adsorption indicated an Au-Cu nanofoam specific surface area of 19.4 m²/g. Specific capacitance determined with electrochemical impedance spectroscopy was 46.0 F/g and 52.5 F/g for Au-Cu nanofoams and Au-Cu-Pd macrobeams, respectively. The use of salt precursors is envisioned as a synthesis route to numerous metal and multi-metallic nanostructures for catalytic, energy storage, and sensing applications.
Collapse
Affiliation(s)
- Fred J Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Enoch A Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Lauren A Morris
- Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC, Picatinny Arsenal, NJ 07806, USA.
| | - Kamil Woronowicz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Alexander N Mitropoulos
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
- Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
48
|
Hwang J, Kim S, Wiesner U, Lee J. Generalized Access to Mesoporous Inorganic Particles and Hollow Spheres from Multicomponent Polymer Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801127. [PMID: 29761551 DOI: 10.1002/adma.201801127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/16/2018] [Indexed: 05/27/2023]
Abstract
Mesoporous inorganic particles and hollow spheres are of increasing interest for a broad range of applications, but synthesis approaches are typically material specific, complex, or lack control over desired structures. Here it is reported how combining mesoscale block copolymer (BCP) directed inorganic materials self-assembly and macroscale spinodal decomposition can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso- and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase-separated (BCP/inorganic precursor)-domains are confined within the macrophase-separated majority homopolymer matrix, being self-organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids, hollow spheres) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. Furthermore, the sizes of particle and hollow inner cavity are tailored by changing the relative amount of homopolymer matrix and the rates of solvent evaporation. Pyrolysis yields discrete mesoporous inorganic particles and hollow spheres. The present approach enables a high degree of control over pore structure, orientation, and size (15-44 nm), particle shape, particle size (0.6-3 µm), inner cavity size (120-700 nm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).
Collapse
Affiliation(s)
- Jongkook Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea
| | - Seongseop Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jinwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea
| |
Collapse
|
49
|
Farghaly AA, Khan RK, Collinson MM. Biofouling-Resistant Platinum Bimetallic Alloys. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21103-21112. [PMID: 29906086 DOI: 10.1021/acsami.8b02900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new electrosynthetic approach for the fabrication of three-dimensional bicontinuous nanoporous platinum-based (3D-BC-NP-Pt(Au)) electrodes is described. Binary Pt-Ag alloys are first electrodeposited on gold substrates from appropriately formulated plating solutions. Following annealing and dealloying, a new family of nanoporous platinum-based electrodes emerges whose morphology, porosity, and chemical compositions depend on electrodeposition parameters and plating solution composition. Scanning electron microscopy images reveal an interesting and distinctive nanoporous gold-like microstructure with pores and ligaments in the 10-30 nm range arranged in a bicontinuous fashion throughout the thickness of the film. X-ray photoelectron spectroscopy (XPS) confirms that the as-formed electrodeposited films are silver-rich platinum binary alloys. Interestingly, XPS also reveals that after annealing and dealloying, the electrodes are actually ternary alloys containing platinum, gold, and a small amount of residual silver that remains after dealloying. Electrochemical measurements are consistent with this result and disclose a high surface area with roughness factors of 15-24. The ability to successfully conduct electrochemical measurements in biofouling solutions via a unique biosieving-like mechanism is demonstrated by exposure of the unique 3D bicontinuous nanoporous platinum-based electrode to fibrinogen in phosphate buffer and in a solution containing red blood cells. The work described herein has the potential to enrich the fields of electrochemical sensing and biosensing via the introduction of new 3D bicontinuous nanostructured porous platinum-based electrodes that can be easily and reliably fabricated.
Collapse
Affiliation(s)
- Ahmed A Farghaly
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439-4854 , United States
- Chemistry Department, Faculty of Science , Assiut University , Assiut 71516 , Egypt
| | - Rezaul K Khan
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284-2006 , United States
| | - Maryanne M Collinson
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284-2006 , United States
| |
Collapse
|
50
|
Wang C, Zhang Y, Zhang Y, Xu P, Feng C, Chen T, Guo T, Yang F, Wang Q, Wang J, Shi M, Fan L, Chen S. Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for Enhanced Electrocatalytic Activity toward Methanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9444-9450. [PMID: 29473728 DOI: 10.1021/acsami.7b19727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Highly ordered hierarchical Pt and PtNi nanowire arrays were prepared using CdS hierarchical nanowire arrays (HNWAs) as sacrificial templates and demonstrated high electrochemical active surface areas. For the resulting Pt HNWAs sample, the peak current for methanol oxidation at +0.74 V was almost 1 order of magnitude higher than that of Pt solid nanowire arrays prepared in a similar manner but without the use of CdS template, and the addition of a Ni cocatalyst effectively enhanced the tolerance against CO poisoning. The results demonstrated that highly ordered Pt and PtNi HNWAs may be exploited as promising anode catalysts in the application of direct methanol fuel cells.
Collapse
Affiliation(s)
- Changzheng Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Yang Zhang
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
| | - Yajun Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Ping Xu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Tao Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Tao Guo
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Fengnan Yang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials, College of Elementary Education , Capital Normal University , Beijing 100048 , China
| | - Jingxiao Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Mengtong Shi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education , Beijing University of Civil Engineering and Architecture , Beijing 100044 , China
| | - Louzhen Fan
- Department of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , California 95064 , United States
| |
Collapse
|