1
|
Gogoi A, Dixit M, Pal S. Mechanistic Insight of High-Valent First-Row Transition Metal Complexes for Dehydrogenation of Ammonia Borane. J Phys Chem A 2024; 128:7804-7815. [PMID: 39213523 DOI: 10.1021/acs.jpca.4c04069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Designing an efficient and cost-effective catalyst for ammonia borane (AB) dehydrogenation remains a persistent challenge in advancing a hydrogen-based economy. Transition metal complexes, known for their C-H bond activation capabilities, have emerged as promising candidates for AB dehydrogenation. In this study, we investigated two recently synthesized C-H activation catalysts, 1 (CoIV-dinitrate complex) and 2 (NiIV-nitrate complex), and demonstrated their efficacy for AB dehydrogenation. Using density functional theory calculations and a detailed analysis, we elucidated the AB dehydrogenation mechanism of these complexes. Our results revealed that both complexes 1 and 2 can efficiently dehydrogenate AB at room temperature, although the abstraction of molecular H2 from these complexes requires slightly elevated temperatures. We utilized H2 binding free energy calculations to identify potentially active sites and observed that complex 2 can release two equivalents of H2 at a temperature slightly higher than room temperature. Furthermore, we investigated AB dehydrogenation kinetics and thermodynamics in iron (Fe)-substituted systems, complexes 3 and 4. Our results showed that the strategic alteration of the central metal atom, replacing Ni in complex 2 with Fe in complex 4, resulted in enhanced kinetics and thermodynamics for AB dehydrogenation in the initial cycle. These results underscore the potential of high-valent first-row transition metal complexes for facilitating AB dehydrogenation at room temperature. Additionally, our study highlights the beneficial impact of incorporating iron into such mononuclear systems, enhancing their catalytic activity.
Collapse
Affiliation(s)
- Amrita Gogoi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741 246, West Bengal, India
| | - Mudit Dixit
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute (CLRI), Sardar Patel Road, Adyar, Chennai 600 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sourav Pal
- Department of Chemistry, Ashoka University, Sonipat 131029, Haryana, India
| |
Collapse
|
2
|
Gulyaeva ES, Osipova ES, Kovalenko SA, Filippov OA, Belkova NV, Vendier L, Canac Y, Shubina ES, Valyaev DA. Two active species from a single metal halide precursor: a case study of highly productive Mn-catalyzed dehydrogenation of amine-boranes via intermolecular bimetallic cooperation. Chem Sci 2024; 15:1409-1417. [PMID: 38274083 PMCID: PMC10806649 DOI: 10.1039/d3sc05356c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Metal-metal cooperation for inert bond activation is a ubiquitous concept in coordination chemistry and catalysis. While the great majority of such transformations proceed via intramolecular mode in binuclear complexes, to date only a few examples of intermolecular small molecule activation using usually bimetallic frustrated Lewis pairs (Mδ+⋯M'δ-) have been reported. We introduce herein an alternative approach for the intermolecular bimetallic cooperativity observed in the catalytic dehydrogenation of amine-boranes, in which the concomitant activation of N-H and B-H bonds of the substrate via the synergetic action of Lewis acidic (M+) and basic hydride (M-H) metal species derived from the same mononuclear complex (M-Br). It was also demonstrated that this system generated in situ from the air-stable Mn(i) complex fac-[(CO)3(bis(NHC))MnBr] and NaBPh4 shows high activity for H2 production from several substrates (Me2NHBH3, tBuNH2BH3, MeNH2BH3, NH3BH3) at low catalyst loading (0.1% to 50 ppm), providing outstanding efficiency for Me2NHBH3 (TON up to 18 200) that is largely superior to all known 3d-, s-, p-, f-block metal derivatives and frustrated Lewis pairs (FLPs). These results represent a step forward towards more extensive use of intermolecular bimetallic cooperation concepts in modern homogeneous catalysis.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Elena S Osipova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Sergey A Kovalenko
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences 28/1 Vavilov Str., GSP-1, B-334 Moscow 119334 Russia
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| |
Collapse
|
3
|
Himmelbauer D, Müller F, Schweinzer C, Casas F, Pribanic B, Le Corre G, Thöny D, Trincado M, Grützmacher H. Selective dehydrogenation of ammonia borane to polycondensated BN rings catalysed by ruthenium olefin complexes. Chem Commun (Camb) 2024; 60:885-888. [PMID: 38165285 PMCID: PMC10795514 DOI: 10.1039/d3cc05709g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Dehydrogenation of ammonia borane to well-defined products is an important but challenging reaction. A dinuclear ruthenium complex with a Ru-Ru bond bearing a diazadiene (dad) unit and olefins as non-innocent ligands catalyzes the highly selective formation of conjugated polycondensed borazine oligomers (BxNxHy), predominantly B21N21H18, the BN analogue of superbenzene.
Collapse
Affiliation(s)
- Daniel Himmelbauer
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163Vienna A-1060Austria
| | - Fabian Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Clara Schweinzer
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Fernando Casas
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Bruno Pribanic
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Grégoire Le Corre
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Debora Thöny
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1Zurich CH-8049Switzerlandtrincado@inorg,chem.ethz.ch
| |
Collapse
|
4
|
Singh T, Atreya V, Jalwal S, Anand A, Chakraborty S. Advances in Group VI Metal-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions. Chem Asian J 2023; 18:e202300758. [PMID: 37815164 DOI: 10.1002/asia.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Transition metal-catalyzed homogeneous hydrogenation and dehydrogenation reactions for attaining plethora of organic scaffolds have evolved as a key domain of research in academia and industry. These protocols are atom-economic, greener, in line with the goal of sustainability, eventually pave the way for numerous novel environmentally benign methodologies. Appealing progress has been achieved in the realm of homogeneous catalysis utilizing noble metals. Owing to their high cost, less abundance along with toxicity issues led the scientific community to search for sustainable alternatives. In this context, earth- abundant base metals have gained substantial attention culminating enormous progress in recent years, predominantly with pincer-type complexes of nickel, cobalt, iron, and manganese. In this regard, group VI chromium, molybdenum and tungsten complexes have been overlooked and remain underdeveloped despite their earth-abundance and bio-compatibility. This review delineates a comprehensive overview in the arena of homogeneously catalysed (de)hydrogenation reactions using group VI base metals chromium, molybdenum, and tungsten till date. Various reactions have been described; hydrogenation, transfer hydrogenation, dehydrogenation, acceptorless dehydrogenative coupling, hydrogen auto transfer, along with their scope and brief mechanistic insights.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Aman Anand
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| |
Collapse
|
5
|
Bruchelt G, Klose C, Lischka M, Brandes M, Handgretinger R, Brueckner R. Hybrid Molecules of Benzylguanidine and the Alkylating Group of Melphalan: Synthesis and Effects on Neuroblastoma Cells. J Clin Med 2023; 12:4469. [PMID: 37445504 DOI: 10.3390/jcm12134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The therapy of neuroblastoma relies, amongst other things, on administering chemotherapeutics and radioactive compounds, e.g., the (meta-iodobenzyl)guanidine [131I]mIBG. For special applications (conditioning before stem cell transplantation), busulfan and melphalan (M) proved to be effective. However, both drugs are not used for normal chemotherapy in neuroblastoma because of their side effects. The alkylating drug melphalan contains a (Cl-CH2-CH2-)2N- group in the para-position of the phenyl moiety of the essential amino acid phenylalanine (Phe) and can, therefore, be taken up by virtually all kinds of cells by amino acid transporters. In contrast, mIBG isotopologs are taken up more selectively by neuroblastoma cells via the noradrenaline transporter (NAT). The present study aimed at synthesising and studying hybrid molecules of benzylguanidine (BG) and the alkylating motif of M. Such hybrids should combine the preferential uptake of BGs into neuroblastoma cells with the cytotoxicity of M. Besides the hybrid of BG with the dialkylating group (Cl-CH2-CH2-)2N- bound in the para-position as in M (pMBG), we also synthesised mMBG, which is BG meta-substituted by a (Cl-CH2-CH2-)2N- group. Furthermore, two monoalkylating hybrid molecules were synthesised: the BG para-substituted by a (Cl-CH2-CH2-)NH- group (pM*BG) and the BG meta-substituted by a (Cl-CH2-CH2-)NH- group (mM*BG). The effects of the four new compounds were studied with human neuroblastoma cell lines (SK-N-SH, Kelly, and LS) with regard to uptake, viability, and proliferation by standard test systems. The dialkylating hybrid molecules pMBG and mMBG were at least as effective as M, whereas the monoalkylating hybrid molecules pM*BG and mM*BG were more effective than M. Considering the preferred uptake via the noradrenaline transporter by neuroblastoma cells, we conclude that they might be well suited for therapy.
Collapse
Affiliation(s)
- Gernot Bruchelt
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | - Chihab Klose
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | - Matthias Lischka
- Institute of Organic Chemistry, Albert-Ludwigs-University, Albertstr. 21, D-79104 Freiburg, Germany
| | - Marietta Brandes
- Children's University Hospital, Hoppe-Seyler-Str. 1, D-72076 Tuebingen, Germany
| | | | - Reinhard Brueckner
- Institute of Organic Chemistry, Albert-Ludwigs-University, Albertstr. 21, D-79104 Freiburg, Germany
| |
Collapse
|
6
|
Tseng YT, Pelmenschikov V, Iffland-Mühlhaus L, Calabrese D, Chang YC, Laun K, Pao CW, Sergueev I, Yoda Y, Liaw WF, Chen CH, Hsu IJ, Apfel UP, Caserta G, Lauterbach L, Lu TT. Substrate-Gated Transformation of a Pre-Catalyst into an Iron-Hydride Intermediate [(NO) 2(CO)Fe(μ-H)Fe(CO)(NO) 2] - for Catalytic Dehydrogenation of Dimethylamine Borane. Inorg Chem 2023; 62:769-781. [PMID: 36580657 DOI: 10.1021/acs.inorgchem.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(μ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu-Che Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Konstantin Laun
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron DESY, Hamburg D-22607, Germany
| | | | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany.,Department for Electrosynthesis, Fraunhofer UMSICHT, Oberhausen 46047, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Tsai-Te Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
7
|
Peng C, Liu W, Wang Y. Mechanistic insights into H 3B·NMeH 2 dehydrogenation by Co-based complexes: a DFT perspective. NEW J CHEM 2023. [DOI: 10.1039/d2nj06155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Mechanistic insights into Co-catalyzed H3B·NMeH2 dehydrogenation and polyaminoborane formation are carefully investigated using density functional theory.
Collapse
Affiliation(s)
- Cheng Peng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Chakraborty U, Fedulin A, Jacobi von Wangelin A. Synthesis and Catalysis of Anionic Amido Iron(II) Complexes. ChemCatChem 2022; 14:e202201105. [PMID: 37064762 PMCID: PMC10099668 DOI: 10.1002/cctc.202201105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Low-coordinate, open-shell 3d metal complexes have attracted great attention due to their critical role in several catalytic transformations but have been notoriously difficult to prepare and study due to their high lability. Here, we report the synthesis of a heteroleptic tri-coordinate amidoferrate that displays high catalytic activity in the regioselective hydrosilylation of alkenes.
Collapse
Affiliation(s)
- Uttam Chakraborty
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Andrey Fedulin
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
9
|
Brodie CN, Sotorrios L, Boyd TM, Macgregor SA, Weller AS. Dehydropolymerization of H 3B·NMeH 2 Mediated by Cationic Iridium(III) Precatalysts Bearing κ 3- iPr-PN RP Pincer Ligands ( R = H, Me): An Unexpected Inner-Sphere Mechanism. ACS Catal 2022; 12:13050-13064. [PMID: 36313521 PMCID: PMC9594342 DOI: 10.1021/acscatal.2c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Indexed: 11/30/2022]
Abstract
![]()
The dehydropolymerization of H3B·NMeH2 to form N-methylpolyaminoborane using neutral
and
cationic catalysts based on the {Ir(iPr-PNHP)} fragment [iPr-PNHP = κ3-(CH2CH2PiPr2)2NH] is reported. Neutral
Ir(iPr-PNHP)H3 or
Ir(iPr-PNHP)H2Cl
precatalysts show no, or poor and unselective, activity respectively
at 298 K in 1,2-F2C6H4 solution.
In contrast, addition of [NMeH3][BArF4] (ArF = 3,5-(CF3)2C6H3) to Ir(iPr-PNHP)H3 immediately starts catalysis, suggesting that a cationic
catalytic manifold operates. Consistent with this, independently synthesized
cationic precatalysts are active (tested between 0.5 and 2.0 mol %
loading) producing poly(N-methylaminoborane) with Mn ∼ 40,000 g/mol, Đ ∼1.5, i.e., dihydrogen/dihydride, [Ir(iPr-PNHP)(H)2(H2)][BArF4]; σ-amine-borane [Ir(iPr-PNHP)(H)2(H3B·NMe3)][BArF4]; and [Ir(iPr-PNHP)(H)2(NMeH2)][BArF4]. Density functional theory (DFT) calculations
probe hydride exchange processes in two of these complexes and also
show that the barrier to amine-borane dehydrogenation is lower (22.5
kcal/mol) for the cationic system compared with the neutral system
(24.3 kcal/mol). The calculations show that the dehydrogenation proceeds
via an inner-sphere process without metal–ligand cooperativity,
and this is supported experimentally by N–Me substituted [Ir(iPr-PNMeP)(H)2(H3B·NMe3)][BArF4] being
an active catalyst. Key to the lower barrier calculated for the cationic
system is the outer-sphere coordination of an additional H3B·NMeH2 with the N–H group of the ligand.
Experimentally, kinetic studies indicate a complex reaction manifold
that shows pronounced deceleratory temporal profiles. As supported
by speciation and DFT studies, a key observation is that deprotonation
of [Ir(iPr-NHP)(H)2(H2)][BArF4], formed upon amine-borane
dehydrogenation, by the slow in situ formation of NMeH2 (via B–N bond cleavage), results in the formation of essentially
inactive Ir(iPr-PNHP)H3, with a coproduct of [NMeH3]+/[H2B(NMeH2)2]+. While reprotonation
of Ir(iPr-PNHP)H3 results in a return to the cationic cycle, it is proposed, supported
by doping experiments, that reprotonation is attenuated by entrainment
of the [NMeH3]+/[H2B(NMeH2)2]+/catalyst in insoluble polyaminoborane.
The role of [NMeH3]+/[H2B(NMeH2)]+ as chain control agents is also noted.
Collapse
Affiliation(s)
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Timothy M. Boyd
- Department of Chemistry, University of York, York YO10 5DD, U.K
- Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, U.K
| | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | |
Collapse
|
10
|
Singh S, Yadav RK, Kim TW, Singh C, Singh P, P. Singh A, Singh AK, Singh AK, Baeg JO, Gupta SK. Design of a graphitic carbon nitride catalytic–biocatalytic system for solar light-based CO 2 production. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that generating (formic acid) and regenerating (NADH/NADPH) from CO2 and NAD+/NADP+ using a nitrogen-rich polymeric carbon nitride catalytic–biocatalytic system under solar light (λ > 420 nm) could provide a new approach for storage of clean energy.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, (U.P.), India
| | - Rajesh K. Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, (U.P.), India
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Chandani Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, (U.P.), India
| | - Pooja Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, (U.P.), India
| | - Atul P. Singh
- Department of Chemistry, Chandigarh University, Mohali, 140413, Punjab, India
| | - Alok Kumar Singh
- Department of Chemistry, Deen Dayal Upadhaya University, Gorakhpur, India
| | - Atresh Kumar Singh
- Department of Chemistry, Deen Dayal Upadhaya University, Gorakhpur, India
| | - Jin-Ook Baeg
- Korea Research Institute of Chemical Technology, South Korea
| | - Sarvesh Kumar Gupta
- Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India
| |
Collapse
|
11
|
Brodie CN, Boyd TM, Sotorríos L, Ryan DE, Magee E, Huband S, Town JS, Lloyd-Jones GC, Haddleton DM, Macgregor SA, Weller AS. Controlled Synthesis of Well-Defined Polyaminoboranes on Scale Using a Robust and Efficient Catalyst. J Am Chem Soc 2021; 143:21010-21023. [PMID: 34846131 DOI: 10.1021/jacs.1c10888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The air tolerant precatalyst, [Rh(L)(NBD)]Cl ([1]Cl) [L = κ3-(iPr2PCH2CH2)2NH, NBD = norbornadiene], mediates the selective synthesis of N-methylpolyaminoborane, (H2BNMeH)n, by dehydropolymerization of H3B·NMeH2. Kinetic, speciation, and DFT studies show an induction period in which the active catalyst, Rh(L)H3 (3), forms, which sits as an outer-sphere adduct 3·H3BNMeH2 as the resting state. At the end of catalysis, dormant Rh(L)H2Cl (2) is formed. Reaction of 2 with H3B·NMeH2 returns 3, alongside the proposed formation of boronium [H2B(NMeH2)2]Cl. Aided by isotopic labeling, Eyring analysis, and DFT calculations, a mechanism is proposed in which the cooperative "PNHP" ligand templates dehydrogenation, releasing H2B═NMeH (ΔG‡calc = 19.6 kcal mol-1). H2B═NMeH is proposed to undergo rapid, low barrier, head-to-tail chain propagation for which 3 is the catalyst/initiator. A high molecular weight polymer is formed that is relatively insensitive to catalyst loading (Mn ∼71 000 g mol-1; Đ, of ∼ 1.6). The molecular weight can be controlled using [H2B(NMe2H)2]Cl as a chain transfer agent, Mn = 37 900-78 100 g mol-1. This polymerization is suggested to arise from an ensemble of processes (catalyst speciation, dehydrogenation, propagation, chain transfer) that are geared around the concentration of H3B·NMeH2. TGA and DSC thermal analysis of polymer produced on scale (10 g, 0.01 mol % [1]Cl) show a processing window that allows for melt extrusion of polyaminoborane strands, as well as hot pressing, drop casting, and electrospray deposition. By variation of conditions in the latter, smooth or porous microstructured films or spherical polyaminoboranes beads (∼100 nm) result.
Collapse
Affiliation(s)
- Claire N Brodie
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K
| | - Timothy M Boyd
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Lia Sotorríos
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - David E Ryan
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Eimear Magee
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, Coventry CV4 7AL, U.K
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - James S Town
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, Scotland, U.K
| | - David M Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S Weller
- Department of Chemistry, University of York, Heslington, York YO31 1ES, U.K
| |
Collapse
|
12
|
Lehnfeld F, Seidl M, Timoshkin AY, Scheer M. Synthesis and Reactivity of a Lewis‐Base‐Stabilized
tert
‐Butyl Arsanylborane: A Versatile Building Block for Arsenic‐Boron Oligomers. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Felix Lehnfeld
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Germany
| | - Michael Seidl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Germany
| | - Alexey Y. Timoshkin
- Institute of Chemistry St. Petersburg State University 199034 Universitetskaya emb. 7/9 St. Petersburg Russia
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
13
|
Weller R, Völlinger L, Werncke CG. On the Synthesis and Reduction of Trigonal Halido Bis(silylamido) Metalates of Chromium to Cobalt. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ruth Weller
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Lena Völlinger
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - C. Gunnar Werncke
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| |
Collapse
|
14
|
Cesari C, Berti B, Calcagno F, Lucarelli C, Garavelli M, Mazzoni R, Rivalta I, Zacchini S. Bimetallic Co–M (M = Cu, Ag, and Au) Carbonyl Complexes Supported by N-Heterocyclic Carbene Ligands: Synthesis, Structures, Computational Investigation, and Catalysis for Ammonia Borane Dehydrogenation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Beatrice Berti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Francesco Calcagno
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Carlo Lucarelli
- Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 9, I-22100 Como, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
- Université de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 allée d’Italie, F69364 Lyon, France
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
15
|
Weller R, Ruppach L, Shlyaykher A, Tambornino F, Werncke CG. Homoleptic quasilinear metal(i/ii) silylamides of Cr-Co with phenyl and allyl functions - impact of the oxidation state on secondary ligand interactions. Dalton Trans 2021; 50:10947-10963. [PMID: 34318833 DOI: 10.1039/d1dt01543e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we describe the synthesis and characterization of a variety of new quasilinear metal(i/ii) silylamides of the type [M(N(Dipp)SiR3)2]0,- (M = Cr-Co) with different silyl substituents (SiR3 = SiPh3-nMen (n = 1-3), SiMe2(allyl)). By comparison of the solid state structures we show that in the case of phenyl substituents secondary metal-ligand interactions are suppressed upon reduction of the metal. Introduction of an allyl substituted silylamide gives divalent complexes with additional metal-π-alkene interactions with only weak activation of the C[double bond, length as m-dash]C bond but substantial bending of the principal N-M-N axis. 1e--reduction makes cobalt a more strongly bound alkene substituent, whereas for chromium, reduction and intermolecular dimerisation of the allyl unit are observed. It thus indicates that the general view of low-coordinate 3d-metal ions as electron deficient seems not to apply to anionic metal(i) complexes. Additionally, the obtained cobalt(i) complexes are reacted with an aryl azide giving trigonal imido metal complexes. These can be regarded as rare examples of high-spin imido cobalt compounds from their structural and solution magnetic features.
Collapse
Affiliation(s)
- Ruth Weller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Lutz Ruppach
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Alena Shlyaykher
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - C Gunnar Werncke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| |
Collapse
|
16
|
Pomogaeva AV, Timoshkin AY. Stability and Electronic Structure of Donor-Acceptor Stabilized Group 13/15 Oligomers. J Phys Chem A 2021; 125:3415-3424. [PMID: 33861081 DOI: 10.1021/acs.jpca.1c02258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic structures and thermodynamic characteristics of chain inorganic group 13-15 oligomers [H2MEH2]n (M = B, Al, Ga, E = P, As; n = 4-15) are presented. Donor-acceptor interaction with both Lewis acids and Lewis bases effectively stabilizes chain isomers with respect to spontaneous cyclization and significantly changes their electronic structure.
Collapse
Affiliation(s)
- Anna V Pomogaeva
- Institute of Chemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russia
| | - Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
17
|
Hao H, Bagnol T, Pucheault M, Schafer LL. Using Catalysts To Make Catalysts: Titanium-Catalyzed Hydroamination To Access P,N-Ligands for Assembling Catalysts in One Pot. Org Lett 2021; 23:1974-1979. [PMID: 33661014 DOI: 10.1021/acs.orglett.0c04212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a diamido-bis(amidate) titanium precatalyst, the hydroamination of alkynylphosphines afforded phosphinoenamine products. After reduction, 2-aminophosphines are prepared in excellent yield and on gram scale. A broad variety of alkynylphosphines and primary amines with different electronic and steric features are tolerated in this sequential transformation, enabling the rapid assembly of a collection of ligands. Additionally, intermediate phosphinoenamines can be used directly as proligands for coordination to transition metals using protonolysis or salt metathesis reactions. These transformations result in easy-to-use one pot protocols to prepare metal P,N-complexes for catalysis or small molecule activation.
Collapse
Affiliation(s)
- Han Hao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T1Z1
| | - Thibault Bagnol
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T1Z1.,Institut des Sciences Moléculaires Université de Bordeaux, Institut Européen de Chimie et Biologie 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Mathieu Pucheault
- Institut des Sciences Moléculaires Université de Bordeaux, Institut Européen de Chimie et Biologie 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T1Z1
| |
Collapse
|
18
|
Osipova ES, Gulyaeva ES, Gutsul EI, Kirkina VA, Pavlov AA, Nelyubina YV, Rossin A, Peruzzini M, Epstein LM, Belkova NV, Filippov OA, Shubina ES. Bifunctional activation of amine-boranes by the W/Pd bimetallic analogs of "frustrated Lewis pairs". Chem Sci 2021; 12:3682-3692. [PMID: 34163642 PMCID: PMC8179527 DOI: 10.1039/d0sc06114j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
The reaction between basic [(PCP)Pd(H)] (PCP = 2,6-(CH2P(t-C4H9)2)2C6H4) and acidic [LWH(CO)3] (L = Cp (1a), Tp (1b); Cp = η5-cyclopentadienyl, Tp = κ3-hydridotris(pyrazolyl)borate) leads to the formation of bimolecular complexes [LW(CO)2(μ-CO)⋯Pd(PCP)] (4a, 4b), which catalyze amine-borane (Me2NHBH3, t BuNH2BH3) dehydrogenation. The combination of variable-temperature (1H, 31P{1H}, 11B NMR and IR) spectroscopies and computational (ωB97XD/def2-TZVP) studies reveal the formation of an η1-borane complex [(PCP)Pd(Me2NHBH3)]+[LW(CO3)]- (5) in the first step, where a BH bond strongly binds palladium and an amine group is hydrogen-bonded to tungsten. The subsequent intracomplex proton transfer is the rate-determining step, followed by an almost barrierless hydride transfer. Bimetallic species 4 are easily regenerated through hydrogen evolution in the reaction between two hydrides.
Collapse
Affiliation(s)
- Elena S Osipova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Ekaterina S Gulyaeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Vladislava A Kirkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Alexander A Pavlov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Andrea Rossin
- Istituto di Chimica dei Composti Organometallici - Consiglio Nazionale delle Ricerche (ICCOM - CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Maurizio Peruzzini
- Istituto di Chimica dei Composti Organometallici - Consiglio Nazionale delle Ricerche (ICCOM - CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Lina M Epstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Natalia V Belkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Oleg A Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (INEOS RAS) Vavilova Str. 28 119991 Moscow Russia
| |
Collapse
|
19
|
Zhai X, Pang M, Feng L, Jia J, Tung CH, Wang W. Dehydrogenation of iron amido-borane and resaturation of the imino-borane complex. Chem Sci 2021; 12:2885-2889. [PMID: 34164054 PMCID: PMC8179412 DOI: 10.1039/d0sc06787c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report on the first isolation and structural characterization of an iron phosphinoimino-borane complex Cp*Fe(η2-H2B
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NC6H4PPh2) by dehydrogenation of iron amido-borane precursor Cp*Fe(η1-H3B–NHC6H4PPh2). Significantly, regeneration of the amido-borane complex has been realized by protonation of the iron(ii) imino-borane to the amino-borane intermediate [Cp*Fe(η2-H2B–NHC6H4PPh2)]+ followed by hydride transfer. These new iron species are efficient catalysts for 1,2-selective transfer hydrogenation of quinolines with ammonia borane. Dehydrogenation of an amido-borane iron complex provides an imino-borane complex. Regeneration of the amido-borane precursor was achieved by protonation of the imino-borane followed by hydride transfer to the amino-borane intermediate.![]()
Collapse
Affiliation(s)
- Xiaofang Zhai
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Maofu Pang
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University No. 27 South Shanda Road Jinan 250100 China .,College of Chemistry, Beijing Normal University No. 19 Xinjiekouwai St Beijing 100875 China
| |
Collapse
|
20
|
Demirci UB. Mechanistic insights into the thermal decomposition of ammonia borane, a material studied for chemical hydrogen storage. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01366h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have now a better understanding of the mechanisms of thermal decomposition of ammonia borane, a widely studied hydrogen storage material.
Collapse
Affiliation(s)
- Umit B. Demirci
- Institut Européen des Membranes
- IEM – UMR 5635
- ENSCM
- CNRS
- Univ Montpellier
| |
Collapse
|
21
|
Zhang L, Oishi T, Gao L, Hu S, Yang L, Li W, Wu S, Shang R, Yamamoto Y, Li S, Wang W, Zeng G. Catalytic Dehydrogenation of Ammonia Borane Mediated by a Pt(0)/Borane Frustrated Lewis Pair: Theoretical Design. Chemphyschem 2020; 21:2573-2578. [PMID: 33015881 DOI: 10.1002/cphc.202000661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/27/2020] [Indexed: 11/09/2022]
Abstract
A new efficient metal-based frustrated Lewis pair constructed by (Pt Bu3 )2 Pt and B(C6 F5 )3 was designed through density functional theory calculations for the catalytic dehydrogenation of ammonia borane (AB). The reaction was composed by the successive dehydrogenation of AB and H2 liberation, which occurs through the cooperative functions of the Pt(0) center and the B(C6 F5 )3 moiety. Two equivalents of H2 were predicted to be liberated from each AB molecule. The generation of the second H2 is the rate-determining step, with a Gibbs energy barrier and reaction energy of 27.4 and 12.8 kcal/mol, respectively.
Collapse
Affiliation(s)
- Lei Zhang
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| | - Takumi Oishi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 7398526, Japan
| | - Liuzhou Gao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shiyu Hu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Linlin Yang
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengjun Wu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| | - Rong Shang
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 7398526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 7398526, Japan
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- Kuang Yaming Honors School and Institute for Brain Sciences, Institute of Biophysics, School of Physics, Nanjing University, Nanjing, 210023, China
| | - Guxiang Zeng
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
22
|
Nugent JW, García-Melchor M, Fout AR. Cobalt-Catalyzed Ammonia Borane Dehydrogenation: Mechanistic Insight and Isolation of a Cobalt Hydride-Amidoborane Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph W. Nugent
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Alison R. Fout
- School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
24
|
Anke F, Boye S, Spannenberg A, Lederer A, Heller D, Beweries T. Dehydropolymerisation of Methylamine Borane and an N-Substituted Primary Amine Borane Using a PNP Fe Catalyst. Chemistry 2020; 26:7889-7899. [PMID: 32118328 PMCID: PMC7383739 DOI: 10.1002/chem.202000809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 01/30/2023]
Abstract
Dehydropolymerisation of methylamine borane (H3 B⋅NMeH2 ) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2 CH2 PiPr2 )2 ) (1) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3 B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis-Menten kinetics is observed, forming aminoborane H2 B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2 BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3 B⋅NMe2 H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3 B⋅N(CH2 SiMe3 )H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s.
Collapse
Affiliation(s)
- Felix Anke
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung DresdenHohe Str. 601069DresdenGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung DresdenHohe Str. 601069DresdenGermany
- Technische Universität Dresden01062DresdenGermany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
25
|
Ryan DE, Andrea KA, Race JJ, Boyd TM, Lloyd-Jones GC, Weller AS. Amine–Borane Dehydropolymerization Using Rh-Based Precatalysts: Resting State, Chain Control, and Efficient Polymer Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David E. Ryan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Kori A. Andrea
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X7, Canada
| | - James J. Race
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Timothy M. Boyd
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Chemistry, Chemical Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Guy C. Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier. ENERGIES 2020. [DOI: 10.3390/en13123071] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ammonia borane H3N−BH3 (AB) was re-discovered, in the 2000s, to play an important role in the developing hydrogen economy, but it has seemingly failed; at best it has lagged behind. The present review aims at analyzing, in the context of more than 300 articles, the reasons why AB gives a sense that it has failed as an anodic fuel, a liquid-state hydrogen carrier and a solid hydrogen carrier. The key issues AB faces and the key challenges ahead it has to address (i.e., those hindering its technological deployment) have been identified and itemized. The reality is that preventable errors have been made. First, some critical issues have been underestimated and thereby understudied, whereas others have been disproportionally considered. Second, the potential of AB has been overestimated, and there has been an undoubted lack of realistic and practical vision of it. Third, the competition in the field is severe, with more promising and cheaper hydrides in front of AB. Fourth, AB has been confined to lab benches, and consequently its technological readiness level has remained low. This is discussed in detail herein.
Collapse
|
27
|
Shimbayashi T, Fujita KI. Metal-catalyzed hydrogenation and dehydrogenation reactions for efficient hydrogen storage. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Boyd TM, Andrea KA, Baston K, Johnson A, Ryan DE, Weller AS. A simple cobalt-based catalyst system for the controlled dehydropolymerisation of H3B·NMeH2 on the gram-scale. Chem Commun (Camb) 2020; 56:482-485. [DOI: 10.1039/c9cc08864d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple Co-based catalyst system promotes the efficient and controlled dehydropolymerisation of amine–boranes on scale.
Collapse
Affiliation(s)
- Timothy M. Boyd
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| | - Kori A. Andrea
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| | - Katherine Baston
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| | - Alice Johnson
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| | - David E. Ryan
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| | - Andrew S. Weller
- Department of Chemistry
- Chemistry Research Laboratories
- University of Oxford
- Oxford
- UK
| |
Collapse
|
29
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
30
|
A Four Coordinated Iron(II)-Digermyl Complex as an Effective Precursor for the Catalytic Dehydrogenation of Ammonia Borane. Catalysts 2019. [DOI: 10.3390/catal10010029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A coordinatively unsaturated iron(II)-digermyl complex, Fe[Ge(SiMe3)3]2(THF)2 (1), was synthesized in one step by the reaction of FeBr2 with 2 equiv of KGe(SiMe3)3. Complex 1 shows catalytic activity comparable to that of its silicon analogue in reduction reactions. In addition, 1 acts as an effective precursor for the catalytic dehydrogenation of ammonia borane. Catalytically active species can also be generated in situ by simple mixing of the easy-to-handle precursors FeBr2, Ge(SiMe3)4, KOtBu, and phenanthroline.
Collapse
|
31
|
Acyl(furfurylamine)iridium(III) complexes from irida-β-diketones. Characterisation and catalytic activity in amine-borane hydrolysis. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Hou SF, Chen JY, Xue M, Jia M, Zhai X, Liao RZ, Tung CH, Wang W. Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04455] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shu-Fen Hou
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Minghui Xue
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| | - Mengjing Jia
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| | - Xiaofang Zhai
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, China
| |
Collapse
|
33
|
LaPierre EA, Patrick BO, Manners I. Trivalent Titanocene Alkyls and Hydrides as Well-Defined, Highly Active, and Broad Scope Precatalysts for Dehydropolymerization of Amine-Boranes. J Am Chem Soc 2019; 141:20009-20015. [DOI: 10.1021/jacs.9b11112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Etienne A. LaPierre
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Brian O. Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
34
|
Sen B, Aygun A, Şavk A, Çalımlı MH, Fellah MF, Sen F. Composites of Platinum-Iridium Alloy Nanoparticles and Graphene Oxide for the Dimethyl Amine Borane (DMAB) dehydrogenation at ambient conditions: An Experimental and Density Functional Theory Study. Sci Rep 2019; 9:15543. [PMID: 31664138 PMCID: PMC6820564 DOI: 10.1038/s41598-019-52038-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/13/2019] [Indexed: 11/25/2022] Open
Abstract
In this paper, we present the synthesis, characterization, catalytic and computational studies of Composites of Platinum-Iridium Alloy Nanoparticles and Graphene Oxide (PtIr@GO) for dimethylamine borane (DMAB) dehydrogenation. The prepared PtIr@GO nanocatalysts were synthesized using an ethanol super-hydride method, and the characterization procedures for PtIr@GO alloy nanoparticles were carried out by various advanced spectroscopic methods like X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission Electron Microscopy(TEM) and high-resolution transmission electron microscopy (HRTEM). Additionally, catalytic activity, reusability, substrate concentration, and catalyst concentration experiments were performed for DMAB dehydrogenation catalyzed by PtIr@GO alloy nanomaterials. According to the results obtained in this study, PtIr@GO NPs catalyst was found to be active and reusable for the DMAB even at ambient conditions. Besides, DFT-B3LYP calculations have been utilized on PtIr@GO cluster to reveal the prepared catalyst activity. The calculated findings based on DFT was found to be a good agreement with experimental results.
Collapse
Affiliation(s)
- Betül Sen
- Sen Research Group Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Ayşenur Aygun
- Sen Research Group Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Aysun Şavk
- Sen Research Group Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Mehmet Harbi Çalımlı
- Sen Research Group Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
- Tuzluca Vocational High School, Igdir University, Igdir, Turkey
| | - Mehmet Ferdi Fellah
- Department of Chemical Engineering, Bursa Technical University, Mimar Sinan Campus, 16310, Bursa, Turkey
| | - Fatih Sen
- Sen Research Group Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
35
|
Ledoux A, Brunet J, Raynaud J, Lacôte E. Tunable Hydrogen Release from Amine–Boranes via their Insertion into Functional Polystyrenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Audrey Ledoux
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon CNRS, C2P2 43 Bd du 11 novembre 1918 69616 Villeurbanne France
| | - Juliette Brunet
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon CNRS, C2P2 43 Bd du 11 novembre 1918 69616 Villeurbanne France
| | - Jean Raynaud
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon CNRS, C2P2 43 Bd du 11 novembre 1918 69616 Villeurbanne France
| | - Emmanuel Lacôte
- Univ Lyon, Univ Claude Bernard Lyon 1 CNRS, CNES, ArianeGroup, LHCEP Bât. Raulin, 2 rue Victor Grignard 69622 Villeurbanne France
| |
Collapse
|
36
|
Ledoux A, Brunet J, Raynaud J, Lacôte E. Tunable Hydrogen Release from Amine-Boranes via their Insertion into Functional Polystyrenes. Angew Chem Int Ed Engl 2019; 58:15239-15243. [PMID: 31386245 DOI: 10.1002/anie.201904898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/10/2019] [Indexed: 11/09/2022]
Abstract
Polystyrene-g-boramine random copolymers are dihydrogen reservoirs with tunable dehydrogenation temperatures, which can be adjusted by selecting the boramine content in the copolymers. They display a unique dihydrogen thermal release profile, which is a direct consequence of the insertion of the amine-boranes in a polymeric scaffold, and not from a direct modification of the electronics or sterics of the amine-borane function. Finally, the mixture of polystyrene-g-boramines with conventional NH3 -BH3 (borazane) allows for a direct access to organic/inorganic hybrid dihydrogen reservoirs with a maximal H2 loading of 8 wt %. These exhibit a dehydrogenation temperature lower than that of either the borazane or the polystyrene-g-boramines taken separately.
Collapse
Affiliation(s)
- Audrey Ledoux
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon, CNRS, C2P2, 43 Bd du 11 novembre 1918, 69616, Villeurbanne, France
| | - Juliette Brunet
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon, CNRS, C2P2, 43 Bd du 11 novembre 1918, 69616, Villeurbanne, France
| | - Jean Raynaud
- Univ Lyon, Univ Claude Bernard Lyon 1, CPE Lyon, CNRS, C2P2, 43 Bd du 11 novembre 1918, 69616, Villeurbanne, France
| | - Emmanuel Lacôte
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
37
|
Elsby MR, Ghostine K, Das UK, Gabidullin BM, Baker RT. Iron-SNS and -CNS Complexes: Selective Caryl–S Bond Cleavage and Amine-Borane Dehydrogenation Catalysis. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Karine Ghostine
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Uttam K. Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
38
|
Gorgas N, Stöger B, Veiros LF, Kirchner K. Access to Fe
II
Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolaus Gorgas
- Institute of Applied Synthetic ChemistryVienna University of Technology Getreidemarkt 9/163-AC 1060 Wien Austria
| | - Berthold Stöger
- X-Ray CenterVienna University of Technology Getreidemarkt 9 A-1060 Wien Austria
| | - Luis F. Veiros
- Centro de Química EstruturalInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais No. 1 1049-001 Lisboa Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of Technology Getreidemarkt 9/163-AC 1060 Wien Austria
| |
Collapse
|
39
|
Gorgas N, Stöger B, Veiros LF, Kirchner K. Access to Fe
II
Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angew Chem Int Ed Engl 2019; 58:13874-13879. [DOI: 10.1002/anie.201906971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/30/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Nikolaus Gorgas
- Institute of Applied Synthetic ChemistryVienna University of Technology Getreidemarkt 9/163-AC 1060 Wien Austria
| | - Berthold Stöger
- X-Ray CenterVienna University of Technology Getreidemarkt 9 A-1060 Wien Austria
| | - Luis F. Veiros
- Centro de Química EstruturalInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais No. 1 1049-001 Lisboa Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of Technology Getreidemarkt 9/163-AC 1060 Wien Austria
| |
Collapse
|
40
|
Chacón‐Terán MA, Rodríguez‐Lugo RE, Wolf R, Landaeta VR. Transfer Hydrogenation of Azo Compounds with Ammonia Borane Using a Simple Acyclic Phosphite Precatalyst. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Miguel A. Chacón‐Terán
- Departamento de Química Universidad Simón Bolívar Valle de Sartenejas, Apartado 89000 Caracas 1020-A Venezuela
| | - Rafael E. Rodríguez‐Lugo
- Laboratorio de Química Bioinorgánica Centro de Química Instituto Venezolano de Investigaciones Científicas (IVIC) Carretera Panamericana Km. 11. Caracas 1020‐A Venezuela
| | - Robert Wolf
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Vanessa R. Landaeta
- Departamento de Química Universidad Simón Bolívar Valle de Sartenejas, Apartado 89000 Caracas 1020-A Venezuela
| |
Collapse
|
41
|
Boom DHA, Jupp AR, Slootweg JC. Dehydrogenation of Amine-Boranes Using p-Block Compounds. Chemistry 2019; 25:9133-9152. [PMID: 30964220 PMCID: PMC6771515 DOI: 10.1002/chem.201900679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 01/11/2023]
Abstract
Amine-boranes have gained a lot of attention due to their potential as hydrogen storage materials and their capacity to act as precursors for transfer hydrogenation. Therefore, a lot of effort has gone into the development of suitable transition- and main-group metal catalysts for the dehydrogenation of amine-boranes. During the past decade, new systems started to emerge solely based on p-block elements that promote the dehydrogenation of amine-boranes through hydrogen-transfer reactions, polymerization initiation, and main-group catalysis. In this review, we highlight the development of these p-block based systems for stoichiometric and catalytic amine-borane dehydrogenation and discuss the underlying mechanisms.
Collapse
Affiliation(s)
- Devin H. A. Boom
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - Andrew R. Jupp
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| | - J. Chris Slootweg
- Van 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041090 GDAmsterdamThe Netherlands
| |
Collapse
|
42
|
Knitsch R, Han D, Anke F, Ibing L, Jiao H, Hansen MR, Beweries T. Fe(II) Hydride Complexes for the Homogeneous Dehydrocoupling of Hydrazine Borane: Catalytic Mechanism via DFT Calculations and Detailed Spectroscopic Characterization. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert Knitsch
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Delong Han
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Felix Anke
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Lukas Ibing
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- MEET Battery Research
Center, Westfälische Wilhelms-Universität Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
43
|
Bäcker A, Li Y, Fritz M, Grätz M, Ke Z, Langer R. Redox-Active, Boron-Based Ligands in Iron Complexes with Inverted Hydride Reactivity in Dehydrogenation Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas Bäcker
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Maximilian Fritz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Maik Grätz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Robert Langer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| |
Collapse
|
44
|
Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts. Nat Commun 2019; 10:2786. [PMID: 31243267 PMCID: PMC6594957 DOI: 10.1038/s41467-019-09832-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P-P and P-E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P-O, P-S, or P-N bonds.
Collapse
|
45
|
Ried ACA, Taylor LJ, Geer AM, Williams HEL, Lewis W, Blake AJ, Kays DL. A Highly Active Bidentate Magnesium Catalyst for Amine-Borane Dehydrocoupling: Kinetic and Mechanistic Studies. Chemistry 2019; 25:6840-6846. [PMID: 30875128 PMCID: PMC6563444 DOI: 10.1002/chem.201901197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/06/2022]
Abstract
A magnesium complex (1) featuring a bidentate aminopyridinato ligand is a remarkably selective catalyst for the dehydrocoupling of amine-boranes. This reaction proceeds to completion with low catalyst loadings (1 mol %) under mild conditions (60 °C), exceeding previously reported s-block systems in terms of selectivity, rate, and turnover number (TON). Mechanistic studies by in situ NMR analysis reveals the reaction to be first order in both catalyst and substrate. A reaction mechanism is proposed to account for these findings, with the high TON of the catalyst attributed to the bidentate nature of the ligand, which allows for reversible deprotonation of the substrate and regeneration of 1 as a stable resting state.
Collapse
Affiliation(s)
| | - Laurence J. Taylor
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Ana M. Geer
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Current address: Department of ChemistryUniversity of VirginiaCharlottesvilleVirginia22904USA
| | - Huw E. L. Williams
- Centre for Biomolecular SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - William Lewis
- School of ChemistryThe University of Sydney, F11Eastern AveSydneyNSW2006Australia
| | - Alexander J. Blake
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Deborah L. Kays
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
46
|
Han D, Anke F, Trose M, Beweries T. Recent advances in transition metal catalysed dehydropolymerisation of amine boranes and phosphine boranes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Colebatch AL, Weller AS. Amine-Borane Dehydropolymerization: Challenges and Opportunities. Chemistry 2019; 25:1379-1390. [PMID: 30338876 PMCID: PMC6391989 DOI: 10.1002/chem.201804592] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/23/2022]
Abstract
The dehydropolymerization of amine-boranes, exemplified as H2 RB⋅NR'H2 , to produce polyaminoboranes (HRBNR'H)n that are inorganic analogues of polyolefins with alternating main-chain B-N units, is an area with significant potential, stemming from both fundamental (mechanism, catalyst development, main-group hetero-cross-coupling) and technological (new polymeric materials) opportunities. This Concept article outlines recent advances in the field, covering catalyst development and performance, current mechanistic models, and alternative non-catalytic routes for polymer production. The substrate scope, polymer properties and applications of these exciting materials are also outlined. Challenges and opportunities in the field are suggested, as a way of providing focus for future investigations.
Collapse
Affiliation(s)
- Annie L. Colebatch
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Andrew S. Weller
- Department of ChemistryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
48
|
Maier TM, Sandl S, Shenderovich IG, Jacobi von Wangelin A, Weigand JJ, Wolf R. Amine-Borane Dehydrogenation and Transfer Hydrogenation Catalyzed by α-Diimine Cobaltates. Chemistry 2018; 25:238-245. [PMID: 30378191 DOI: 10.1002/chem.201804811] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 11/07/2022]
Abstract
Anionic α-diimine cobalt complexes, such as [K(thf)1.5 {(Dipp BIAN)Co(η4 -cod)}] (1; Dipp=2,6-diisopropylphenyl, cod=1,5-cyclooctadiene), catalyze the dehydrogenation of several amine-boranes. Based on the excellent catalytic properties, an especially effective transfer hydrogenation protocol for challenging olefins, imines, and N-heteroarenes was developed. NH3 BH3 was used as a dihydrogen surrogate, which transferred up to two equivalents of H2 per NH3 BH3 . Detailed spectroscopic and mechanistic studies are presented, which document the rate determination by acidic protons in the amine-borane.
Collapse
Affiliation(s)
- Thomas M Maier
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Sebastian Sandl
- University of Regensburg, Institute of Organic Chemistry, 93040, Regensburg, Germany.,Current address: University of Hamburg, Department of Chemistry, 20146, Hamburg, Germany
| | - Ilya G Shenderovich
- University of Regensburg, Institute of Organic Chemistry, 93040, Regensburg, Germany
| | - Axel Jacobi von Wangelin
- University of Regensburg, Institute of Organic Chemistry, 93040, Regensburg, Germany.,Current address: University of Hamburg, Department of Chemistry, 20146, Hamburg, Germany
| | - Jan J Weigand
- TU Dresden, Faculty of Chemistry and Food Chemistry, Chair of Inorganic Molecular Chemistry, 01062, Dresden, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
49
|
Hegen O, Virovets AV, Timoshkin AY, Scheer M. The Lewis-Base-Stabilized Diphenyl-Substituted Arsanylborane: A Versatile Building Block for Arsanylborane Oligomers. Chemistry 2018; 24:16521-16525. [DOI: 10.1002/chem.201804341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Oliver Hegen
- Institut für Anorganische Chemie; Universität Regensburg; 93040 Regensburg Germany
| | - Alexander V. Virovets
- Institut für Anorganische Chemie; Universität Regensburg; 93040 Regensburg Germany
- Nikolaev Institute of Inorganic Chemistry; Siberian Division of Russian Academy of Sciences, Acad. Lavrentyev Prosp, 3; 630090 Novosibirsk Russia
- Novosibirsk State University; ul. Pirogova, 3 630090 Novosibirsk Russia
| | - Alexey Y. Timoshkin
- Institute of Chemistry; St. Petersburg State University; 199034 Universitetskaya emb. 7/9 St. Petersburg Russia
| | - Manfred Scheer
- Institut für Anorganische Chemie; Universität Regensburg; 93040 Regensburg Germany
| |
Collapse
|
50
|
Sen B, Demirkan B, Şimşek B, Savk A, Sen F. Monodisperse palladium nanocatalysts for dehydrocoupling of dimethylamineborane. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|