1
|
Hasanzadeh A, Ebadati A, Saeedi S, Kamali B, Noori H, Jamei B, Hamblin MR, Liu Y, Karimi M. Nucleic acid-responsive smart systems for controlled cargo delivery. Biotechnol Adv 2024; 74:108393. [PMID: 38825215 DOI: 10.1016/j.biotechadv.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular and Cell Biology, University of California, Merced, Merced, USA
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kamali
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Jamei
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Yang Y, Zhou Z, Guo Y, Chen R, Tian D, Ren S, Zhou H, Gao Z. Programmable DNA tweezers-SDA for ultra-sensitive signal amplification fluorescence sensing strategy. Anal Chim Acta 2024; 1292:342245. [PMID: 38309853 DOI: 10.1016/j.aca.2024.342245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND DNA tweezers, classified as DNA nanomachines, have gained prominence as multifunctional biosensors due to their advantages, including a straightforward structure, response mechanism, and high programmability. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. Some small molecules, such as mycotoxins, often require more sensitive detection due to their extremely high toxicity. Therefore, more effective signal amplification strategies are needed to further enhance the sensitivity of DNA tweezers in biosensing. RESULTS We designed programmable DNA tweezers that detect small-molecule mycotoxins and miRNAs through simple sequence substitution. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. We introduced the Strand Displacement Amplification (SDA) technique to address this limitation, proposing a strategy of novel programmable DNA tweezers-SDA ultrasensitive signal amplification fluorescence sensing. We specifically investigate the effectiveness of this approach concerning signal amplification for two critical mycotoxins: aflatoxin B1 (AFB1) and zearalenone (ZEN). Results indicate that the detection ranges of AFB1 and ZEN via this strategy were 1-10,000 pg mL -1 and 10-100,000 pg mL -1, respectively, with corresponding detection limits of 0.933 pg mL -1 and 1.07 pg mL -1. Compared with the DNA tweezers direct detection method for mycotoxins, the newly constructed programmable DNA tweezers-SDA fluorescence sensing strategy achieved a remarkable 104-fold increase in the detection sensitivity for AFB1 and ZEN. SIGNIFICANCE The constructed programmable DNA tweezers-SDA ultrasensitive signal-amplified fluorescence sensing strategy exhibits excellent detection performance for mycotoxins. The superb versatility of this strategy allows the developed method to be easily used for detecting other analytes by simply replacing the aptamer and cDNA, which has incredible potential in various fields such as food safety screening, clinical diagnostics, and environmental analysis.
Collapse
Affiliation(s)
- Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yifen Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
3
|
Zhang R, Chen R, Ma Y, Liang J, Ren S, Gao Z. Application of DNA Nanotweezers in biosensing: Nanoarchitectonics and advanced challenges. Biosens Bioelectron 2023; 237:115445. [PMID: 37421799 DOI: 10.1016/j.bios.2023.115445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 07/10/2023]
Abstract
Deoxyribonucleic acid (DNA) is a carrier of genetic information. DNA hybridization is characterized by predictability, diversity, and specificity owing to the strict complementary base-pairing assembly mode, which stimulates the use of DNA to build a variety of nanomachines, including DNA tweezers, motors, walkers, and robots. DNA nanomachines have become prevalent for signal amplification and transformation in the field of biosensing, providing a new method for constructing highly sensitive sensing analysis strategies. DNA tweezers have exhibited unique advantages in biosensing applications owing to their simple structures and fast responses. The two-state conformation of DNA tweezers, the open and closed states, enable them to open and close autonomously after stimulation, thus facilitating the quick detection of corresponding signal changes of different targets. This review discusses the recent progress in the application of DNA nanotweezers in the field of biosensing, and the trends in their development for application in the field of biosensing are summarized.
Collapse
Affiliation(s)
- Rui Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yujing Ma
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
4
|
Ma H, Chen L, Lv J, Yan X, Li Y, Xu G. The rate-limiting procedure of 3D DNA walkers and their applications in tandem technology. Chem Commun (Camb) 2023; 59:10330-10342. [PMID: 37615403 DOI: 10.1039/d3cc02597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
DNA walkers, artificial dynamic DNA nanomachines, can mimic actin to move rapidly along a predefined nucleic acid track. They can generally be classified as one- (1D), two- (2D), and three-dimensional (3D) DNA walkers. In particular, 3D DNA walkers demonstrate amazing sustainable walking ability, strong enrichment ability, and fantastic signal amplification ability. In light of these, 3D DNA walkers have been widely used in fields such as biosensors, bioanalysis and cell imaging. Most notably, the strong compatibility of 3D DNA walkers allows their integration with a range of amplification strategies, effectively enhancing signal transduction and amplifying biosensor sensing signals. Herein, we first systematically expound the walking principle of the 3D walkers in this review. Then, by presenting representative examples, the research direction of 3D walkers in recent years is discussed. Furthermore, we also categorize and evaluate diverse tandem signal amplification strategies in 3D walkers. Finally, the challenges and development trends of 3D DNA walkers in the emerging field of analysis are carefully discussed. It is believed that this work can provide new ideas for researchers to quickly understand 3D DNA walkers and their applications in diverse biosensors.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Jingnan Lv
- The Second Affiliated People's Hospital of Soochow University, Suzhou 215008, China
| | - Xiaoyu Yan
- Guang'an Vocational & Technical College, Sichuan 638000, China
| | - Yonghao Li
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| |
Collapse
|
5
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
7
|
Tang L, Huang M, Zhang M, Pei Y, Liu Y, Wei Y, Yang C, Xie T, Zhang D, Zhou R, Song Y, Song J. De Novo Evolution of an Antibody-Mimicking Multivalent Aptamer via a DNA Framework. SMALL METHODS 2023:e2300327. [PMID: 37086150 DOI: 10.1002/smtd.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Multivalent interactions can often endow ligands with more efficient binding performance toward target molecules. Generally speaking, a multivalent aptamer can be constructed via post-assembly based on chemical structural information of target molecules and pre-identified monovalent aptamers derived from traditional systematic evolution of ligands by exponential enrichment (SELEX) technology. However, many target molecules may not have known matched aptamer partners, thus a de novo evolution will be highly desired as an alternative strategy for directed selection of a high-avidity, multivalent aptamer. Here, inspired by the superiority of multivalent interactions between antibodies and antigens, a direct SELEX strategy with a preorganized DNA framework library for an "Antibody-mimicking multivalent aptamer" (Amap) selection to epithelial cell adhesion molecule (EpCAM), a model target protein is reported. The Amap presents a relatively good binding affinity through both aptamer moieties concurrently binding to EpCAM, which has been confirmed by affinity analysis and molecular modeling. Furthermore, dynamic interactions between Amap and EpCAM are directly visualized by magnetic tweezers at the single-molecule level. A nice binding affinity of Amap to EpCAM-positive cancer cells has also been verified, which hints that their Amap-SELEX strategy has the potential to be a new route for de novo evolution of multivalent aptamers.
Collapse
Affiliation(s)
- Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, P. R. China
| | - Mingjiao Zhang
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Teng Xie
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dong Zhang
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ruhong Zhou
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
8
|
Gokulu IS, Banta S. Biotechnology applications of proteins functionalized with DNA oligonucleotides. Trends Biotechnol 2023; 41:575-585. [PMID: 36115723 DOI: 10.1016/j.tibtech.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
The functionalization of proteins with DNA through the formation of covalent bonds enables a wide range of biotechnology advancements. For example, single-molecule analytical methods rely on bioconjugated DNA as elastic biolinkers for protein immobilization. Labeling proteins with DNA enables facile protein identification, as well as spatial and temporal organization and control of protein within DNA-protein networks. Bioconjugation reactions can target native, engineered, and non-canonical amino acids (NCAAs) within proteins. In addition, further protein engineering via the incorporation of peptide tags and self-labeling proteins can also be used for conjugation reactions. The selection of techniques will depend on application requirements such as yield, selectivity, conjugation position, potential for steric hindrance, cost, commercial availability, and potential impact on protein function.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
9
|
Wimberger L, Rizzuto FJ, Beves JE. Modulating the Lifetime of DNA Motifs Using Visible Light and Small Molecules. J Am Chem Soc 2023; 145:2088-2092. [PMID: 36688871 DOI: 10.1021/jacs.2c13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we regulate the formation of dissipative assemblies built from DNA using a merocyanine photoacid that responds to visible light. The operation of our system and the relative distribution of species within it are controlled by irradiation time, initial pH value, and the concentration of a small-molecule binder that inhibits the reaction cycle. This approach is modular, does not require DNA modification, and can be used for several DNA sequences and lengths. Our system design allows for waste-free control of dissipative DNA nanotechnology, toward the generation of nonequilibrium, life-like nanodevices.
Collapse
Affiliation(s)
- Laura Wimberger
- School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
| | - Felix J Rizzuto
- School of Chemistry, UNSW Sydney, Sydney NSW 2052, Australia
| | | |
Collapse
|
10
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Radfar S, Ghanbari R, Alizadeh A, Safaei Z, Repo E. A Nonenzymatic DNA Nanomachine for Detection of Biomolecules by DNA Walker Strategy and Radical Polymerization Signal Amplification. ChemistrySelect 2022. [DOI: 10.1002/slct.202200724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sasan Radfar
- Stem Cell and Regenerative Medicine Center of Excellence Tehran University of Medical Science Tehran Iran
| | - Reza Ghanbari
- Department of Biological Science and Technology Najafabad Branch Islamic Azad University Najafabad Iran
| | - Abdolhamid Alizadeh
- Department of Chemistry Faculty of Physics and Chemistry Alzahra University Tehran 1993893973 Iran
- Research club iQneiform Oy Juva Finland
| | | | - Eveliina Repo
- Department of Separation Science School of Engineering Science LUT University Finland
| |
Collapse
|
12
|
Dey S, Dorey A, Abraham L, Xing Y, Zhang I, Zhang F, Howorka S, Yan H. A reversibly gated protein-transporting membrane channel made of DNA. Nat Commun 2022; 13:2271. [PMID: 35484117 PMCID: PMC9051096 DOI: 10.1038/s41467-022-28522-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/14/2022] [Indexed: 01/14/2023] Open
Abstract
Controlled transport of biomolecules across lipid bilayer membranes is of profound significance in biological processes. In cells, cargo exchange is mediated by dedicated channels that respond to triggers, undergo a nanomechanical change to reversibly open, and thus regulate cargo flux. Replicating these processes with simple yet programmable chemical means is of fundamental scientific interest. Artificial systems that go beyond nature's remit in transport control and cargo are also of considerable interest for biotechnological applications but challenging to build. Here, we describe a synthetic channel that allows precisely timed, stimulus-controlled transport of folded and functional proteins across bilayer membranes. The channel is made via DNA nanotechnology design principles and features a 416 nm2 opening cross-section and a nanomechanical lid which can be controllably closed and re-opened via a lock-and-key mechanism. We envision that the functional DNA device may be used in highly sensitive biosensing, drug delivery of proteins, and the creation of artificial cell networks.
Collapse
Affiliation(s)
- Swarup Dey
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Adam Dorey
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Leeza Abraham
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yongzheng Xing
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK
| | - Irene Zhang
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural Molecular Biology, University College London, London, UK.
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ, 85287, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
13
|
Pal N. Single-Molecule FRET: A Tool to Characterize DNA Nanostructures. Front Mol Biosci 2022; 9:835617. [PMID: 35330798 PMCID: PMC8940195 DOI: 10.3389/fmolb.2022.835617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA nanostructures often involve temporally evolving spatial features. Tracking these temporal behaviors in real time requires sophisticated experimental methods with sufficiently high spatial and temporal resolution. Among the several strategies developed for this purpose, single-molecule FRET (smFRET) offers avenues to observe the structural rearrangement or locomotion of DNA nanostructures in real time and quantitatively measure the kinetics as well at the single nanostructure level. In this mini review, we discuss a few applications of smFRET-based techniques to study DNA nanostructures. These examples exemplify how smFRET signals not only have played an important role in the characterization of the nanostructures but also often have helped to improve the design and overall performance of the nanostructures and the devices designed from those structures. Overall, this review consolidates the potential of smFRET in providing crucial quantitative information on structure–function relations in DNA nanostructures.
Collapse
|
14
|
Hu X, Tang L, Zheng M, Liu J, Zhang Z, Li Z, Yang Q, Xiang S, Fang L, Ren Q, Liu X, Huang CZ, Mao C, Zuo H. Structure-Guided Designing Pre-Organization in Bivalent Aptamers. J Am Chem Soc 2022; 144:4507-4514. [PMID: 35245025 DOI: 10.1021/jacs.1c12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multivalent interaction is often used in molecular design and leads to engineered multivalent ligands with increased binding avidities toward target molecules. The resulting binding avidity relies critically on the rigid scaffold that joins multiple ligands as the scaffold controls the relative spatial positions and orientations toward target molecules. Currently, no general design rules exist to construct a simple and rigid DNA scaffold for properly joining multiple ligands. Herein, we report a crystal structure-guided strategy for the rational design of a rigid bivalent aptamer with precise control over spatial separation and orientation. Such a pre-organization allows the two aptamer moieties simultaneously to bind to the target protein at their native conformations. The bivalent aptamer binding has been extensively characterized, and an enhanced binding has been clearly observed. This strategy, we believe, could potentially be generally applicable to design multivalent aptamers.
Collapse
Affiliation(s)
- Xiaoli Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Linlin Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jian Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Quan Yang
- Department of Cardiology, The Fourth People's Hospital of Sichuan Province, Chengdu 610016, China
| | - Shoubo Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Liu S, Xiang K, Wang C, Zhang Y, Fan GC, Wang W, Han H. DNA Nanotweezers for Biosensing Applications: Recent Advances and Future Prospects. ACS Sens 2022; 7:3-20. [PMID: 34989231 DOI: 10.1021/acssensors.1c01647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA nanotweezers (DTs) are reversible DNA nanodevices that can optionally switch between opened and closed states. Due to their excellent flexibility and high programmability, they have been recognized as a promising platform for constructing a diversity of biosensors and logic gates, as well as a versatile tool for molecular biology studies. In this review, we provide an overview of biosensing applications using DTs. First, the design and working principle of DTs are introduced. Next, the signal producing principles of DTs are summarized. Furthermore, biosensing applications of DTs for varying targets and purposes, both in buffers and complex biological environments, are highlighted. Finally, we provide potential opportunities and challenges for the further development of DTs.
Collapse
Affiliation(s)
- Shanshan Liu
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Kaikai Xiang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Chunyan Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Yutian Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People’s Republic of China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People’s Republic of China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China
| |
Collapse
|
16
|
Ji Y, Guo J, Ye B, Peng G, Zhang C, Zou L. An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III. Biosens Bioelectron 2022; 196:113741. [PMID: 34736103 DOI: 10.1016/j.bios.2021.113741] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
In this study, a highly ordered three dimensional (3D) DNA nanostructure was self-assembled by label-free DNA nanotweezers, which was used as recognized probe to interact with target. Once the target was recognized by the 3D DNA nanoprobe (3D DNT), DNA nanotweezers opened to release target analog (T1). This recognition process was proceeded in homogeneous solution, which can avoid complex electrode modification and improve reaction efficiency. Then these target analogs were captured by the signal DNA probes (E1) modified on the electrode. In the assistance of Exo III, E1 was digested and the T1 was released to participate in the next cycle to realize signal amplification. Finally, an ultrasensitive carcinoembryonic antigen (CEA) electrochemical biosensing with a detection limit of 4.88 fg mL-1 was developed.
Collapse
Affiliation(s)
- Yanli Ji
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaxin Guo
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Guanghua Peng
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chi Zhang
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- Basic Medical College, College of Chemistry, (Department of Orthopedics) the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
18
|
Saliba D, Trinh T, Lachance-Brais C, Prinzen AL, Rizzuto FJ, de Rochambeau D, Sleiman HF. Asymmetric patterning drives the folding of a tripodal DNA nanotweezer. Chem Sci 2021; 13:74-80. [PMID: 35059153 PMCID: PMC8694393 DOI: 10.1039/d1sc04793k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
DNA tweezers have emerged as powerful devices for a wide range of biochemical and sensing applications; however, most DNA tweezers consist of single units activated by DNA recognition, limiting their range of motion and ability to respond to complex stimuli. Herein, we present an extended, tripodal DNA nanotweezer with a small molecule junction. Simultaneous, asymmetric elongation of our molecular core is achieved using polymerase chain reaction (PCR) to produce length- and sequence-specific DNA arms with repeating DNA regions. When rigidified, our DNA tweezer can be addressed with streptavidin-binding ligands. Full control over the number, separation, and location of these ligands enables site-specific streptavidin recognition; all three arms of the DNA nanotweezer wrap around multiple streptavidin units simultaneously. Our approach combines the simplicity of DNA tile arrays with the size regime normally provided by DNA origami, offering an integrated platform for the use of branched DNA scaffolds as structural building blocks, protein sensors, and dynamic, stimuli-responsive materials.
Collapse
Affiliation(s)
- Daniel Saliba
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | | | - Alexander L Prinzen
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Felix J Rizzuto
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Donatien de Rochambeau
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University 801 rue Sherbrooke West Montreal QC H3A 0B8 Canada
| |
Collapse
|
19
|
Tian R, Wang S, Qiu Y, Zong Z, Han T, Zhang Y. DNA tweezers-controlled direct electrical contact of horseradish peroxidase on porous carbon nanotube substrate. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Wang Y, Wang Z, Wu X, Liu S, Liu F, Jiang Q, Ding B. DNA Nanodevices: from Mechanical Motions to Biomedical Applications. Curr Top Med Chem 2021; 22:640-651. [PMID: 34749612 DOI: 10.2174/1568026621666211105100240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Inspired by molecular machines in nature, artificial nanodevices have been designed to realize various biomedical functions. Self-assembled deoxyribonucleic acid (DNA) nanostructures that feature designed geometries, excellent spatial accuracy, nanoscale addressability and marked biocompatibility provide an attractive candidate for constructing dynamic nanodevices with biomarker-targeting and stimuli-responsiveness for biomedical applications. Here, a summary of typical construction strategies of DNA nanodevices and their operating mechanisms are presented. We also introduced recent advances in employing DNA nanodevices as platforms for biosensing and intelligent drug delivery. Finally, the broad prospects and main challenges of the DNA nanodevices in biomedical applications are discussed.
Collapse
Affiliation(s)
- Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Xiaohui Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing. China
| |
Collapse
|
21
|
Pitikultham P, Wang Z, Wang Y, Shang Y, Jiang Q, Ding B. Stimuli-Responsive DNA Origami Nanodevices and Their Biological Applications. ChemMedChem 2021; 17:e202100635. [PMID: 34729948 DOI: 10.1002/cmdc.202100635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Indexed: 02/05/2023]
Abstract
DNA origami nanotechnology has provided predictable static nanoarchitectures and dynamic nanodevices with rationally designed geometries, precise spatial addressability, and marked biocompatibility. Multiple functional elements, such as peptides, aptamers, nanoparticles, fluorescence probes, and proteins, etc. can be easily integrated into DNA origami templates with nanoscale precision, leading to a variety of promising applications. Triggered by chemical/physical stimuli, dynamic DNA origami nanodevices can switch between defined conformations or translocate autonomously, providing powerful tools for intelligent biosensing and drug delivery. In this minireview, we summarize the recent progress of dynamic DNA origami nanodevices with desired reconfigurability and feasibility to perform multiple biological tasks. We introduce varieties of DNA nanodevices that can be controlled by different molecular triggers and external stimuli. Subsequently, we highlight the recent advances in employing DNA nanodevices as biosensors and drug delivery vehicles. At last, future possibilities and perspectives are also discussed.
Collapse
Affiliation(s)
- Piyawat Pitikultham
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China
| | - Yiming Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao ZhongGuanCun, Beijing, 100190, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
22
|
Li W, Wang C, Lv H, Wang Z, Zhao M, Liu S, Gou L, Zhou Y, Li J, Zhang J, Li L, Wang Y, Lou P, Wu L, Zhou L, Chen Y, Lu Y, Cheng J, Han YP, Cao Q, Huang W, Tong N, Fu X, Liu J, Zheng X, Berggren PO. A DNA Nanoraft-Based Cytokine Delivery Platform for Alleviation of Acute Kidney Injury. ACS NANO 2021; 15:18237-18249. [PMID: 34723467 DOI: 10.1021/acsnano.1c07270] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytokine immunotherapy represents an attractive strategy to stimulate robust immune responses for renal injury repair in ischemic acute kidney injury (AKI). However, its clinical application is hindered by its nonspecificity to kidney, short circulation half-life, and severe side effects. An ideal cytokine immunotherapy for AKI requires preferential delivery of cytokines with accurate dosage to the kidney and sustained-release of cytokines to stimulate the immune responses. Herein, we developed a DNA nanoraft cytokine by precisely arranging interleukin-33 (IL-33) nanoarray on rectangle DNA origami, through which IL-33 can be preferentially delivered to the kidney for alleviation of AKI. A nanoraft carrying precisely quantified IL-33 predominantly accumulated in the kidney for up to 48 h. Long-term sustained-release of IL-33 from nanoraft induced rapid expansion of type 2 innate lymphoid cells (ILC 2s) and regulatory T cells (Tregs) and achieved better treatment efficiency compared to free IL-33 treatment. Thus, our study demonstrates that a nanoraft can serve as a structurally well-defined delivery platform for cytokine immunotherapy in ischemic AKI and other renal diseases.
Collapse
Affiliation(s)
- Wei Li
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhenghao Wang
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Gou
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Li
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Wu
- Core facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Zhou
- Core facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nanwei Tong
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Zheng
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Per-Olof Berggren
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
23
|
Zhou B, Dong Y, Liu D. Recent Progress in DNA Motor-Based Functional Systems. ACS APPLIED BIO MATERIALS 2021; 4:2251-2261. [PMID: 35014349 DOI: 10.1021/acsabm.0c01540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The designability, functionalization, and diverse secondary structures of DNA enable the construction of DNA motors with stimuli-responsiveness. Therefore, it has been widely used to fabricate functional systems or generate mechanical power under external stimuli, such as pH, light, heat, electrical, and chemical molecular signals. Furthermore, the DNA motor has also been demonstrated to promote the applications of smart devices and materials, particularly in controllable drug delivery and reversible molecular switching. In this review, we have summarized and discussed recent progress of the construction and applications of DNA motor-based functional systems, such as responsive nanodevices, modified surfaces, and hydrogels.
Collapse
Affiliation(s)
- Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yuanchen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
24
|
Vázquez-González M, Willner I. Aptamer-Functionalized Micro- and Nanocarriers for Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9520-9541. [PMID: 33395247 DOI: 10.1021/acsami.0c17121] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sequence-specific nucleic acids recognizing low-molecular-weight ligands or macromolecules (aptamers) have found growing interest for biomedical applications. The present review article summarizes recent applications of aptamers as stimuli-responsive gating units of drug (or dye)-loaded nano- or microcarriers for controlled and targeted drug release. In the presence of cellular biomarkers, the nano-/microcarriers are unlocked by forming aptamer-ligand complexes. Different aptamer-functinalized nano-/microcarriers are presented, including inorganic nanomaterials, metal-organic framework nanoparticles, and soft materials. The chemistries associated with the preparation of the carriers and the mechanisms to unlock the carriers are discussed. Stimuli-responsive gated drug-loaded micro-/nanocarriers hold great promise as functional sense-and-treat materials for the targeted and selective release of drugs.
Collapse
Affiliation(s)
- Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Abstract
DNA origami enables the bottom-up construction of chemically addressable, nanoscale objects with user-defined shapes and tailored functionalities. As such, not only can DNA origami objects be used to improve existing experimental methods in biophysics, but they also open up completely new avenues of exploration. In this review, we discuss basic biophysical concepts that are relevant for prospective DNA origami users. We summarize biochemical strategies for interfacing DNA origami with biomolecules of interest. We describe various applications of DNA origami, emphasizing the added value or new biophysical insights that can be generated: rulers and positioning devices, force measurement and force application devices, alignment supports for structural analysis for biomolecules in cryogenic electron microscopy and nuclear magnetic resonance, probes for manipulating and interacting with lipid membranes, and programmable nanopores. We conclude with some thoughts on so-far little explored opportunities for using DNA origami in more complex environments such as the cell or even organisms.
Collapse
Affiliation(s)
- Wouter Engelen
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| | - Hendrik Dietz
- Physik Department, Technische Universität München, 85748 Garching bei München, Germany;
| |
Collapse
|
26
|
He M, He M, Nie C, Yi J, Zhang J, Chen T, Chu X. mRNA-Activated Multifunctional DNAzyme Nanotweezer for Intracellular mRNA Sensing and Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8015-8025. [PMID: 33561348 DOI: 10.1021/acsami.0c21601] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deoxyribozyme (DNAzyme) is regarded as a promising gene therapy drug. However, poor cellular uptake efficacy and low biological stability limit the utilization of DNAzyme in gene therapy. Here, we report a well-known programmable DNAzyme-based nanotweezer (DZNT) that provides a new strategy for the detection of TK1 mRNA and survivin mRNA-targeted gene silencing therapy. At the end of the DZNT arm, there are two functionalized single-stranded DNA and each consists of two parts: the segment complementary to TK1 mRNA and the split-DNAzyme segment. The hybridization with intracellular TK1 mRNA enables the imaging of TK1 mRNA. Meanwhile, the hybridization draws the split-DNAzyme close to each other and activates DNAzyme to cleave the survivin mRNA to realize gene silencing therapy. The results demonstrate that the DZNT nanocarrier has excellent cell penetration, good biocompatibility, and noncytotoxicity. DZNT can image intracellular biomolecule TK1 mRNA with a high contrast. Furthermore, the split-DNAzyme can efficiently cleave the survivin mRNA with the aid of TK1 mRNA commonly present in cancer cells, accordingly can selectively kill cancer cells, and has no harm to normal cells. Taken together, the multifunctional programmable DZNT provides a promising platform for the early diagnosis of tumors and gene therapy.
Collapse
Affiliation(s)
- Manman He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jintao Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
27
|
Chemoselective ligation assisted DNA walker for analysis of double targets. Colloids Surf B Biointerfaces 2021; 201:111620. [PMID: 33611015 DOI: 10.1016/j.colsurfb.2021.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Chemoselective ligation assisted DNA walker with input and output of double signals, has been constructed through simultaneous assistance of oxime chemistry and alkyne-azide cycloaddition. The constructed DNA walker has been further developed as a biosensor with lipopolysaccharide (LPS) and 5-hydroxymethyl-2-furaldehyde (HMF) as targets. The biosensor owns one-to-one mapping functionality and can sensitively distinguish all cases of two targets through the unique output signal feature. Moreover, the biosensor can simultaneously analyze LPS and HMF. This work provides a new insight for analysis of double targets based on chemoselective ligation assisted DNA walker.
Collapse
|
28
|
Liu P, Qian X, Li X, Fan L, Li X, Cui D, Yan Y. Enzyme-Free Electrochemical Biosensor Based on Localized DNA Cascade Displacement Reaction and Versatile DNA Nanosheets for Ultrasensitive Detection of Exosomal MicroRNA. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45648-45656. [PMID: 32915531 DOI: 10.1021/acsami.0c14621] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicroRNA existing in exosomes (exo-miRNA) is a crucial and reliable biomarker for cancer screening and diagnosis. However, accurate detection of ultralow exo-miRNA amounts in real samples remains a challenge. Herein, a robust and ultrasensitive electrochemical biosensor was developed based on localized DNA cascade displacement reaction (L-DCDR) and versatile DNA nanosheets (DNSs) for enzyme-free analysis of exo-miRNA. The target activated L-DCDR repeatedly by consecutive toehold-mediated strand displacement, which released plentiful P strands to hybridize with capture probes immobilized on the electrode surface and DNS tags, generating an amplified electrochemical signal for the detection of exo-miRNA. The DNS could label-free load various electroactive molecules. The electrochemical biosensor revealed high sensitivity ranging from 0.1 fM to 1 nM with a limit of detection of 65 aM and good specificity. The constructed biosensor was demonstrated to be able to detect exo-miRNA derived from gastric cancer cell line (SGC-7901) and gastric cancer patients. In addition, the developed biosensor possessed several considerable advantages including simple substrate assembly, improved reaction rate, and high signal-to-noise ratio. Therefore, this strategy has great potential in bioanalysis and clinical diagnostics.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument National Center for Translational Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
29
|
Ma Y, Centola M, Keppner D, Famulok M. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angew Chem Int Ed Engl 2020; 59:12455-12459. [PMID: 32567796 PMCID: PMC7384075 DOI: 10.1002/anie.202003991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Indexed: 01/12/2023]
Abstract
The ability to precisely measure and monitor temperature at high resolution at the nanoscale is an important task for better understanding the thermodynamic properties of functional entities at the nanoscale in complex systems, or at the level of a single cell. However, the development of high-resolution and robust thermal nanosensors is challenging. The design, assembly, and characterization of a group of thermal-responsive deoxyribonucleic acid (DNA) joints, consisting of two interlocked double-stranded DNA (dsDNA) rings, is described. The DNA nanojoints reversibly switch between the static and mobile state at different temperatures without a special annealing process. The temperature response range of the DNA nanojoint can be easily tuned by changing the length or the sequence of the hybridized region in its structure, and because of its interlocked structure the temperature response range of the DNA nanojoint is largely unaffected by its own concentration; this contrasts with systems that consist of separated components.
Collapse
Affiliation(s)
- Yinzhou Ma
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Mathias Centola
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
| | - Daniel Keppner
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Michael Famulok
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
| |
Collapse
|
30
|
Abstract
In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
Collapse
Affiliation(s)
- Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
31
|
Ma Y, Centola M, Keppner D, Famulok M. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yinzhou Ma
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Mathias Centola
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Daniel Keppner
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Michael Famulok
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| |
Collapse
|
32
|
Lahav-Mankovski N, Prasad PK, Oppenheimer-Low N, Raviv G, Dadosh T, Unger T, Salame TM, Motiei L, Margulies D. Decorating bacteria with self-assembled synthetic receptors. Nat Commun 2020; 11:1299. [PMID: 32157077 PMCID: PMC7064574 DOI: 10.1038/s41467-020-14336-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The responses of cells to their surroundings are mediated by the binding of cell surface proteins (CSPs) to extracellular signals. Such processes are regulated via dynamic changes in the structure, composition, and expression levels of CSPs. In this study, we demonstrate the possibility of decorating bacteria with artificial, self-assembled receptors that imitate the dynamic features of CSPs. We show that the local concentration of these receptors on the bacterial membrane and their structure can be reversibly controlled using suitable chemical signals, in a way that resembles changes that occur with CSP expression levels or posttranslational modifications (PTMs), respectively. We also show that these modifications can endow the bacteria with programmable properties, akin to the way CSP responses can induce cellular functions. By programming the bacteria to glow, adhere to surfaces, or interact with proteins or mammalian cells, we demonstrate the potential to tailor such biomimetic systems for specific applications. Cell surface proteins mediate the interactions between cells and their extracellular environment. Here the authors design synthetic biomemetic receptor-like sensors that facilitate programmable interactions between bacteria and their target.
Collapse
Affiliation(s)
- Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Pragati Kishore Prasad
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Noa Oppenheimer-Low
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gal Raviv
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tamar Unger
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
33
|
Li J, Wang W, Zhang H, Lu Z, Wu W, Shu M, Han H. Programmable DNA Tweezer-Actuated SERS Probe for the Sensitive Detection of AFB1. Anal Chem 2020; 92:4900-4907. [DOI: 10.1021/acs.analchem.9b04822] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Hao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenxin Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Mingbo Shu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| |
Collapse
|
34
|
A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosens Bioelectron 2020; 147:111779. [DOI: 10.1016/j.bios.2019.111779] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
|
35
|
Jaekel A, Stegemann P, Saccà B. Manipulating Enzymes Properties with DNA Nanostructures. Molecules 2019; 24:molecules24203694. [PMID: 31615123 PMCID: PMC6832416 DOI: 10.3390/molecules24203694] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids and proteins are two major classes of biopolymers in living systems. Whereas nucleic acids are characterized by robust molecular recognition properties, essential for the reliable storage and transmission of the genetic information, the variability of structures displayed by proteins and their adaptability to the environment make them ideal functional materials. One of the major goals of DNA nanotechnology-and indeed its initial motivation-is to bridge these two worlds in a rational fashion. Combining the predictable base-pairing rule of DNA with chemical conjugation strategies and modern protein engineering methods has enabled the realization of complex DNA-protein architectures with programmable structural features and intriguing functionalities. In this review, we will focus on a special class of biohybrid structures, characterized by one or many enzyme molecules linked to a DNA scaffold with nanometer-scale precision. After an initial survey of the most important methods for coupling DNA oligomers to proteins, we will report the strategies adopted until now for organizing these conjugates in a predictable spatial arrangement. The major focus of this review will be on the consequences of such manipulations on the binding and kinetic properties of single enzymes and enzyme complexes: an interesting aspect of artificial DNA-enzyme hybrids, often reported in the literature, however, not yet entirely understood and whose full comprehension may open the way to new opportunities in protein science.
Collapse
Affiliation(s)
- Andreas Jaekel
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Pierre Stegemann
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| | - Barbara Saccà
- ZMB, University Duisburg-Essen, Universitätstraße 2, 45117 Essen, Germany.
| |
Collapse
|
36
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
37
|
Ma W, Chen B, Zou S, Jia R, Cheng H, Huang J, Wang H, He X, Wang K. I-Motif-Based in Situ Bipedal Hybridization Chain Reaction for Specific Activatable Imaging and Enhanced Delivery of Antisense Oligonucleotides. Anal Chem 2019; 91:12538-12545. [PMID: 31476869 DOI: 10.1021/acs.analchem.9b03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The efficient and precise delivery of antisense oligonucleotides (ASOs) to target cells is of great value in gene silencing. However, the specificity and packaging capacity of delivery system still remains challenging. Here, we designed an i-motif forming-initiated in situ bipedal hybridization chain reaction (pH-Apt-BiHCR) amplification strategy for specific target cells imaging and enhanced gene delivery of ASOs. As a proof of concept, an 8-nt ASO modified with locked nucleic acid (LNA) which is complementary to the seed region of microRNA21 (miR-21) was used for gene silencing studies. Benefiting from the design of hairpin-contained i-motif, the stimuli-responsive assembly of pH-Apt-BiHCR was successfully achieved on MCF-7 cells surface based on the specific recognition of aptamer. Using this strategy, the pH-Apt-BiHCR not only contains repeated fluorescence resonance energy transfer (FRET) units for activatable tumor imaging with high contrast but also arrays with plenty of LNA ASOs as interference molecules for cancer cells inhibition. An in vitro assay showed that this strategy presented an excellent response ability in buffer within a narrow pH range (6.0-7.0) with a transition midpoint (pHT) of 6.44 ± 0.06. Moreover, live cell studies revealed that it realized a specific activatable imaging of target cells, while the ASOs arrayed pH-Apt-BiHCR exhibited improved internalization via an endocytosis pathway and enhanced gene silencing to MCF-7 cells compared to single ASO alone. We believe that this design will inspire the development of novel probes for early diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University , Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
38
|
Yang W, Shen Y, Zhang D, Li C, Yuan R, Xu W. Programmed Dual-Functional DNA Tweezer for Simultaneous and Recognizable Fluorescence Detection of microRNA and Protein. Anal Chem 2019; 91:7782-7789. [DOI: 10.1021/acs.analchem.9b01266] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenting Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Shen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Danyang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
39
|
Shen H, Wang Y, Wang J, Li Z, Yuan Q. Emerging Biomimetic Applications of DNA Nanotechnology. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13859-13873. [PMID: 29939004 DOI: 10.1021/acsami.8b06175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| |
Collapse
|
40
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
41
|
Peng L, Yuan Y, Fu X, Fu A, Zhang P, Chai Y, Gan X, Yuan R. Reversible and Distance-Controllable DNA Scissor: A Regenerated Electrochemiluminescence Biosensing Platform for Ultrasensitive Detection of MicroRNA. Anal Chem 2019; 91:3239-3245. [DOI: 10.1021/acs.analchem.8b02757] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lichun Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xiaomin Fu
- College of Chemistry and Chemical Engineering, Yibin University, Yibin, Sichuan 644007, People’s Republic of China
| | - Ao Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xianxue Gan
- College of Chemistry and Chemical Engineering, Yibin University, Yibin, Sichuan 644007, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry(Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
42
|
Mo M, Kong D, Ji H, Lin D, Tang X, Yang Z, He Y, Wu L. Reversible Photocontrol of Thrombin Activity by Replacing Loops of Thrombin Binding Aptamer using Azobenzene Derivatives. Bioconjug Chem 2019; 30:231-241. [PMID: 30582682 DOI: 10.1021/acs.bioconjchem.8b00848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The photoisomerization of azobenzenes provides a general means for the photocontrol of many important biomolecular structures and organismal functions. For temporal and spatial control activity of thrombin binding aptamer (TBA) by light, azobenzene derivatives were carefully selected as light-triggered molecular switches to replace TT loops and the TGT loop of TBA to reversibly control enzyme activity. These molecules interconverted between the trans and cis states under alternate UV and visible light irradiation, which consequently triggered reversible formation of G-quadruplex morphology. In addition, we investigated the impact of three azobenzene derivatives on stability, thrombin binding ability, and anticoagulant properties. The result showed that 4,4'-bis(hydroxymethyl)azobenzene at the TGT loop position significantly photoregulated affinity to thrombin and blood clotting in human plasma, which provided a successful strategy to control blood clotting in human plasma and a further evidence for design of TBA analogues with pivotal positions of modifications.
Collapse
Affiliation(s)
- Mengwu Mo
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dejia Kong
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Heming Ji
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dao Lin
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Yujian He
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Wu
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| |
Collapse
|
43
|
Du H, Yang P, Hou X, Zhou R, Hou X, Chen J. Expanding DNA nanomachine functionality through binding-induced DNA output for application in clinical diagnosis. Chem Commun (Camb) 2019; 55:3610-3613. [PMID: 30843913 DOI: 10.1039/c9cc01228a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we describe two homogeneous conversion systems that can convert protein recognition into the release of predesigned output DNA for the activation of DNA nanomachines.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Peng Yang
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| | - Xin Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Rongxing Zhou
- Biliary Surgical Department
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiandeng Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
- Analytical & Testing Centre
| | - Junbo Chen
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| |
Collapse
|
44
|
Xing C, Huang Y, Dai J, Zhong L, Wang H, Lin Y, Li J, Lu CH, Yang HH. Spatial Regulation of Biomolecular Interactions with a Switchable Trident-Shaped DNA Nanoactuator. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32579-32587. [PMID: 30156821 DOI: 10.1021/acsami.8b10761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA nanostructures with controllable motions and functions have been used as flexible scaffolds to precisely and spatially organize molecular reactions at the nanoscale. The construction of dynamic DNA nanostructures with site-specifically incorporated functional elements is a critical step toward building nanomachines. Artificial self-assembled DNA nanostructures have also been developed to mimic key biological processes like various small biomolecule- and protein-based functional biochemistry pathways. Here, we report a self-assembled dynamic trident-shaped DNA (TS DNA) nanoactuator, in which biomolecules can be tethered to the three "arms" of the TS DNA nanoactuator. The TS DNA nanoactuator is implemented as the mechanical scaffold for the reconfiguration of fluorescent/quenching molecules and the assembly of gold nanoparticles, which exhibit controlled spatial separation. Furthermore, two enzymes (glucose oxidase and horseradish peroxidase) are attached to the two outer arms of the TS DNA nanoactuator, which show an enhanced cascade reaction efficiency compared to free enzymes. The efficiency of the two-enzyme cascade reaction can be spatially regulated by switching the TS DNA nanoactuator between opened, semiopened, and closed states through adding the "thermodynamic drivers" (fuels or antifuels). This is the first report to precisely modulate the relative position of coupled enzyme with multiple states and only based on one dynamic DNA scaffold. The present TS DNA nanoactuator with multistage conformational transition functionality could be applied as a potential platform to precisely and dynamically control the multienzyme pathways and would broaden the scope of DNA nanostructures in single-molecule biology applications.
Collapse
Affiliation(s)
- Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Lin Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Huimeng Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Chun-Hua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| |
Collapse
|
45
|
Zhang P, Jiang J, Yuan R, Zhuo Y, Chai Y. Highly Ordered and Field-Free 3D DNA Nanostructure: The Next Generation of DNA Nanomachine for Rapid Single-Step Sensing. J Am Chem Soc 2018; 140:9361-9364. [DOI: 10.1021/jacs.8b04648] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Jie Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
46
|
Liu M, Jiang S, Loza O, Fahmi NE, Šulc P, Stephanopoulos N. Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Minghui Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Omar Loza
- Department of Physics Arizona State University Physical Sciences Building, Room 470, PO Box 871504 Tempe AZ 85287-1504 USA
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| | - Nicholas Stephanopoulos
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| |
Collapse
|
47
|
Liu M, Jiang S, Loza O, Fahmi NE, Šulc P, Stephanopoulos N. Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angew Chem Int Ed Engl 2018; 57:9341-9345. [DOI: 10.1002/anie.201804264] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Minghui Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Omar Loza
- Department of Physics Arizona State University Physical Sciences Building, Room 470, PO Box 871504 Tempe AZ 85287-1504 USA
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| | - Nicholas Stephanopoulos
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| |
Collapse
|
48
|
Chen Y, Ke G, Ma Y, Zhu Z, Liu M, Liu Y, Yan H, Yang CJ. A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. J Am Chem Soc 2018; 140:8990-8996. [DOI: 10.1021/jacs.8b05429] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yahong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanli Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minghui Liu
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Chaoyong James Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| |
Collapse
|
49
|
Li L, Niu C, Li T, Wan Y, Zhou Y, Wang H, Yuan R, Liao P. Ultrasensitive electrochemiluminescence biosensor for detection of laminin based on DNA dendrimer-carried luminophore and DNA nanomachine-mediated target recycling amplification. Biosens Bioelectron 2018; 101:206-212. [DOI: 10.1016/j.bios.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
|
50
|
Zheng J, Li N, Li C, Wang X, Liu Y, Mao G, Ji X, He Z. A nonenzymatic DNA nanomachine for biomolecular detection by target recycling of hairpin DNA cascade amplification. Biosens Bioelectron 2018; 107:40-46. [PMID: 29427885 DOI: 10.1016/j.bios.2018.01.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
Synthetic enzyme-free DNA nanomachine performs quasi-mechanical movements in response to external intervention, suggesting the promise of constructing sensitive and specific biosensors. Herein, a smart DNA nanomachine biosensor for biomolecule (such as nucleic acid, thrombin and adenosine) detection is developed by target-assisted enzyme-free hairpin DNA cascade amplifier. The whole DNA nanomachine system is constructed on gold nanoparticle which decorated with hundreds of locked hairpin substrate strands serving as DNA tracks, and the DNA nanomachine could be activated by target molecule toehold-mediated exchange on gold nanoparticle surface, resulted in the fluorescence recovery of fluorophore. The process is repeated so that each copy of the target can open multiplex fluorophore-labeled hairpin substrate strands, resulted in amplification of the fluorescence signal. Compared with the conventional biosensors of catalytic hairpin assembly (CHA) without substrate in solution, the DNA nanomachine could generate 2-3 orders of magnitude higher fluorescence signal. Furthermore, the DNA nanomachine could be used for nucleic acid, thrombin and adenosine highly sensitive specific detection based on isothermal, and homogeneous hairpin DNA cascade signal amplification in both buffer and a complicated biomatrix, and this kind of DNA nanomachine could be efficiently applied in the field of biomedical analysis.
Collapse
Affiliation(s)
- Jiao Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ningxing Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chunrong Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yucheng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|