1
|
Wu B, Zhu Y, Liu Y, Wang Y, Dong Y, Chen J, Zhong T. Study on the structural characterization of Premna microphylla Turcz polysaccharides and their improvement effect on the properties of chitosan composite gel. Int J Biol Macromol 2025:143015. [PMID: 40216134 DOI: 10.1016/j.ijbiomac.2025.143015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Bioactive polysaccharide composite gels provide strategy for improving the defects of chitosan (CS) gel. The aim of this study was to characterize the structure of Premna microphylla Turcz polysaccharide (PMTP) and investigate the improvement of different PMTP concentrations (4, 6, 8, 10, and 12 wt%) on the PMTP/CS composite gels' properties. PMTP is an acidic heteropolysaccharide with →4)-α-D-GalpA-(1→ and →4)-α-D-Galpa-6-Ome-(1→ as the backbone structure. And PMTP transformed the gel's framework from the lamellar structure of CS gel to 3D porous network constructed by connected nanofibers. This resulted in the increase of surface area from 11.28 to 89.72 m2/g and reduction of pore size from 5.76 to 0.52 μm. Moreover, the mechanical properties of PMTP/CS composite gel was significantly improved 17.9 times higher than that of CS gel. Accordingly, the water holding, swelling, rheology and thermal stability of PMTP/CS gel were further improved. Study on gelation mechanism proved that the formation of composite gel's 3D network was mainly dominated by electrostatic interaction. Finally, Caco-2 cell assay in vitro confirmed the excellent cytocompatibility of PMTP/CS gel. In conclusion, this work provides a scientific reference for the design of bioactive polysaccharide composite gel for food engineering field.
Collapse
Affiliation(s)
- Bingmin Wu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yong Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, PR China.
| | - Yao Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yu Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, PR China.
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao.
| |
Collapse
|
2
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
3
|
Lin GH, Yu TA, Chang CF, Hsu CH. Proline Isomerization and Molten Globular Property of TgPDCD5 Secreted from Toxoplasma gondii Confers Its Regulation of Heparin Sulfate Binding. JACS AU 2024; 4:1763-1774. [PMID: 38818051 PMCID: PMC11134355 DOI: 10.1021/jacsau.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024]
Abstract
Toxoplasmosis, caused by Toxoplasma gondii, poses risks to vulnerable populations. TgPDCD5, a secreted protein of T. gondii, induces apoptosis through heparan sulfate-mediated endocytosis. The entry mechanism of TgPDCD5 has remained elusive. Here, we present the solution structure of TgPDCD5 as a helical bundle with an extended N-terminal helix, exhibiting molten globule characteristics. NMR perturbation studies reveal heparin/heparan sulfate binding involving the heparan sulfate/heparin proteoglycans-binding motif and the core region, influenced by proline isomerization of P107 residue. The heterogeneous proline recruits a cyclophilin TgCyp18, accelerating interconversion between conformers and regulating heparan/heparin binding. These atomic-level insights elucidate the binary switch's functionality, expose novel heparan sulfate-binding surfaces, and illuminate the unconventional cellular entry of pathogenic TgPDCD5.
Collapse
Affiliation(s)
- Gloria
Meng-Hsuan Lin
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Tsun-Ai Yu
- Genomic
Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chi-Fon Chang
- Genomic
Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chun-Hua Hsu
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 115201, Taiwan
| |
Collapse
|
4
|
Yu H, Liu L, Yin R, Jayapurna I, Wang R, Xu T. Mapping Composition Evolution through Synthesis, Purification, and Depolymerization of Random Heteropolymers. J Am Chem Soc 2024; 146:6178-6188. [PMID: 38387070 PMCID: PMC10921401 DOI: 10.1021/jacs.3c13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Random heteropolymers (RHPs) consisting of three or more comonomers have been routinely used to synthesize functional materials. While increasing the monomer variety diversifies the side-chain chemistry, this substantially expands the sequence space and leads to ensemble-level sequence heterogeneity. Most studies have relied on monomer composition and simulated sequences to design RHPs, but the questions remain unanswered regarding heterogeneities within each RHP ensemble and how closely these simulated sequences reflect the experimental outcomes. Here, we quantitatively mapped out the evolution of monomer compositions in four-monomer-based RHPs throughout a design-synthesis-purification-depolymerization process. By adopting a Jaacks method, we first determined 12 reactivity ratios directly from quaternary methacrylate RAFT copolymerization experiments to account for the influences of competitive monomer addition and the reversible activation/deactivation equilibria. The reliability of in silico analysis was affirmed by a quantitative agreement (<4% difference) between the simulated RHP compositions and the experimental results. Furthermore, we mapped out the conformation distribution within each ensemble in different solvents as a function of monomer chemistry, composition, and segmental characteristics via high-throughput computation based on self-consistent field theory (SCFT). These comprehensive studies confirmed monomer composition as a viable design parameter to engineer RHP-based functional materials as long as the reactivity ratios are accurately determined and the livingness of RHP synthesis is ensured.
Collapse
Affiliation(s)
- Hao Yu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
| | - Luofu Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ruilin Yin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Ivan Jayapurna
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Rui Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ting Xu
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Departent
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Traldi F, Resmini M. Impact of Protein Corona Formation on the Thermoresponsive Behavior of Acrylamide-Based Nanogels. Biomacromolecules 2024; 25:1340-1350. [PMID: 38242644 PMCID: PMC10865348 DOI: 10.1021/acs.biomac.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The ability to fine-tune the volume phase transition temperature (VPTT) of thermoresponsive nanoparticles is essential to their successful application in drug delivery. The rational design of these materials is limited by our understanding of the impact that nanoparticle-protein interactions have on their thermoresponsive behavior. In this work, we demonstrate how the formation of protein corona impacts the transition temperature values of acrylamide-based nanogels and their reversibility characteristics, in the presence of lysozyme, given its relevance for the ocular and intranasal administration route. Nanogels were synthesized with N-isopropylacrylamide or N-n-propylacrylamide as backbone monomers, methylenebis(acrylamide) (2.5-20 molar %) as a cross-linker, and functionalized with negatively charged monomers 2-acrylamido-2-methylpropanesulfonic acid, N-acryloyl-l-proline, or acrylic acid; characterization showed comparable particle diameter (c.a.10 nm), but formulation-dependent thermoresponsive properties, in the range 28-54 °C. Lysozyme was shown to form a complex with the negatively charged nanogels, lowering their VPTT values; the hydrophilic nature of the charged comonomer controlled the drop in VPTT upon complex formation, while matrix rigidity only had a small, yet significant effect. The cross-linker content was found to play a major role in determining the reversibility of the temperature-dependent transition of the complexes, with only 20 molar % cross-linked-nanogels displaying a fully reversible transition. These results demonstrate the importance of evaluating protein corona formation in the development of drug delivery systems based on thermoresponsive nanoparticles.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
6
|
Trzaskowski M, Drozd M, Ciach T. Study on Saccharide-Glucose Receptor Interactions with the Use of Surface Plasmon Resonance. Int J Mol Sci 2023; 24:16079. [PMID: 38003267 PMCID: PMC10671554 DOI: 10.3390/ijms242216079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the process of attachment of saccharide particles differing in degree of complexity to cell receptors responsible for transport of glucose across the cell membrane (GLUT proteins). This phenomenon is currently considered when designing modern medicines, e.g., peptide drugs to which glucose residues are attached, enabling drugs to cross the barrier of cell membranes and act inside cells. This study aims to help us understand the process of assimilation of polysaccharide nanoparticles by tumour cells. In this study, the interactions between simple saccharides (glucose and sucrose) and dextran nanoparticles with two species of GLUT proteins (GLUT1 and GLUT4) were measured using the surface plasmon resonance technique. We managed to observe the interactions of glucose and sucrose with both applied proteins. The lowest concentration that resulted in the detection of interaction was 4 mM of glucose on GLUT1. Nanoparticles were measured using the same proteins with a detection limit of 40 mM. These results indicate that polysaccharide nanoparticles interact with GLUT proteins. The measured strengths of interactions differ between proteins; thus, this study can suggest which protein is preferable when considering it as a mean of nanoparticle carrier transport.
Collapse
Affiliation(s)
- Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Marcin Drozd
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland;
| |
Collapse
|
7
|
Phan VHG, Duong HS, Le QGT, Janarthanan G, Vijayavenkataraman S, Nguyen HNH, Nguyen BPT, Manivasagan P, Jang ES, Li Y, Thambi T. Nanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained release of protein therapeutics in tissue engineering applications. J Nanobiotechnology 2023; 21:405. [PMID: 37919778 PMCID: PMC10623704 DOI: 10.1186/s12951-023-02160-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Chronic Kidney Disease (CKD) which involves gradual loss of kidney function is characterized by low levels of a glycoprotein called Erythropoietin (EPO) that leads to red blood cell deficiency and anemia. Recombinant human EPO (rhEPO) injections that are administered intravenously or subcutaneously is the current gold standard for treating CKD. The rhEPO injections have very short half-lives and thus demands frequent administration with a risk of high endogenous EPO levels leading to severe side effects that could prove fatal. To this effect, this work provides a novel approach of using lamellar inorganic solids with a brucite-like structure for controlling the release of protein therapeutics such as rhEPO in injectable hydrogels. The nanoengineered injectable system was formulated by incorporating two-dimensional layered double hydroxide (LDH) clay materials with a high surface area into alginate hydrogels for sustained delivery. The inclusion of LDH in the hydrogel network not only improved the mechanical properties of the hydrogels (5-30 times that of alginate hydrogel) but also exhibited a high binding affinity to proteins without altering their bioactivity and conformation. Furthermore, the nanoengineered injectable hydrogels (INHs) demonstrated quick gelation, injectability, and excellent adhesion properties on human skin. The in vitro release test of EPO from conventional alginate hydrogels (Alg-Gel) showed 86% EPO release within 108 h while INHs showed greater control over the initial burst and released only 24% of EPO in the same incubation time. INH-based ink was successfully used for 3D printing, resulting in scaffolds with good shape fidelity and stability in cell culture media. Controlled release of EPO from INHs facilitated superior angiogenic potential in ovo (chick chorioallantoic membrane) compared to Alg-Gel. When subcutaneously implanted in albino mice, the INHs formed a stable gel in vivo without inducing any adverse effects. The results suggest that the proposed INHs in this study can be utilized as a minimally invasive injectable platform or as 3D printed patches for the delivery of protein therapeutics to facilitate tissue regeneration.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hai-Sang Duong
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Giao Thi Le
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Hoang-Nam Huynh Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Bich-Phuong Thi Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, Zhejiang, People's Republic of China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do, 17104, Republic of Korea.
| |
Collapse
|
8
|
Conformational evolution of soybean protein-polysaccharide at oil-water interface in simulated gastric environment in vitro. Food Chem 2023; 413:135613. [PMID: 36758390 DOI: 10.1016/j.foodchem.2023.135613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The conformation and characteristics of soybean hull polysaccharide (SHP)/soy bean protein isolate (SPI) complex at oil-water interface in simulated gastric environment in vitro were discussed. Isothermal titration calorimetry (ITC) thermodynamic results illustrated that SPI formed a complex with SHP. ζ-potential and microstructure showed a flocculation phenomenon after SPI/SHP emulsion droplet treatment (especially at 60 min), which indicated that the inter droplet steric hindrance and repulsion were reduced after the emulsion was treated. Additionally, at 60 min, in FT-IR spectrum fitting results, the contents of β-sheet and β-turn structure were the lowest, which might be that the polar group residues exposed in the SPI/SHP complex at the interface interacted with Na+ by ion-dipole interaction or protonated with H+. The blue shift of maximum absorption intensity also indicated that the tryptophan residues moved to the hydrophobic environment, which made the treated droplets flocculate without obvious aggregation.
Collapse
|
9
|
Ben-David EA, Habibi M, Haddad E, Sammar M, Angel DL, Dror H, Lahovitski H, Booth AM, Sabbah I. Mechanism of nanoplastics capture by jellyfish mucin and its potential as a sustainable water treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161824. [PMID: 36720396 DOI: 10.1016/j.scitotenv.2023.161824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The accumulation of nanoplastics (NPs) in the environment has raised concerns about their impact on human health and the biosphere. The main aim of this study is to understand the mechanism that governs the capture of NPs by jellyfish mucus extracted from the jellyfish Aurelia sp. (A.a.) and compare the capture/removal efficiency to that of conventional coagulants and mucus from other organisms. The efficacy of A.a mucus to capture polystyrene and acrylic NPs (∼100 nm) from spiked wastewater treatment plant (WWTP) effluent was evaluated. The mucus effect on capture kinetics and destabilization of NPs of different polymer compositions, sizes and concentrations was quantified by means of fluorescent NPs, dynamic light scattering and zeta potential measurements and visualized by scanning electron microscopy. A dosing of A.a. mucus equivalent to protein concentrations of ∼2-4 mg L-1 led to a rapid change in zeta potential from a baseline of -30 mV to values close to 0 mV, indicating a marked change from a stable to a non-stable dispersion leading to a rapid (<10 min) and significant removal of NPs (60 %-90 %) from a stable suspension. The A.a. mucus outperformed all other mucus types (0-37 %) and coagulants (0 %-32 % for ferric chloride; 23-40 % for poly aluminum chlorohydrate), highlighting the potential for jellyfish mucus to be used as bio-flocculant. The results indicate a mucus-particle interaction consisting of adsorption-bridging and "mesh" filtration. Further insight is provided by carbohydrate composition and protein disruption analysis. Total protein disruption resulted in a complete loss of the A.a. mucus capacity to capture NPs, while the breaking of disulfide bonds and protein unfolding resulted in improved capture capacity. The study demonstrates that natural jellyfish mucin can capture and remove NPs in water and wastewater treatment systems more efficiently than conventional coagulants, highlighting the potential for development of a new type of bio-flocculant.
Collapse
Affiliation(s)
- Eric A Ben-David
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Maryana Habibi
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Elias Haddad
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dror L Angel
- Department of Maritime Civilizations, and Recanati Institute for Maritime Studies, University of Haifa, Haifa, Israel
| | - Hila Dror
- Department of Maritime Civilizations, and Recanati Institute for Maritime Studies, University of Haifa, Haifa, Israel
| | - Haim Lahovitski
- Department of Maritime Civilizations, and Recanati Institute for Maritime Studies, University of Haifa, Haifa, Israel
| | | | - Isam Sabbah
- Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel; The Institute of Applied Research, The Galilee Society, Shefa-Amr, Israel.
| |
Collapse
|
10
|
Nakamura Y, Nasu M, Shindo Y, Oka K, Citterio D, Hiruta Y. Effect of the side chain composition of mixed-charge polymers on pH-selective cell–membrane interactions. Polym J 2023. [DOI: 10.1038/s41428-023-00774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
García-Briones GS, Laga R, Černochová Z, Arjona-Ruiz C, Janoušková O, Šlouf M, Pop-Georgievski O, Kubies D. Polyelectrolyte nanoparticles based on poly[N-(2-hydroxypropyl)methacrylamide-block-poly(N-(3-aminopropyl)methacrylamide] copolymers for delivery of heparin-binding proteins. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
12
|
Traldi F, Liu P, Albino I, Ferreira L, Zarbakhsh A, Resmini M. Protein-Nanoparticle Interactions Govern the Interfacial Behavior of Polymeric Nanogels: Study of Protein Corona Formation at the Air/Water Interface. Int J Mol Sci 2023; 24:2810. [PMID: 36769129 PMCID: PMC9917661 DOI: 10.3390/ijms24032810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Biomedical applications of nanoparticles require a fundamental understanding of their interactions and behavior with biological interfaces. Protein corona formation can alter the morphology and properties of nanomaterials, and knowledge of the interfacial behavior of the complexes, using in situ analytical techniques, will impact the development of nanocarriers to maximize uptake and permeability at cellular interfaces. In this study we evaluate the interactions of acrylamide-based nanogels, with neutral, positive, and negative charges, with serum-abundant proteins albumin, fibrinogen, and immunoglobulin G. The formation of a protein corona complex between positively charged nanoparticles and albumin is characterized by dynamic light scattering, circular dichroism, and surface tensiometry; we use neutron reflectometry to resolve the complex structure at the air/water interface and demonstrate the effect of increased protein concentration on the interface. Surface tensiometry data suggest that the structure of the proteins can impact the interfacial properties of the complex formed. These results contribute to the understanding of the factors that influence the bio-nano interface, which will help to design nanomaterials with improved properties for applications in drug delivery.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Pengfei Liu
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Inês Albino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3060-197 Coimbra, Portugal
| | - Ali Zarbakhsh
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
13
|
Upadhyay R, Singh S, Kaur G. Sorption of pharmaceuticals over microplastics' surfaces: interaction mechanisms and governing factors. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:803. [PMID: 36121501 DOI: 10.1007/s10661-022-10475-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are one of the emerging and ubiquitous environmental pollutants. Recent studies have proven their co-existence with pharmaceuticals in the environment wherein microplastics act as a potential vector for the transportation of pharmaceuticals. Both microplastics and pharmaceuticals are charged moieties enriched with diverse functional groups resulting in the possibility of multiple interactions. Major interactions could be electrostatic, hydrogen bonding, and hydrophobic, while minor interactions may occur through π-π interaction, cationic bridging mechanism, van der Waals interaction, partition, and pore-filling mechanism. These interactions have both short- and long-term effects over pharmaceutical sorption on microplastics and possibly, ensuing toxicity. This review analyses and summarises the currently reported interactions between microplastic particles and pharmaceuticals as well as establishes the link to various factors affecting the process, viz. pH, salinity, dissolved organic matter, and physiochemical properties of microplastics.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal, 462 030, India.
| | - Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
14
|
Xu X. Development of the Sequential Binding Model and Application for Anticooperative Protein Adsorption onto Charged Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4102-4110. [PMID: 35324205 DOI: 10.1021/acs.langmuir.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Langmuir binding model provides one of the simplest and elegant methods for characterizing an adsorption process. Despite its wide-ranging applications, enormous effort has been spent to further integrate complexity onto the standard Langmuir isotherm to incorporate a wide breadth of binding kinetics with the heterogeneity and cooperative effect among ligands and receptors. Here, we use statistical mechanics as a convenient theoretical framework to depict several adsorption processes on a Langmuir-like description. With regard to the system with a two-component mixture of macromolecular binders, we have derived the two-group sequential binding isotherm as an important extension of the original sequential model with more applications, including systems of non-identical binders. Via comparison of the Langmuir equilibrium with the Boltzmann equilibrium, for the first time the binding free energy defined in the Langmuir-like models can be meaningfully compared with simulations. In a practical example of the adsorption between the lysozyme protein and charged dendrimer, we have demonstrated how the calorimetry data of this system could be interpreted by the binding models described above, with an accurate description of the adsorption process, including the cooperative effect and dendrimer heterogeneity. Using the computer simulation as a benchmark, we also reveal and discuss the strengths and limitations of the proposed binding models. The entire analysis serves as a starting point for extending the standard Langmuir model to access more complicated binding processes.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
15
|
Archer WR, Gallagher CMB, Vaissier Welborn V, Schulz MD. Exploring the role of polymer hydrophobicity in polymer-metal binding thermodynamics. Phys Chem Chem Phys 2022; 24:3579-3585. [PMID: 35088772 DOI: 10.1039/d1cp05263b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-chelating polymers play a key role in rare-earth element (REE) extraction and separation processes. Often, these processes occur in aqueous solution, but the interactions among water, polymer, and REE are largely under-investigated in these applications. To probe these interactions, we synthesized a series of poly(amino acid acrylamide)s with systematically varied hydrophobicity around a consistent chelating group (carboxylate). We then measured the ΔH of Eu3+ chelation as a function of temperature across the polymer series using isothermal titration calorimetry (ITC) to give the change in heat capacity (ΔCP). We observed an order of magnitude variation in ΔCP (39-471 J mol1 K-1) with changes in the hydrophobicity of the polymer. Atomistic simulations of the polymer-metal-water interactions revealed greater Eu3+ and polymer desolvation when binding to the more hydrophobic polymers. These combined experimental and computational results demonstrate that metal binding in aqueous solution can be modulated not only by directly modifying the chelating groups, but also by altering the molecular environment around the chelating site, thus suggesting a new design principle for developing increasingly effective metal-chelating materials.
Collapse
Affiliation(s)
- William R Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - Connor M B Gallagher
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - V Vaissier Welborn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - Michael D Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
16
|
Formation and creaming stability of alginate/micro-gel particle-induced gel-like emulsions stabilized by soy protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Abstract
Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs. Currently, there is no direct treatment for sepsis. Here we report an abiotic hydrogel nanoparticle (HNP) as a potential therapeutic agent for late-stage sepsis. The HNP captures and neutralizes all variants of histones, a major inflammatory mediator released during sepsis. The highly optimized HNP has high capacity and long-term circulation capability for the selective sequestration and neutralization of histones. Intravenous injection of the HNP protects mice against a lethal dose of histones through the inhibition of platelet aggregation and migration into the lungs. In vivo administration in murine sepsis model mice results in near complete survival. These results establish the potential for synthetic, nonbiological polymer hydrogel sequestrants as a new intervention strategy for sepsis therapy and adds to our understanding of the importance of histones to this condition. Sepsis caused by the release of inflammatory mediators into the blood is a life threatening disease. Here, the authors report on the development of hydrogel nanoparticles for the capture and neutralisation of histones, major inflammatory mediators, and demonstrate sepsis treatment in a murine model.
Collapse
|
18
|
Onogi S, Lee SH, Fruehauf KR, Shea KJ. Abiotic Stimuli-Responsive Protein Affinity Reagent for IgG. Biomacromolecules 2021; 22:2641-2648. [PMID: 34009976 DOI: 10.1021/acs.biomac.1c00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an approach for the discovery of protein affinity reagents (PARs). Abiotic synthetic hydrogel copolymers can be "tuned" for selective protein capture by the type and ratios of functional monomers included in their polymerization and by the polymerization conditions (i.e., pH). By screening libraries of hydrogel nanoparticles (NPs) containing charged and hydrophobic groups against a protein target (IgG), a stimuli-responsive PAR is selected. The robust carbon backbone synthetic copolymer is rapidly synthesized in the chemistry laboratory from readily available monomers. The production of the PAR does not require living cells and is free from biological contamination. The capture and release of the protein by the copolymer NP is reversible. IgG is sequestered from human serum at pH 6.5 and following a wash step, the purified protein is released by elevating the pH to 7.3. The binding and release of the protein occur without denaturation. The abiotic material functions as a selective PAR for the F(ab')2 domain of IgG for pull-down and immunoprecipitation experiments and for isolation and purification of proteins from complex biological mixtures.
Collapse
Affiliation(s)
- Shunsuke Onogi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Tsukuba Research Laboratories, JSR Corporation, Ibaraki 305-0841, Japan
| | - Shih-Hui Lee
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Krista R Fruehauf
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Protein-imprinted polymer films prepared via cavity-selective multi-step post-imprinting modifications for highly selective protein recognition. Anal Bioanal Chem 2021; 413:6183-6189. [PMID: 34002274 DOI: 10.1007/s00216-021-03386-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
The use of molecularly imprinted polymers (MIPs) for achieving synthetic receptors capable of selective molecular recognition is promising; however, these polymers exhibit low selectivity derived from the heterogeneity of their created, imprinted cavities. To achieve highly selective protein recognition, we herein report the cavity-selective, multi-step, post-imprinting modification of MIPs. An MIP film for lysozyme was prepared by the copolymerization of {[2-(2-methacrylamido)ethyldithio]ethylcarbamoyl}methoxy acetic acid, a functional monomer possessing a modifiable disulfide bond, with acrylamide and N,N'-methylenebisacrylamide in the presence of lysozyme. After the removal of lysozyme, the disulfide bonds were cleaved by treatment with a reductant. A low concentration of lysozyme was then added to occupy the high-affinity cavities of the polymer and sterically protect the thiol groups within them. A poly(ethylene glycol)-based capping agent was reacted with the thiol groups residing in low-affinity cavities to hinder them. After the regeneration of the high-affinity cavities by washing out the bound lysozyme, the remaining thiol groups were reacted with 3-(2-pyridyldithio)propionic acid to introduce interacting groups, which produced capped MIPs. Comparing the capped and uncapped MIPs revealed that off-target protein binding was effectively suppressed by the capping treatment without any reduction in binding affinity (1.1 × 109 M-1). Further investigation revealed that the lysozyme concentration during the capping process is critical for the selectivity of the capped MIP. In this case, highly selective MIPs were achieved when the lowest lysozyme concentration (100 nM) was used. This facile process for creating highly selective, synthetic polymer receptors is a powerful approach for achieving plastic antibodies.
Collapse
|
20
|
Sousa AA, Schuck P, Hassan SA. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters. NANOSCALE ADVANCES 2021; 3:2995-3027. [PMID: 34124577 PMCID: PMC8168927 DOI: 10.1039/d1na00086a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 05/03/2023]
Abstract
The use of nanoparticles (NPs) in biomedicine has made a gradual transition from proof-of-concept to clinical applications, with several NP types meeting regulatory approval or undergoing clinical trials. A new type of metallic nanostructures called ultrasmall nanoparticles (usNPs) and nanoclusters (NCs), while retaining essential properties of the larger (classical) NPs, have features common to bioactive proteins. This combination expands the potential use of usNPs and NCs to areas of diagnosis and therapy traditionally reserved for small-molecule medicine. Their distinctive physicochemical properties can lead to unique in vivo behaviors, including improved renal clearance and tumor distribution. Both the beneficial and potentially deleterious outcomes (cytotoxicity, inflammation) can, in principle, be controlled through a judicious choice of the nanocore shape and size, as well as the chemical ligands attached to the surface. At present, the ability to control the behavior of usNPs is limited, partly because advances are still needed in nanoengineering and chemical synthesis to manufacture and characterize ultrasmall nanostructures and partly because our understanding of their interactions in biological environments is incomplete. This review addresses the second limitation. We review experimental and computational methods currently available to understand molecular mechanisms, with particular attention to usNP-protein complexation, and highlight areas where further progress is needed. We discuss approaches that we find most promising to provide relevant molecular-level insight for designing usNPs with specific behaviors and pave the way to translational applications.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP 04044 Brazil
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH Bethesda MD 20892 USA
| | - Sergio A Hassan
- BCBB, National Institute of Allergy and Infectious Diseases, NIH Bethesda MD 20892 USA
| |
Collapse
|
21
|
Ghosh G, Panicker L. Protein-nanoparticle interactions and a new insight. SOFT MATTER 2021; 17:3855-3875. [PMID: 33885450 DOI: 10.1039/d0sm02050h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of protein-nanoparticle interactions provides knowledge about the bio-reactivity of nanoparticles, and creates a database of nanoparticles for applications in nanomedicine, nanodiagnosis, and nanotherapy. The problem arises when nanoparticles come in contact with physiological fluids such as plasma or serum, wherein they interact with the proteins (or other biomolecules). This interaction leads to the coating of proteins on the nanoparticle surface, mostly due to the electrostatic interaction, called 'corona'. These proteins are usually partially unfolded. The protein corona can deter nanoparticles from their targeted functionalities, such as drug/DNA delivery at the site and fluorescence tagging of diseased tissues. The protein corona also has many repercussions on cellular intake, inflammation, accumulation, degradation, and clearance of the nanoparticles from the body depending on the exposed part of the proteins. Hence, the protein-nanoparticle interaction and the configuration of the bound-proteins on the nanosurface need thorough investigation and understanding. Several techniques such as DLS and zeta potential measurement, UV-vis spectroscopy, fluorescence spectroscopy, circular dichroism, FTIR, and DSC provide valuable information in the protein-nanoparticle interaction study. Besides, theoretical simulations also provide additional understanding. Despite a lot of research publications, the fundamental question remained unresolved. Can we aim for the application of functional nanoparticles in medicine? A new insight, given by us, in this article assumes a reasonable solution to this crucial question.
Collapse
Affiliation(s)
- Goutam Ghosh
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085, India.
| | | |
Collapse
|
22
|
Abdolahpur Monikh F, Chupani L, Karkossa I, Gardian Z, Arenas-Lago D, von Bergen M, Schubert K, Piackova V, Zuskova E, Jiskoot W, Vijver MG, Peijnenburg WJGM. An environmental ecocorona influences the formation and evolution of the biological corona on the surface of single-walled carbon nanotubes. NANOIMPACT 2021; 22:100315. [PMID: 35559972 DOI: 10.1016/j.impact.2021.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 06/15/2023]
Abstract
Nanomaterials (NMs) taken up from the environment carry a complex ecocorona consisting of dissolved organic matter. An ecocorona is assumed to influence the interactions between NMs and endogenous biomolecules and consequently affects the formation of a biological corona (biocorona) and the biological fate of the NMs. This study shows that biomolecules in fish plasma attach immediately (within <5 min) to the surface of SWCNTs and the evolution of the biocorona is a size dependent phenomenon. Quantitative proteomics data revealed that the nanotube size also influences the plasma protein composition on the surface of SWCNTs. The presence of a pre-attached ecocorona on the surface of SWCNTs eliminated the influence of nanotube size on the formation and evolution of the biocorona. Over time, endogenous biomolecules from the plasma partially replaced the pre-attached ecocorona as measured using a fluorescently labelled ecocorona. The presence of an ecocorona offers a unique surface composition to each nanotube. This suggests that understanding the biological fate of NMs taken up from the environment by organisms to support the environmental risk assessment of NMs is a challenging task because each NM may have a unique surface composition in the body of an organism.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Latifeh Chupani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Isabel Karkossa
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Daniel Arenas-Lago
- Department of Plant Biology and soil Science, University of Vigo, As Lagoas, Ourense, Spain
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany; Institute of Biochemistry, Leipzig University, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Veronika Piackova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333, CC, Leiden, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
23
|
Lee SH, Moody I, Zeng Z, Fleischer EB, Weiss GA, Shea KJ. Synthesis of a High Affinity Complementary Peptide-Polymer Nanoparticle (NP) Pair Using Phage Display. ACS APPLIED BIO MATERIALS 2021; 4:2704-2712. [PMID: 35014309 PMCID: PMC9109703 DOI: 10.1021/acsabm.0c01631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptide-polymer complementary pairs can provide useful tools for isolating, organizing, and separating biomacromolecules. We describe a procedure for selecting a high affinity complementary peptide-polymer nanoparticle (NP) pair using phage display. A hydrogel copolymer nanoparticle containing a statistical distribution of negatively charged and hydrophobic groups was used to select a peptide sequence from a phage displayed library of >1010 peptides. The NP has low nanomolar affinity for the selected cyclic peptide and exhibited low affinity for a panel of diverse proteins and peptide variants. Affinity arises from the complementary physiochemical properties of both NP and peptide as well as the specific peptide sequence. Comparison of linear and cyclic variants of the peptide established that peptide structure also contributes to affinity. These findings offer a general method for identifying polymer-peptide complementary pairs. Significantly, precise polymer sequences (proteins) are not a requirement, a low information statistical copolymer can be used to select for a specific peptide sequence with affinity and selectivity comparable to that of an antibody. The data also provides evidence for the physiochemical and structural contributions to binding. The results confirm the utility of abiotic, statistical, synthetic copolymers as selective, high affinity peptide affinity reagents.
Collapse
Affiliation(s)
- Shih-Hui Lee
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Issa Moody
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Zhiyang Zeng
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Everly B Fleischer
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Kenneth J Shea
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
24
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
25
|
Ferrari R, Storti G, Morbidelli M. Maltodextrin as stabilizer for emulsion polymerization: Adsorption and grafting behavior. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Raffaele Ferrari
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering, ETH Zurich Zurich Switzerland
| | - Giuseppe Storti
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering, ETH Zurich Zurich Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and Bioengineering, ETH Zurich Zurich Switzerland
| |
Collapse
|
26
|
Chen W, Tian X, He W, Li J, Feng Y, Pan G. Emerging functional materials based on chemically designed molecular recognition. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s42833-019-0007-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe specific interactions responsible for molecular recognition play a crucial role in the fundamental functions of biological systems. Mimicking these interactions remains one of the overriding challenges for advances in both fundamental research in biochemistry and applications in material science. However, current molecular recognition systems based on host–guest supramolecular chemistry rely on familiar platforms (e.g., cyclodextrins, crown ethers, cucurbiturils, calixarenes, etc.) for orienting functionality. These platforms limit the opportunity for diversification of function, especially considering the vast demands in modern material science. Rational design of novel receptor-like systems for both biological and chemical recognition is important for the development of diverse functional materials. In this review, we focus on recent progress in chemically designed molecular recognition and their applications in material science. After a brief introduction to representative strategies, we describe selected advances in these emerging fields. The developed functional materials with dynamic properties including molecular assembly, enzyme-like and bio-recognition abilities are highlighted. We have also selected materials with dynamic properties in contract to traditional supramolecular host–guest systems. Finally, the current limitations and some future trends of these systems are discussed.
Collapse
|
27
|
Koide H, Yoshimatsu K, Hoshino Y, Ariizumi S, Okishima A, Ide T, Egami H, Hamashima Y, Nishimura Y, Kanazawa H, Miura Y, Asai T, Oku N, Shea KJ. Sequestering and inhibiting a vascular endothelial growth factor in vivo by systemic administration of a synthetic polymer nanoparticle. J Control Release 2018; 295:13-20. [PMID: 30578808 DOI: 10.1016/j.jconrel.2018.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Protein affinity reagents (PARs), frequently antibodies, are essential tools for basic research, diagnostics, separations and for clinical applications. However, there is growing concern about the reproducibility, quality and cost of recombinant and animal-derived antibodies. This has prompted the development of alternatives that could offer economic, and time-saving advantages without the use of living organisms. Synthetic copolymer nanoparticles (NPs), engineered with affinity for specific protein targets, are potential alternatives to PARs. Although there are now a number of examples of abiotic protein affinity reagents (APARs), most have been evaluated in vitro limiting a realistic assessment of their potential for more demanding, practical in vivo applications. We demonstrate for the first time that an abiotic copolymer hydrogel nanoparticle (NP1) engineered to bind a key signaling protein, vascular endothelial growth factor (VEGF165), functions in vivo to suppress tumor growth by regulating angiogenesis. Lightly cross-linked N-isopropylacrylamide based NPs that incorporate both sulfated N-acetylglucosamine and hydrophobic monomers were optimized by dynamic chemical evolution for VEGF165 affinity. NP1 efficacy in vivo was evaluated by systemic administration to tumor-bearing mice. The study found that NP1 suppresses tumor growth and reduces tumor vasculature density. Combination therapy with doxorubicin resulted in increased doxorubicin concentration in the tumor and dramatic inhibition of tumor growth. NP1 treatment did not show off target anti-coagulant activity. In addition, >97% of injected NPs are rapidly excreted from the body following IV injection. These results establish the use of APARs as inhibitors of protein-protein interactions in vivo and may point the way to their broader use as abiotic, cost effective protein affinity reagents for the treatment of certain cancers and more broadly for regulating signal transduction.
Collapse
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Saki Ariizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Anna Okishima
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takafumi Ide
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- Department of Synthetic Organic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Nishimura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Hiroaki Kanazawa
- Department of Functional Anatomy, School of Nursing, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
28
|
Zhang S, Zhao Y. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water. J Mol Recognit 2018; 32:e2769. [PMID: 30419606 DOI: 10.1002/jmr.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface-core double cross-linking of template-containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest-complementary binding sites. An important property of MINP-based receptors is the surface-cross-linking between the propargyl groups of the surfactants and a diazide cross-linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross-linkers with an alkoxyamine group enabled two-stage double surface-cross-linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.
Collapse
Affiliation(s)
- Shize Zhang
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
29
|
Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl Trop Dis 2018; 12:e0006736. [PMID: 30286075 PMCID: PMC6171825 DOI: 10.1371/journal.pntd.0006736] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Envenomings by snakebites constitute a serious and challenging global health issue. The mainstay in the therapy of snakebite envenomings is the parenteral administration of animal-derived antivenoms. Significantly, antivenoms are only partially effective in the control of local tissue damage. A novel approach to mitigate the progression of local tissue damage that could complement the antivenom therapy of envenomings is proposed. We describe an abiotic hydrogel nanoparticle engineered to bind to and modulate the activity of a diverse array of PLA2 and 3FTX isoforms found in Elapidae snake venoms. These two families of protein toxins share features that are associated with their common (membrane) targets, allowing for nanoparticle sequestration by a mechanism that differs from immunological (epitope) selection. The nanoparticles are non-toxic in mice and inhibit dose-dependently the dermonecrotic activity of Naja nigricollis venom.
Collapse
|
30
|
Bonvin D, Chiappe D, Moniatte M, Hofmann H, Mionić Ebersold M. Methods of protein corona isolation for magnetic nanoparticles. Analyst 2018; 142:3805-3815. [PMID: 28695931 DOI: 10.1039/c7an00646b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles (NPs) in contact with a biological environment get covered by proteins and some are loosely bound and some are tightly bound. The latter form a hard protein corona (HPC) which is known to determine their biological behavior. Therefore, in order to study the biological behaviour of NPs one needs to start from the HPC. However, established methods and standards of HPC isolation are still not known. This is especially a challenge in the case of magnetic NPs which form a major branch of nanomedicine. Therefore, we developed a novel HPC isolation method, a multi-step centrifugation method (MSCM), for single-domain magnetic NPs. The MSCM was applied to iron oxide NPs in interaction with human blood and lymph serum with different dilutions in triplicate. The analysis of the composition of the obtained HPCs showed the reproducibility of the MSCM. This new method was also compared with the existing magnetic separation method (MagSep) and a study of the obtained HPC allowed us to establish the validity limits of MagSep and MSCM on only superparamagnetic NPs and on any single-domain magnetic NPs, respectively. Surprisingly, the HPCs obtained by these two isolation methods were quite different, up to 50%, suggesting that only these proteins, which are found in the HPCs of both isolation methods, are in fact real HPCs.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Arifuzzaman MD, Zhao W, Zhao Y. Surface Ligands in the Imprinting and Binding of Molecularly Imprinted Cross-Linked Micelles. Supramol Chem 2018; 30:929-939. [PMID: 31223222 PMCID: PMC6585997 DOI: 10.1080/10610278.2018.1489540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
Molecular recognition in water is challenging but water-soluble molecularly imprinted nanoparticle (MINP) receptors were produced readily by double cross-linking of surfactant micelles in the presence of suitable template molecules. When the micellar surface was decorated with different polyhydroxylated ligands, significant interactions could be introduced between the surface ligands and the template. Flexible surface ligands worked better than rigid ones to interact with the polar moiety of the template, especially for those template molecules whose water-exposed surface is not properly solvated by water. The importance of these hydrophilic interactions was examined in the context of different substrates, density of the surface ligands, and surface-cross-linking density of the MINP. Together with the hydrophobic interactions in the core, the surface hydrophilic interactions can be used to enhance the binding of guest molecules in water.
Collapse
Affiliation(s)
- M D Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| | - Wei Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| |
Collapse
|
32
|
Wang X, Zhang S, Xu Y, Zhao X, Guo X. Ionic Strength-Responsive Binding between Nanoparticles and Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8264-8273. [PMID: 29933693 DOI: 10.1021/acs.langmuir.8b00944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrostatic interaction is a strong, dominant nonspecific interaction which was extensively studied in protein-nanoparticle (NP) interactions [ Lounis , F. M. ; J. Phys. Chem. B 2017 , 121 , 2684 - 2694 ; Tavares , G. M. ; Langmuir 2015 , 31 , 12481 - 12488 ; Antonov , M. ; Biomacromolecules 2010 , 11 , 51 - 59 ], whereas the role of hydrophobic interaction arising from the abundant hydrophobic residues of globule proteins upon protein-NP binding between the proteins and charged nanoparticles has rarely been studied. In this work, a series of positively charged magnetic nanoparticles (MNPs) were prepared via atom transfer radical polymerization and surface hydrophobicity differentiation was achieved through postpolymerization quaternization by different halohydrocarbons. The ionic strength- and hydrophobicity-responsive binding of these MNPs toward β-lactoglobulin (BLG) was studied by both qualitative and quantitative methods including turbidimetric titration, dynamic light scattering, and isothermal titration calorimetry. Judged from the critical binding pH and binding constant for MNP-BLG complexation, the dependence of binding affinity on surface hydrophobicity exhibited an interesting shift with increasing ionic strength, which means that the MNPs with higher surface hydrophobicity exhibits weaker binding affinity at lower ionic strength but stronger affinity at higher ionic strength. This interesting observation could be attributed to the difference in ionic strength responsiveness for hydrophobic and electrostatic interactions. In this way, the well-tuned binding pattern could be achieved with optimized binding affinity by controlling the surface hydrophobicity of MNPs and ionic strength, thus endowing this system with great potential to fabricate separation and delivery system with high selectivity and efficiency.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , 200237 Shanghai , P. R. China
| | - Shi Zhang
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , 200237 Shanghai , P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , 200237 Shanghai , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan , Shihezi University , 832000 Xinjiang , P. R. China
- International Joint Research Center of Green Energy Chemical Engineering , East China University of Science and Technology , 130 Meilong Rd , 200237 Shanghai , P. R. China
| | - Xiaotao Zhao
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , 200237 Shanghai , P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering , East China University of Science and Technology , 200237 Shanghai , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan , Shihezi University , 832000 Xinjiang , P. R. China
| |
Collapse
|
33
|
Liu M, Huang R, Weisman A, Yu X, Lee SH, Chen Y, Huang C, Hu S, Chen X, Tan W, Liu F, Chen H, Shea KJ. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein–Insect Receptor Binding Mechanism. J Am Chem Soc 2018; 140:6853-6864. [DOI: 10.1021/jacs.8b01710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Rong Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Adam Weisman
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shih-Hui Lee
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Yalu Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Senhua Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuhua Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kenneth J. Shea
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| |
Collapse
|
34
|
Duan L, Zhao Y. Selective Binding of Folic Acid and Derivatives by Imprinted Nanoparticle Receptors in Water. Bioconjug Chem 2018. [PMID: 29513991 DOI: 10.1021/acs.bioconjchem.8b00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Folate receptors are overexpressed on cancer cells and frequently used for targeted delivery. Creation of synthetic receptors to bind folic acid and its analogues in water, however, is challenging because of its complex hydrogen-bonding patterns and competition for hydrogen bonds from the solvent. Micellar imprinting within cross-linkable surfactants circumvented these problems because the nonpolar micellar environment strengthened the hydrogen bonds between the amide group in the surfactant and the template molecule. Incorporation of polymerizable thiouronium functional monomers further enhanced the binding through hydrogen-bond-reinforced ion pairs with the glutamate moiety of the template. The resulting imprinted micelles were able to bind folate and their analogues with submicromolar affinity and distinguish small changes in the hydrogen-bonding patterns as well as the number/position of carboxylic acids. The binding constant obtained was 2-3 orders of magnitude higher than those reported for small-molecule synthetic receptors. Our binding study also revealed interesting details in the binding. For example, the relative contributions of different segments of the molecule to the binding followed the order of carboxylates > pyrimidine ring > pyrazine ring.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| | - Yan Zhao
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| |
Collapse
|
35
|
Anand BG, Dubey K, Shekhawat DS, Prajapati KP, Kar K. Strategically Designed Antifibrotic Gold Nanoparticles to Prevent Collagen Fibril Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13252-13261. [PMID: 29072918 DOI: 10.1021/acs.langmuir.7b01504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because uncontrolled accumulation of collagen fibrils has been implicated in a series of pathologies, inhibition of collagen fibril formation has become one of the necessary strategies to target such collagen-linked complications. The presence of hydroxyproline (Hyp) at the Y position in (Gly-X-Y)n sequence pattern of collagen is known to facilitate crucial hydrophobic and hydration-linked interactions that promote collagen fibril formation. Here, to target such Hyp-mediated interactions, we have synthesized uniform, thermostable, and hemocompatible Hyp coated gold nanoparticles (AuNPsHYP) and have examined their inhibition effect on the fibril formation of type I collagen. We found that collagen fibril formation is strongly suppressed in the presence of AuNPsHYP and no such suppression effect was observed in the presence of free Hyp and control Gly-coated nanoparticles at similar concentrations. Both isothermal titration calorimetric studies and bioinformatics analysis reveal possible interaction between Hyp and (Gly-Pro-Hyp) stretches of collagen triple-helical model peptides. Further, gold nanoparticles coated with proline (AuNPsPRO) and tryptophan (AuNPsTRP) also suppressed collagen fibril formation, suggesting their ability to interfere with aromatic-proline as well as hydrophobic interactions between collagen molecules. The Hyp molecules, when surface functionalized, are predicted to interfere with the Hyp-mediated forces that drive collagen self-assembly, and such inhibition effect may help in targeting collagen linked pathologies.
Collapse
Affiliation(s)
- Bibin Ganadhason Anand
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | - Kriti Dubey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | - Dolat Singh Shekhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur , Jodhpur, Rajasthan-342011, India
| | | | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University , New Delhi-110067, India
| |
Collapse
|
36
|
Hu L, Zhao Y. Cross‐Linked Micelles with Enzyme‐Like Active Sites for Biomimetic Hydrolysis of Activated Esters. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Hu
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| | - Yan Zhao
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| |
Collapse
|
37
|
Bonvin D, Aschauer U, Alexander DTL, Chiappe D, Moniatte M, Hofmann H, Mionić Ebersold M. Protein Corona: Impact of Lymph Versus Blood in a Complex In Vitro Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700409. [PMID: 28582610 DOI: 10.1002/smll.201700409] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Indexed: 06/07/2023]
Abstract
In biological environments, the surface of nanoparticles (NPs) are modified by protein corona (PC) that determines their biological behavior. Unfortunately, in vitro tests still give different PC than in vivo tests causing in vitro-in vivo discrepancy; hence, in vitro studies are not indicative for the NPs' behavior in vivo. Here is demonstrated that PC in vitro is strongly influenced by the type of extracellular fluid (ECF), blood or lymph, by their high and low flow conditions and transitions between ECFs, and a combination of these parameters. As a result, this in vitro study approaches fluidic and dynamic variations to which NPs are exposed in vivo: different ECF that NPs encounter first in different injection routes, different transitions in-between ECFs during circulation, and simultaneous change in the exposed flow in these transitions. The most-abundant proteins in PCs are found to be not the most abundant in ECFs, but those having high affinity for binding to the surface of NPs. Moreover, some proteins are differently abundant in PCs at different flows, which indicate force-promoted binding, catch bonds. These results suggest that future in vitro studies should consider more complex incubation conditions to improve the in vitro-in vivo consistency necessary for translational research.
Collapse
Affiliation(s)
- Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole polytechnique fédérale de Lausanne, EPFL STI IMX LTP, Station 12, 1015, Lausanne, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, N431, Freiestrasse 3, 3012, Bern, Switzerland
| | - Duncan T L Alexander
- Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, EPFL SB CIME-GE, Station 12, 1015, Lausanne, Switzerland
| | - Diego Chiappe
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, EPFL SV PTECH PTP, Station 15, 1015, Lausanne, Switzerland
| | - Marc Moniatte
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, EPFL SV PTECH PTP, Station 15, 1015, Lausanne, Switzerland
| | - Heinrich Hofmann
- Powder Technology Laboratory, Institute of Materials, Ecole polytechnique fédérale de Lausanne, EPFL STI IMX LTP, Station 12, 1015, Lausanne, Switzerland
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole polytechnique fédérale de Lausanne, EPFL STI IMX LTP, Station 12, 1015, Lausanne, Switzerland
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 46, 1011, Lausanne, Switzerland
- Center of Biomedical Imaging (CIBM), Rue du Bugnon 46, 1011, Lausanne, Switzerland
| |
Collapse
|
38
|
Yasmeen S, Riyazuddeen, Qais FA. Unraveling the thermodynamics, binding mechanism and conformational changes of HSA with chromolyn sodium: Multispecroscopy, isothermal titration calorimetry and molecular docking studies. Int J Biol Macromol 2017; 105:92-102. [PMID: 28690169 DOI: 10.1016/j.ijbiomac.2017.06.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022]
Abstract
Cromolyn sodium is an anti-allergic drug effective for treatment in asthma and allergic rhinitis. In this project, interaction of chromolyn sodium (CS) with human serum albumin (HSA) has been investigated by various techniques such as UV-vis, fluorescence, circular dichorism (CD), fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetric (ITC) and molecular docking. The fluorescence quenching results revealed that there was static quenching mechanism in the interactions of CS with HSA. The binding constant (Kb), enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy change (ΔG°) were calculated. The negative values of TΔS° and ΔH° obtained from fluorescence spectroscopy and isothermal titration calorimetry, indicate that hydrogen bonding and van der Waal's forces played major role in the binding process and the reaction is exothermic in nature. The binding constant (Kb) was found to be in the order of 104M-1 which depicts a good binding affinity of CS towards HSA. The conformational changes in the HSA due to interaction of CS were investigated from CD and FT-IR spectroscopy. The binding site of CS in HSA was sub-domain IIA as evident from site probing experiment and molecular docking studies.
Collapse
Affiliation(s)
- Shama Yasmeen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Riyazuddeen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
39
|
Awino JK, Zhao Y. Imprinted micelles for chiral recognition in water: shape, depth, and number of recognition sites. Org Biomol Chem 2017; 15:4851-4858. [PMID: 28537295 PMCID: PMC5902669 DOI: 10.1039/c7ob00764g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chiral molecular recognition is important to biology, separation, and asymmetric catalysis. Because there is no direct correlation between the chiralities of the host and the guest, it is difficult to design a molecular receptor for a chiral guest in a rational manner. By cross-linking surfactant micelles containing chiral template molecules, we obtained chiral nanoparticle receptors for a number of 4-hydroxyproline derivatives. Molecular imprinting allowed us to transfer the chiral information directly from the guest to host, making the molecular recognition between the two highly predictable. Hydrophobic interactions between the host and the guest contributed strongly to the enantio- and diastereoselective differentiation of these compounds in water, whereas ion-pair interactions, which happened near the surface of the micelle, were less discriminating. The chiral recognition could be modulated by tuning the size and shape of the binding pockets.
Collapse
Affiliation(s)
- Joseph K Awino
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
40
|
Le Blond JS, Baxter PJ, Bello D, Raftis J, Molla YB, Cuadros J, Davey G. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia. PLoS One 2017; 12:e0177219. [PMID: 28493920 PMCID: PMC5426718 DOI: 10.1371/journal.pone.0177219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Background Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles.
Collapse
Affiliation(s)
- Jennifer S. Le Blond
- Department of Earth Sciences, Imperial College London, London, United Kingdom
- Core Research Labs, Natural History Museum, London, United Kingdom
- * E-mail:
| | - Peter J. Baxter
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Dhimiter Bello
- Department of Work Environment, University of Massachusetts Lowell, MA, United States of America
| | - Jennifer Raftis
- The Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh, United Kingdom
| | - Yordanos B. Molla
- Department of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| | - Javier Cuadros
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Gail Davey
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| |
Collapse
|
41
|
Gunasekara RW, Zhao Y. A General Method for Selective Recognition of Monosaccharides and Oligosaccharides in Water. J Am Chem Soc 2017; 139:829-835. [PMID: 27983819 PMCID: PMC5243169 DOI: 10.1021/jacs.6b10773] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular recognition of carbohydrates plays vital roles in biology but has been difficult to achieve with synthetic receptors. Through covalent imprinting of carbohydrates in boroxole-functionalized cross-linked micelles, we prepared nanoparticle receptors for a wide variety of mono- and oligosaccharides. The boroxole functional monomer bound the sugar templates through cis-1,2-diol, cis-3,4-diol, and trans-4,6-diol. The protein-sized nanoparticles showed excellent selectivity for d-aldohexoses in water with submillimolar binding affinities and completely distinguished the three biologically important hexoses (glucose, mannose, and galactose). Glycosides with nonpolar aglycon showed stronger binding due to enhanced hydrophobic interactions. Oligosaccharides were distinguished on the basis of their monosaccharide building blocks, glycosidic linkages, chain length, as well as additional functional groups that could interact with the nanoparticles.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
42
|
O’Brien J, Lee SH, Onogi S, Shea KJ. Engineering the Protein Corona of a Synthetic Polymer Nanoparticle for Broad-Spectrum Sequestration and Neutralization of Venomous Biomacromolecules. J Am Chem Soc 2016; 138:16604-16607. [DOI: 10.1021/jacs.6b10950] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey O’Brien
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shih-Hui Lee
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shunsuke Onogi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
43
|
Yordanov G, Gemeiner P, Katrlík J. Study of interactions between blood plasma proteins and poly(butyl cyanoacrylate) drug nanocarriers by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Interactions between α-amylase and an acidic branched polysaccharide from green tea. Int J Biol Macromol 2016; 94:669-678. [PMID: 27756641 DOI: 10.1016/j.ijbiomac.2016.09.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/03/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
Abstract
To understand the mechanism responsible for the α-amylase inhibitory activity of tea polysaccharides, the interaction between α-amylase and an acidic branched tea polysaccharide (TPSA) was investigated using fluorescence spectroscopy and resonance light scattering analysis. TPSA, exhibiting inhibitory activity towards α-amylase (the maximum inhibition percentage of 65%), was isolated from green tea (Camellia sinensis) and characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and gas chromatography. Synchronous fluorescence spectroscopy revealed that the binding interaction between the tryptophan residues of α-amylase and TPSA was predominant. Based on the fluorescence quenching effect of tryptophan residues induced by TPSA, the binding constants between α-amylase and TPSA were determined to be 18.6×106, 8.0×106 and 4.6×106 L·mol-1 at 20, 30 and 37°C, respectively. The calculated Gibbs free-energy changes were negative, indicating that the bonding interaction was a spontaneous process. The enthalpy and the entropy changes were -62.13 KJ·mol-1 and -0.0728 KJ·mol-1·K-1, suggesting that hydrogen bonding interactions might play a major role in the binding process. The formation of an α-amylase/TPSA complex was evidenced by fluorescence quenching and resonance light scattering analysis, and this complex could be the main contributor to the α-amylase inhibitory activity of TPSA.
Collapse
|
45
|
Arifuzzaman MD, Zhao Y. Water-Soluble Molecularly Imprinted Nanoparticle Receptors with Hydrogen-Bond-Assisted Hydrophobic Binding. J Org Chem 2016; 81:7518-26. [PMID: 27462993 PMCID: PMC5010460 DOI: 10.1021/acs.joc.6b01191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecularly imprinted nanoparticles (MINPs) were prepared when surfactants with a tripropargylammonium headgroup and a methacrylate-functionalized hydrophobic tail were cross-linked in the micelle form on the surface and in the core in the presence of hydrophobic template molecules. With the surfactants containing an amide bond near the headgroup, the MINPs had a layer of hydrogen-bonding groups in the interior that strongly influenced their molecular recognition. Templates/guests with strong hydrogen-bonding groups in the midsection of the molecule benefited most, especially if the hydrophobe of the template could penetrate the amide layer to reach the hydrophobic core of the cross-linked micelles. The location and the orientation of the hydrophilic groups were also important, as they determined how the template interacted with the surfactant micelles and, ultimately, with the MINP receptors.
Collapse
Affiliation(s)
- MD Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
46
|
A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Cenci L, Guella G, Andreetto E, Ambrosi E, Anesi A, Bossi AM. Guided folding takes a start from the molecular imprinting of structured epitopes. NANOSCALE 2016; 8:15665-70. [PMID: 27524659 DOI: 10.1039/c6nr03467e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A biomimetic route towards assisted folding was explored. Molecularly imprinted polymeric nanoparticles (MIP NPs), i.e. biomimetics with entailed molecular recognition properties made by a template assisted synthesis, were prepared to target a structured epitope: the cystine containing peptide CC9ox, which corresponds to the apical portion of the β-hairpin hormone Hepcidin-25. The structural selection was achieved by the MIP NPs; moreover, the MIP NPs demonstrated favouring the folding of the linear random peptide (CC9red) into the structured one (CC9ox), anticipating the future role of the MIP NPs as in situ nanomachines to counteract folding defects.
Collapse
Affiliation(s)
- L Cenci
- University of Verona, Dept. of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy.
| | - G Guella
- University of Trento, Dept. of Physics, Via Sommarive 14, 38123 Trento, Italy
| | - E Andreetto
- University of Verona, Dept. of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy.
| | - E Ambrosi
- University Cà Foscari Venezia, Dept. of Molecular Sciences and Nanosystems, Centro di Microscopia Elettronica "Giovanni Stevanato", Via Torino 155/b, 30173 Venice, Italy
| | - A Anesi
- University of Trento, Dept. of Physics, Via Sommarive 14, 38123 Trento, Italy
| | - A M Bossi
- University of Verona, Dept. of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
48
|
O’Brien J, Shea KJ. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents. Acc Chem Res 2016; 49:1200-10. [PMID: 27254382 DOI: 10.1021/acs.accounts.6b00125] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is in its early stages, these recent successes using only small libraries of functional monomers are most encouraging. It is likely that by expanding the chemical diversity of functional hydrogels and other polymers, a much broader range of NP-biomacromolecule affinity pairs will result. Since these robust, nontoxic polymers are readily synthesized in the chemistry laboratory, we believe the results presented in this Account offer a promising future for the development of low cost alternatives to more traditional protein affinity reagents such as antibodies.
Collapse
Affiliation(s)
- Jeffrey O’Brien
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth J. Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
49
|
Hurnaus T, Plank J. An ITC Study on the Interaction Energy Between Galactomannan Biopolymers and Selected MO 2Nanoparticles in Hydrogels. ChemistrySelect 2016. [DOI: 10.1002/slct.201600279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Hurnaus
- Chair for Construction Chemistry, Department of Chemistry, Technische; Universität München; Lichtenbergstr. 4 85747 Garching Germany
| | - Johann Plank
- Chair for Construction Chemistry, Department of Chemistry, Technische; Universität München; Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
50
|
Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016; 29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|