1
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Cook EN, Flaxman LA, Reid AG, Dickie DA, Machan CW. Acid Strength Effects on Dimerization during Metal-Free Catalytic Dioxygen Reduction. J Am Chem Soc 2024; 146:24892-24900. [PMID: 39205655 PMCID: PMC11403605 DOI: 10.1021/jacs.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of earth-abundant catalysts for the reduction of dioxygen (ORR) is essential for the development of alternative industrial processes and energy sources. Here, we report a transition metal-free dicationic organocatalyst (Ph2Phen2+) for the ORR. The ORR performance of this compound was studied in acetonitrile solution under both electrochemical conditions and spectrochemical conditions, using halogenated acetic acid derivatives spanning a pKa range of 12.65 to 20.3. Interestingly, it was found that under electrochemical conditions, a kinetically relevant peroxo dimer species forms with all acids. However, under spectrochemical conditions, strong acids diminish the kinetic contribution of this dimer to the observed rate due to lower catalyst concentrations, whereas weaker acids were still rate-limited by the dimer equilibrium. Together, these results provide insight into the mechanisms of ORR by organic-based, metal-free catalysts, suggesting that balancing redox activity and unsaturated character of these molecules with respect to the pKa of intermediates can enable reaction tuning analogous to transition metal-based systems.
Collapse
Affiliation(s)
- Emma N Cook
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Luke A Flaxman
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Amelia G Reid
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
3
|
Kumar P, M B, Rasool A, Demeshko S, Bommakanti S, Mukhopadhyay N, Gupta R, Dar MA, Ghosh M. Bioinspired Diiron Complex with Proton Shuttling and Redox-Active Ligand for Electrocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:16146-16160. [PMID: 38985539 DOI: 10.1021/acs.inorgchem.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A μ-oxo diiron complex, featuring the pyridine-2,6-dicarboxamide-based thiazoline-derived redox-active ligand, H2L (H2L = N2,N6-bis(4,5-dihydrothiazol-2-yl)pyridine-2,6-dicarboxamide), was synthesized and thoroughly characterized. [FeIII-(μ-O)-FeIII] showed electrocatalytic hydrogen evolution reaction activity in the presence of different organic acids of varying pKa values in dimethylformamide. Through electrochemical analysis, we found that [FeIII-(μ-O)-FeIII] is a precatalyst that undergoes concerted two-electron reduction to generate an active catalyst. Fourier transform infrared spectrum of reduced species and density functional theory (DFT) investigation indicate that the active catalyst contains a bridged hydroxo unit which serves as a local proton source for the Fe(III) hydride intermediate to release H2. We propose that in this active catalyst, the thiazolinium moiety acts as a proton-transferring group. Additionally, under sufficiently strong acidic conditions, bridged oxygen gets protonated before two-electron reduction. In the presence of exogenous acids of varying strengths, it displays electro-assisted catalytic response at a distinct applied potential. Stepwise electron-transfer and protonation reactions on the metal center and the ligand were studied through DFT to understand the thermodynamically favorable pathways. An ECEC or EECC mechanism is proposed depending on the acid strength and applied potential.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Ashoka University, Sonipat, Delhi NCR, Haryana 131029, India
| | - Bharath M
- Department of Chemistry, Ashoka University, Sonipat, Delhi NCR, Haryana 131029, India
| | - Anjumun Rasool
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Serhiy Demeshko
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, Göttingen D 37077, Germany
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Manzoor Ahmad Dar
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Sonipat, Delhi NCR, Haryana 131029, India
| |
Collapse
|
4
|
Dutt S, Kottaichamy AR, Dargily NC, Mukhopadhyay S, Nayak B, Devendrachari MC, Vinod CP, Nimbegondi Kotresh HM, Ottakam Thotiyl M. Switchable molecular electrocatalysis. Chem Sci 2024; 15:13262-13270. [PMID: 39183932 PMCID: PMC11339944 DOI: 10.1039/d4sc01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024] Open
Abstract
We demonstrate a switchable electrocatalysis mechanism modulated by hydrogen bonding interactions in ligand geometries. By manipulating these geometries, specific electrochemical processes at a single catalytic site can be selectively and precisely activated or deactivated. The α geometry enhances dioxygen electroreduction (ORR) while inhibiting protium redox processes, with the opposite effect seen in the β geometry. Intramolecular hydrogen bonding in the α geometry boosts electron density at the catalytic center, facilitating a shift of ORR to a 4-electron pathway. Conversely, the β geometry promotes a 2-electron ORR and facilitates electrocatalytic hydrogen evolution through an extensive proton charge assembly; offering a paradigm shift to conventional electrocatalytic principles. The expectations that ligand geometry induced electron density modulations in the catalytic metal centre would have a comparable impact on both ORR and HER has been questioned due to the contrasting reactivity exhibited by α-geometry and β-geometry molecules. This further emphasizes the complex and intriguing nature of the roles played by ligands in molecular electrocatalysis.
Collapse
Affiliation(s)
- Shifali Dutt
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Alagar Raja Kottaichamy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Neethu Christudas Dargily
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Sanchayita Mukhopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Bhojkumar Nayak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | | | | | | | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
5
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
6
|
Obisesan SV, Parvin M, Tao M, Ramos E, Saunders AC, Farnum BH, Goldsmith CR. Installing Quinol Proton/Electron Mediators onto Non-Heme Iron Complexes Enables Them to Electrocatalytically Reduce O 2 to H 2O at High Rates and Low Overpotentials. Inorg Chem 2024; 63:14126-14141. [PMID: 39008564 DOI: 10.1021/acs.inorgchem.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We prepare iron(II) and iron(III) complexes with polydentate ligands that contain quinols, which can act as electron proton transfer mediators. Although the iron(II) complex with N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) is inactive as an electrocatalyst, iron complexes with N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qp2) and N-(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H2qp3) were found to be much more active and more selective for water production than a previously reported cobalt-H2qp1 electrocatalyst while operating at low overpotentials. The catalysts with H2qp3 can enter the catalytic cycle as either Fe(II) or Fe(III) species; entering the cycle through Fe(III) lowers the effective overpotential. On the basis of their TOF0 values, the successful iron-quinol complexes are better electrocatalysts for oxygen reduction than previously reported iron-porphyrin compounds, with the Fe(III)-H2qp3 arguably being the best homogeneous electrocatalyst for this reaction. With iron, the quinol-for-phenol substitution shifts the product selectivity from H2O2 to water with little impact on the overpotential, but unlike cobalt, this substitution also greatly improves the activity, as assessed by TOFmax, by hastening the protonation and oxygen binding steps. The addition of a second quinol further enhances the activity and selectivity for water but modestly increases the effective overpotential.
Collapse
Affiliation(s)
- Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Maksuda Parvin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew Tao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eric Ramos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
7
|
Branch K, Johnson ER, Nichols EM. Porphyrin Aggregation under Homogeneous Conditions Inhibits Electrocatalysis: A Case Study on CO 2 Reduction. ACS CENTRAL SCIENCE 2024; 10:1251-1261. [PMID: 38947202 PMCID: PMC11212130 DOI: 10.1021/acscentsci.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Metalloporphyrins are widely used as homogeneous electrocatalysts for transformations relevant to clean energy and sustainable organic synthesis. Metalloporphyrins are well-known to aggregate due to π-π stacking, but surprisingly, the influence of aggregation on homogeneous electrocatalytic performance has not been investigated previously. Herein, we present three structurally related iron meso-phenylporphyrins whose aggregation properties are different in commonly used N,N-dimethylformamide (DMF) electrolyte. Both spectroscopy and light scattering provide evidence of extensive porphyrin aggregation under conventional electrocatalytic conditions. Using the electrocatalytic reduction of CO2 to CO as a test reaction, cyclic voltammetry reveals an inverse dependence of the kinetics on the catalyst concentration. The inhibition extends to bulk performance, where up to 75% of the catalyst at 1 mM is inactive compared to at 0.25 mM. We additionally report how aggregation is perturbed by organic additives, axial ligands, and redox state. Periodic boundary calculations provide additional insights into aggregate stability as a function of metalloporphyrin structure. Finally, we generalize the aggregation phenomenon by surveying metalloporphyrins with different metals and substituents. This study demonstrates that homogeneous metalloporphyrins can aggregate severely in well-solubilizing organic electrolytes, that aggregation can be easily modulated through experimental conditions, and that the extent of aggregation must be considered for accurate catalytic benchmarking.
Collapse
Affiliation(s)
- Kaitlin
L. Branch
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Erin R. Johnson
- Department
of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Eva M. Nichols
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
8
|
Santra A, Das A, Kaur S, Jain P, Ingole PP, Paria S. Catalytic reduction of oxygen to water by non-heme iron complexes: exploring the effect of the secondary coordination sphere proton exchanging site. Chem Sci 2024; 15:4095-4105. [PMID: 38487234 PMCID: PMC10935699 DOI: 10.1039/d3sc06753j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, we prepared non-heme FeIII complexes (1, 2, and 3) of an N4 donor set of ligands (H2L, Me2L, and BPh2L). 1 is supported by a monoanionic bispyridine-dioxime ligand (HL). In 2 and 3, the primary coordination sphere of Fe remained similar to that in 1, except that the oxime protons of the ligand were replaced with two methyl groups and a bridging -BPh2 moiety, respectively. X-ray structures of the FeII complexes (1a and 3a) revealed similar Fe-N distances; however, they were slightly elongated in 2a. The FeIII/FeII potential of 1, 2, and 3 appeared at -0.31 V, -0.25 V, and 0.07 V vs. Fc+/Fc, respectively, implying that HL and Me2L have comparable donor properties. However, BPh2L is more electron deficient than HL or Me2L. 1 showed electrocatalytic oxygen reduction reaction (ORR) activity in acetonitrile in the presence of trifluoroacetic acid (TFAH) as the proton source at Ecat/2 = -0.45 V and revealed selective 4e-/4H+ reduction of O2 to H2O. 1 showed an effective overpotential (ηeff) of 0.98 V and turnover frequency (TOFmax) of 1.02 × 103 s-1. Kinetic studies revealed a kcat of 2.7 × 107 M-2 s-1. Strikingly, 2 and 3 remained inactive for electrocatalytic ORR, which established the essential role of the oxime scaffolds in the electrocatalytic ORR of 1. Furthermore, a chemical ORR of 1 has been investigated using decamethylferrocene as the electron source. For 1, a similar rate equation was noted to that of the electrocatalytic pathway. A kcat of 6.07 × 104 M-2 s-1 was found chemically. Complex 2, however, underwent a very slow chemical ORR. Complex 3 chemically enhances the 4e-/4H+ reduction of O2 and exhibits a TOF of 0.24 s-1 and a kcat value of 2.47 × 102 M-1 s-1. Based on the experimental observations, we demonstrate that the oxime backbone of the ligand in 1 works as a proton exchanging site in the 4e-/4H+ reduction of O2. The study describes how the ORR is affected by the tuning of the ligand scaffold in a family of non-heme Fe complexes.
Collapse
Affiliation(s)
- Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
9
|
Zhang HT, Xie F, Guo YH, Xiao Y, Zhang MT. Selective Four-Electron Reduction of Oxygen by a Nonheme Heterobimetallic CuFe Complex. Angew Chem Int Ed Engl 2023; 62:e202310775. [PMID: 37837365 DOI: 10.1002/anie.202310775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
We report herein the first nonheme CuFe oxygen reduction catalyst ([CuII (bpbp)(μ-OAc)2 FeIII ]2+ , CuFe-OAc), which serves as a functional model of cytochrome c oxidase and can catalyze oxygen reduction to water with a turnover frequency of 2.4×103 s-1 and selectivity of 96.0 % in the presence of Et3 NH+ . This performance significantly outcompetes its homobimetallic analogues (2.7 s-1 of CuCu-OAc with %H2 O2 selectivity of 98.9 %, and inactive of FeFe-OAc) under the same conditions. Structure-activity relationship studies, in combination with density functional theory calculation, show that the CuFe center efficiently mediates O-O bond cleavage via a CuII (μ-η1 : η2 -O2 )FeIII peroxo intermediate in which the peroxo ligand possesses distinctive coordinating and electronic character. Our work sheds light on the nature of Cu/Fe heterobimetallic cooperation in oxygen reduction catalysis and demonstrates the potential of this synergistic effect in the design of nonheme oxygen reduction catalysts.
Collapse
Affiliation(s)
- Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Xie
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Hua Guo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
11
|
Wei Y, Liang Y, Wu Q, Xue Z, Feng L, Zhang J, Zhao L. Effects of tuning the structural symmetry of cobalt porphyrin on electrocatalytic oxygen reduction reactions. Dalton Trans 2023; 52:14573-14582. [PMID: 37782272 DOI: 10.1039/d3dt02233a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Metalloporphyrins have attracted significant attention as highly promising alternatives to Pt-based electrocatalysts in the realm of oxygen reduction reactions (ORRs). While the structure of porphyrin is widely recognized as a pivotal factor influencing the ORR performance, the impact of molecular symmetry, which is one of the key properties of the molecular structure, has rarely been understood and its effects remain largely unexplored. Herein, we designed and synthesized two triphenylamine (TPA)-substituted cobalt porphyrins, the asymmetric aBz-TCoP and the symmetric Bz-2TCoP, which are doped onto carbon black to construct composite catalysts for ORRs. The electronic structures of both porphyrins are determined through density functional theory (DFT) calculations, and the morphology and electronic states of the composites are examined by spectroscopic techniques. A series of electrochemical measurements demonstrate the superior activity, selectivity and durability of Bz-2TCoP/C to aBz-TCoP/C in ORRs conducted in both acidic and alkaline electrolytes. The improved ORR properties of the symmetric porphyrin may stem from the steric properties rather than the electronic properties of the chemical structure. This work represents a preliminary study on the effects of porphyrin structural symmetry on electrocatalysis and provides a potential strategy for further structural modifications of metalloporphyrins, as non-noble metal electrocatalysts, to enhance the ORR performance.
Collapse
Affiliation(s)
- Yuqin Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qijie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, PR China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
12
|
Teindl K, Patrick BO, Nichols EM. Linear Free Energy Relationships and Transition State Analysis of CO 2 Reduction Catalysts Bearing Second Coordination Spheres with Tunable Acidity. J Am Chem Soc 2023; 145:17176-17186. [PMID: 37499125 DOI: 10.1021/jacs.3c03919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In molecular catalysts, protic functional groups in the secondary coordination sphere (SCS) work in conjunction with an exogenous acid to relay protons to the active site of electrochemical CO2 reduction; however, it is not well understood how the acidity of the SCS and exogenous acid together determine the kinetics of catalytic turnover. To evaluate the relative contributions of proton transfer driving forces, we synthesized a series of modular iron tetraphenylporphyrin electrocatalysts bearing SCS amides of tunable pKa (17.6 to 20.0 in dimethyl sulfoxide (DMSO)) and employed phenols of variable acidity (15.3 to 19.1) as exogenous acids. This system allowed us to (1) evaluate contributions from proton transfer driving forces associated with either the SCS or exogenous acid and (2) obtain mechanistic insights into CO2 reduction as a function of pKa. A series of linear free-energy relationships show that kinetics become increasingly sensitive to variations in SCS pKa when more acidic exogenous acids are used (0.82 ≥ Brønsted α ≥ 0.13), as well as to variations in exogenous acid pKa when SCS acidity is increased (0.62 ≥ Brønsted α ≥ 0.32). An Eyring analysis suggests that the rate-determining transition state becomes more ordered with decreasing SCS acidity, which is consistent with the proposal that SCS acidity modulates charge accumulation and solvation at the rate-limiting transition state. Together, these insights enable the optimization of activation barriers as a function of both SCS and exogenous acid pKa and can further guide the rational design of electrocatalytic systems wherein contributions from all participants in a proton relay are considered.
Collapse
Affiliation(s)
- Kaeden Teindl
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
13
|
Dung TP, Chihaia V, Son DN. Effects of functional groups in iron porphyrin on the mechanism and activity of oxygen reduction reaction. RSC Adv 2023; 13:8523-8534. [PMID: 36926297 PMCID: PMC10012414 DOI: 10.1039/d2ra08007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
The activity of the oxygen reduction reaction (ORR) on the cathode is one of the dominant factors in the performance of proton exchange membrane fuel cells. Iron porphyrin has low cost, environmental benignity, and maximum efficiency of metal usage. Therefore, this material can be a promising single-atomic metal dispersion catalyst for fuel cell cathodes. The variation of functional groups was proven to effectively modify the activity of the ORR on the iron porphyrin. However, the influences of functional groups on the mechanisms of the ORR remain ambiguous. This work paid attention to the substitution of carboxyl (-COOH), methyl (-CH3), and amino (-NH2) functional groups at the meso positions of the porphyrin ring. By using van der Waals density functional theory (vdW-DF) calculations, we found that the ORR mechanisms can follow the associative and dissociative pathways, respectively. The Gibbs free energy diagrams revealed that the rate-limiting step occurs at the second hydrogenation step for the first pathway and the O2 dissociation step for the second pathway for all considered functional groups. The thermodynamic energy barrier at the rate-limiting step was found to be in the following order: porphyrin-(CH3)4 < porphyrin-(NH2)4 < original porphyrin < porphyrin-(COOH)4 for the associative mechanism and porphyrin-(NH2)4 < porphyrin-(CH3)4 < porphyrin-(COOH)4 < original porphyrin for the dissociative pathway. The findings suggested that porphyrin-(CH3)4 and porphyrin-(NH2)4 should be the best choices among the considered substrates for the oxygen reduction reaction. Furthermore, the interaction between the ORR intermediates and the substrates was attributed to the resonance of the d z 2 , d xz , and d yz components of the Fe d orbital and the C and N p orbitals of the substrates with the p orbitals of the oxygen atoms in the intermediates. Finally, the nature of the interaction between the adsorbent and adsorbate was charge transfer.
Collapse
Affiliation(s)
- Tran Phuong Dung
- Department of Chemistry, University of Science, Vietnam National University Ho Chi Minh City Vietnam.,Department of Chemistry, Ho Chi Minh City University of Education Ho Chi Minh City Vietnam
| | - Viorel Chihaia
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy Splaiul Independentei 202, Sector 6 060021 Bucharest Romania
| | - Do Ngoc Son
- Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street District 10 Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Linh Trung Ward Ho Chi Minh City Vietnam
| |
Collapse
|
14
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
15
|
Gao Y, Lei H, Bao Z, Liu X, Qin L, Yin Z, Li H, Huang S, Zhang W, Cao R. Electrocatalytic oxygen reduction with cobalt corroles bearing cationic substituents. Phys Chem Chem Phys 2023; 25:4604-4610. [PMID: 36723094 DOI: 10.1039/d2cp05786g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent decades have seen increasing interest in developing highly active and selective electrocatalysts for the oxygen reduction reaction (ORR). The active site environment of cytochrome c oxidases (CcOs), including electrostatic and hydrogen-bonding interactions, plays an important role in promoting the selective conversion of dioxygen to water. Herein, we report the synthesis of three CoIII corroles, namely 1 (with a 10-phenyl ortho-trimethylammonium cationic group), 2 (with a 10-phenyl ortho-dimethylamine group) and 3 (with a 10-phenyl para-trimethylammonium cationic group) as well as their electrocatalytic ORR activities in both acidic and neutral solutions. We discovered that 1 is much more active and selective than 2 and 3 for the electrocatalytic four-electron ORR. Importantly, 1 showed ORR activities with half-wave potentials at E1/2 = 0.75 V versus RHE in 0.5 M H2SO4 solutions and at E1/2 = 0.70 V versus RHE in neutral 0.1 M phosphate buffer solutions. This work is significant for outlining a strategy to increase both the activity and selectivity of metal corroles for the electrocatalytic ORR by introducing cationic units.
Collapse
Affiliation(s)
- Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinrong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lingshuang Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhiyuan Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huiyuan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shu Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
16
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
17
|
Harraz DM, Weng S, Surendranath Y. Electrochemically Quantifying Oxygen Reduction Selectivity in Nonaqueous Electrolytes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Deiaa M. Harraz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sophia Weng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Zamani-Meymian MR, Khanmohammadi Chenab K, Pourzolfaghar H. Designing High-Quality Electrocatalysts Based on CoO:MnO 2@C Supported on Carbon Cloth Fibers as Bifunctional Air Cathodes for Application in Rechargeable Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55594-55607. [PMID: 36475585 DOI: 10.1021/acsami.2c16826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To achieve the requirements of rechargeable Zn-air batteries (ZABs), designing efficient, bifunctional, stable, and cost-effective electrocatalysts is vital for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which still are struggling with unsolved challenges. The present research provides a concept based on the nanoscale composites which were engineered by using MnO2@C, CoO@C, and CoO:MnO2@C bifunctional electrocatalysts for fabrication of uniform carbon cloth (CC)-based electrodes. The CoO:MnO2@C electrocatalyst represented more efficient electrochemical properties through ORR and OER processes with superior positive half-wave potential (E1/2 = 0.78 V) and better limiting current density (i = 1.10 mA cm-2) in comparison with MnO2@C (E1/2 = 0.71 V, i = 0.92 mA cm-2) and CoO@C (E1/2 = 0.69 V, i = 0.86 mA cm-2) electrocatalysts. For the rechargeable ZABs fabricated by using CoO:MnO2@C-CC as an O2-breathing cathode, the specific capacity (SC), peak power density (P), open-circuit voltage (EOCV), and gap of charge/discharge voltage resulted in values of 520 mAh gZn-1, 210.0 mW cm-2, and 1.45 and 0.45 V, respectively, that afforded greater electrochemical characters than what was obtained for ZABs based on MnO2@C-CC (410 mAh gZn-1, 195.0 mW cm-2, 1.38 and 0.44 V) and CoO@C-CC (440 mAh gZn-1, 165.0 mW cm-2, 1.15 and 0.54 V). At the same time, lower Ei=10 (= 1.45 V) implied a more efficient OER in alkaline electrolyte solution for CoO:MnO2@C than MnO2@C (Ei=10 = 1.50 V) and CoO@C (Ei=10 = 1.39 V). Based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and X-ray photoelectron spectroscopy (XPS) results, it could be stated that the CoO:MnO2@C catalytic surface could experience 30 and 32% lower charge transfer resistance (Rct = 13.9 Ω) than MnO2@C (Rct = 20.1 Ω) and CoO@C (Rct = 29.7 Ω), respectively, which empowers an enhancement in ORR/OER performance. Prominently, the design concept of proposed electrocatalysts could suggest clear horizon for the synthesis and development paradigms of bifunctional catalysts for energy storage materials and devices.
Collapse
Affiliation(s)
| | - Karim Khanmohammadi Chenab
- Department of Physics, Iran University of Science and Technology, Tehran16846-13114, Iran
- Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran
| | - Hamed Pourzolfaghar
- Department of Physics, Iran University of Science and Technology, Tehran16846-13114, Iran
- Department of Chemical Engineering, National Chung Cheng University, Min-Hsiung, Chia-yi62102, Taiwan
| |
Collapse
|
19
|
Obisesan SV, Rose C, Farnum BH, Goldsmith CR. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O 2 to H 2O. J Am Chem Soc 2022; 144:22826-22830. [DOI: 10.1021/jacs.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
20
|
Hern M, Foley R, Bacsa J, Wallen CM. Binding polyprotic small molecules with second-sphere hydrogen bonds. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Morgan Hern
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Rebecca Foley
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Christian M. Wallen
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| |
Collapse
|
21
|
Wei Y, Zhao L, Yuan R, Xue Z, Mack J, Chiyumba C, Nyokong T, Zhang J. Promotion of Catalytic Oxygen Reduction Reactions: The Utility of Proton Management Substituents on Cobalt Porphyrins. Inorg Chem 2022; 61:13085-13095. [PMID: 35943152 DOI: 10.1021/acs.inorgchem.2c01591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three ABAB-type cobalt meso-tetraarylporphyrins with fluorine (F-CoPor), acetic acid (AC-CoPor), and cyanoacetic acid (CN-CoPor) groups at the para-positions of phenyl rings at the 10,20-positions are synthesized and evaluated as catalysts for oxygen reduction reactions (ORRs). In density functional theory calculations, the frontier molecular orbitals of these complexes were found to be stabilized relative to model complexes with electron-withdrawing atoms or moieties on the meso-aryl rings. Electrochemical measurements suggest that electrodes with CN-CoPor (CN-CoPor/C) exhibit the most positive ORR potential values and the highest limiting current density in both acidic and alkali electrolytes, while the F-CoPor/C electrocatalyst exhibits extremely low ORR performance. The electron transfer numbers for the electrocatalysts are more than 3.0, indicating that a mixture of 2- and 4-electron transfer pathways occurs. The results demonstrate that coupling the hydrogen bonding properties and electron-withdrawing abilities through rational design of the substituent at the meso-position is an efficient way to modify the ORR performance.
Collapse
Affiliation(s)
- Yuqin Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Rui Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Choonzo Chiyumba
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
22
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
23
|
Arima H, Nakazono T, Wada T. Proton Relay Effects on Oxygen Reduction Reaction Catalyzed by Dinuclear Cobalt Polypyridyl Complexes with OH Groups on Bipyridine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
24
|
Berthelot M, Akhssas F, Dimé AKD, Bousfiha A, Echaubard J, Souissi G, Cattey H, Lucas D, Fleurat-Lessard P, Devillers CH. Stepwise Oxidative C-C Coupling and/or C-N Fusion of Zn(II) meso-Pyridin-2-ylthio-porphyrins. Inorg Chem 2022; 61:7387-7405. [PMID: 35500211 DOI: 10.1021/acs.inorgchem.2c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and characterization of zinc(II) meso-pyridin-2-ylthio-porphyrins are presented in this manuscript. The (electro)chemical oxidation of [5-(pyridin-2-ylthio)-10,20-bis(p-tolyl)-15-phenylporphyrinato] zinc(II) or [5,15-bis(pyridin-2-ylthio)-10,20-bis(p-tolyl)porphyrinato] zinc(II) leads to the formation of one or two C-N bond(s) by intramolecular nucleophilic attack of the peripheral thiopyridinyl fragment(s) on the neighboring β-pyrrolic position(s) (C-N fusion reaction). In addition, the chemical oxidation of [5-(pyridin-2-ylthio)-10,20-bis(p-tolyl)porphyrinato] zinc(II), i.e., bearing one free meso position, mainly affords the meso,meso-dimer. Further stepwise electrochemical oxidation selectively produces the mono and bis C-N fused meso,meso-dimer. The resulting pyridinium derivatives exhibit important changes in their physicochemical properties (NMR, UV-vis, CV) as compared to their initial unfused precursors. Also, the X-ray crystallographic structures of three unfused monomers, one unfused meso,meso-dimer, and two C-N fused monomers are presented.
Collapse
Affiliation(s)
- Mathieu Berthelot
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Fatima Akhssas
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Abdou K D Dimé
- Département de Chimie, UFR SATIC, Université Alioune Diop de Bambey, MGWC+9M6 Bambey, Senegal
| | - Asmae Bousfiha
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Julie Echaubard
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Ghada Souissi
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Hélène Cattey
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Dominique Lucas
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Paul Fleurat-Lessard
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| | - Charles H Devillers
- UMR6302, CNRS, Univ. Bourgogne Franche-Comté, Institut de Chimie Moléculaire de l'Université de Bourgogne, 9 avenue Alain Savary, 21000 Dijon, France
| |
Collapse
|
25
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
26
|
Cai Q, Tran LK, Qiu T, Eddy JW, Pham TN, Yap GPA, Rosenthal J. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e -/4H + Peractivation of O 2 to Water. Inorg Chem 2022; 61:5442-5451. [PMID: 35358381 DOI: 10.1021/acs.inorgchem.1c03766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective 4e-/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) or Co(III) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. However, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e-/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based on a nonaromatic isocorrole scaffold that is competent for 4e-/4H+ oxygen reduction reaction (ORR). This Co(II) 10,10-dimethyl isocorrole (Co[10-DMIC]) is obtained in just four simple steps and has excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co porphyrin (cobalt 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, [Co(TPFPP)]) and corrole (cobalt 5,10,15-tris(pentafluorophenyl)corrole triphenylphosphine, Co[TPFPC](PPh3)) homologues demonstrated that the spectroscopic and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, the investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ∼85% selective for the 4e-/4H+ reduction of O2 to H2O over the more kinetically facile 2e-/2H+ process that delivers H2O2. In contrast, the same ORR evaluations conducted for the Co porphyrin and corrole homologues demonstrated that these traditional aromatic systems catalyze the 2e-/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups or ditopic molecular clefts or that impose cofacially oriented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and shows a privileged performance for the 4e-/4H+ peractivation of O2 to water as compared to other simple cobalt containing tetrapyrroles.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Linh K Tran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tian Qiu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer W Eddy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Zhang W, Meeus EJ, Wang L, Zhang LH, Yang S, de Bruin B, Reek JNH, Yu F. Boosting Electrochemical Oxygen Reduction Performance of Iron Phthalocyanine through Axial Coordination Sphere Interaction. CHEMSUSCHEM 2022; 15:e202102379. [PMID: 34904388 DOI: 10.1002/cssc.202102379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Precise regulation of the electronic states of catalytic sites through molecular engineering is highly desired to boost catalytic performance. Herein, a facile strategy was developed to synthesize efficient oxygen reduction reaction (ORR) catalysts, based on mononuclear iron phthalocyanine supported on commercially available multi-walled carbon nanotubes that contain electron-donating functional groups (FePc/CNT-R, with "R" being -NH2 , -OH, or -COOH). These functional groups acted as axial ligands that coordinated to the Fe site, confirmed by X-ray photoelectron spectroscopy and synchrotron-radiation-based X-ray absorption fine structure. Experimental results showed that FePc/CNT-NH2 , with the most electron-donating -NH2 axial ligand, exhibited the highest ORR activity with a positive onset potential (Eonset =1.0 V vs. reversible hydrogen electrode) and half-wave potential (E1/2 =0.92 V). This was better than the state-of-the-art Pt/C catalyst (Eonset =1.00 V and E1/2 =0.85 V) under the same conditions. Overall, the functionalized FePc/CNT-R assemblies showed enhanced ORR performance in comparison to the non-functionalized FePc/CNT assembly. The origin of this behavior was investigated using density functional theory calculations, which demonstrated that the coordination of electron-donating groups to FePc facilitated the adsorption and activation of oxygen. This study not only demonstrates a series of advanced ORR electrocatalysts, but also introduces a feasible strategy for the rational design of highly active electrocatalysts for other proton-coupled electron transfer reactions.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Eva J Meeus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Lei Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shuangcheng Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Joost N H Reek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (The, Netherlands
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
28
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
29
|
Thenarukandiyil R, Paenurk E, Wong A, Fridman N, Karton A, Carmieli R, Ménard G, Gershoni-Poranne R, de Ruiter G. Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorg Chem 2021; 60:18296-18306. [PMID: 34787414 PMCID: PMC8653161 DOI: 10.1021/acs.inorgchem.1c02925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Metal-ligand cooperation is an important aspect in earth-abundant metal catalysis. Utilizing ligands as electron reservoirs to supplement the redox chemistry of the metal has resulted in many new exciting discoveries. Here, we demonstrate that iron bipyridine-diimine (BDI) complexes exhibit an extensive electron-transfer series that spans a total of five oxidation states, ranging from the trication [Fe(BDI)]3+ to the monoanion [Fe(BDI]-1. Structural characterization by X-ray crystallography revealed the multifaceted redox noninnocence of the BDI ligand, while spectroscopic (e.g., 57Fe Mössbauer and EPR spectroscopy) and computational studies were employed to elucidate the electronic structure of the isolated complexes, which are further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Eno Paenurk
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Anthony Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School
of Molecular Science, The University of
Western Australia, 35 Stirling Highway, 6009 Perth, Australia
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 761000, Israel
| | - Gabriel Ménard
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
30
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Arima H, Wada M, Nakazono T, Wada T. Tuning Oxygen Reduction Catalysis of Dinuclear Cobalt Polypyridyl Complexes by the Bridging Structure. Inorg Chem 2021; 60:9402-9415. [PMID: 33988979 DOI: 10.1021/acs.inorgchem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four-electron oxygen reduction reaction (4e--ORR) is the mainstay in chemical energy conversion. Elucidation of factors influencing the catalyst's reaction rate and selectivity is important in the development of more active catalysts of 4e--ORR. In this study, we investigated chemical and electrochemical 4e--ORR catalyzed by Co2(μ-O2) complexes bridged by xanthene (1) and anthracene (3) and by a Co2(OH)2 complex bridged by anthraquinone (2). In the chemical ORR using Fe(CpMe)2 as a reductant in acidic PhCN, we found that 1 showed the highest initial turnover frequency (TOFinit = 6.8 × 102 s-1) and selectivity for 4e--ORR (96%) in three complexes. The detailed kinetic analyses have revealed that the rate-determining steps (RDSs) in the catalytic cycles of 1-3 have the O2 addition to [CoII2(OH2)2]4+ as an intermediate in common. In the only case that complex 1 was used as a catalyst, kcat depended on proton concentration because the reaction rate of the O2 addition to [CoII2(OH2)2]4+ was so fast as compared to that of the concerted PCET process of 1. Through X-ray, Raman, and electrochemical analyses and stoichiometric reactions, we found the face-to-face structure of 1 characterized by a slightly flexible xanthene was advantageous in capturing O2 and stabilizing the Co2(μ-O2) structure, thus increasing both the reaction rate and selectivity for 4e--ORR.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Misato Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
32
|
Smith PT, Benke BP, An L, Kim Y, Kim K, Chang CJ. A Supramolecular Porous Organic Cage Platform Promotes Electrochemical Hydrogen Evolution from Water Catalyzed by Cobalt Porphyrins. ChemElectroChem 2021. [DOI: 10.1002/celc.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Lun An
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720-1460 USA
| |
Collapse
|
33
|
Ni Y, Lu Y, Zhang K, Chen J. Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction. CHEMSUSCHEM 2021; 14:1835-1839. [PMID: 33605052 DOI: 10.1002/cssc.202100182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.
Collapse
Affiliation(s)
- Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Lei H, Zhang Q, Wang Y, Gao Y, Wang Y, Liang Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Trans 2021; 50:5120-5123. [PMID: 33881086 DOI: 10.1039/d1dt00441g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is of great importance. Herein, Co tetrakis(pentafluorophenyl)porphyrin (Co-P) and Fe chloride tetrakis(pentafluorophenyl)porphyrin (Fe-P) were loaded on carbon nanotubes (CNTs) for combining the electrocatalytic advantages of both Co-P and Fe-P. The resultant (Co-P)0.5(Fe-P)0.5@CNT composite displayed significantly boosted activity for the selective four-electron ORR with a half-wave potential of 0.80 V versus reversible hydrogen electrode (RHE) and for the OER with a potential of 1.65 V versus RHE to obtain 10 mA cm-2 current density in 0.1 M KOH. A Zn-air battery assembled from (Co-P)0.5(Fe-P)0.5@CNT exhibited a small charge-discharge voltage gap of 0.74 V at 2 mA cm-2, a high power density of 174.5 mW cm-2 and a good rechargeable stability (>120 cycles).
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
35
|
Xu Q, Zhao L, Ma Y, Yuan R, Liu M, Xue Z, Li H, Zhang J, Qiu X. Substituents and the induced partial charge effects on cobalt porphyrins catalytic oxygen reduction reactions in acidic medium. J Colloid Interface Sci 2021; 597:269-277. [PMID: 33872883 DOI: 10.1016/j.jcis.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/01/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
Charge states at the catalytic interface can intensely alter the charge transfer mechanism and thus the oxygen reduction performance. Two symmetric cobalt porphyrins with electron deficient 2,1,3-benzothiadiazole (BTD) and electron-donating propeller-like triphenylamine (TPA) derivatives have been designed firstly, to rationally generate intramolecular partial charges, and secondly, to utilize the more exposed molecular orbitals on TPA for enhancing the charge transfer kinetics. The catalytic performance of the two electrocatalysts was examined for oxygen reduction reactions (ORR) in acidic electrolyte. It was found that BCP1/C with two BTD groups showed greater reduction potential but less limiting current density as compared to BCP2/C bearing BTD-TPA units. The reduced potential of BCP2/C was proposed to the introduction of the electron-donating ability of TPA, which may decrease the adsorption affinity of oxygen to the cobalt center. Both dipole-induced partial charge effect and the more exposed cation orbitals of the 3D structural TPA were proposed to contribute to the increased response current of BCP2/C. In addition, BCP2/C attained more than 80% of H2O2 generation in acidic solution, which may also relate to the structural effect. These findings may provide new insight into the structural design of organic electrocatalysts and deep understanding on the interfacial charge transfer mechanism for ORR.
Collapse
Affiliation(s)
- Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuhan Ma
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rui Yuan
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Maosong Liu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xinping Qiu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
36
|
Sinha S, Mirica LM. Electrocatalytic O 2 Reduction by an Organometallic Pd(III) Complex via a Binuclear Pd(III) Intermediate. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Xie L, Zhang X, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel U, Cao R. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
38
|
Xie L, Zhang XP, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel UP, Cao R. Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021; 60:7576-7581. [PMID: 33462971 DOI: 10.1002/anie.202015478] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm-2 . Theoretical studies suggested that hydroxide attack to a formal FeV =O form the O-O bond. The axial imidazole can prevent the formation of trans HO-FeV =O, which is less effective to form O-O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials.
Collapse
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
39
|
Brezny AC, Nedzbala HS, Mayer JM. Multiple selectivity-determining mechanisms of H 2O 2 formation in iron porphyrin-catalysed oxygen reduction. Chem Commun (Camb) 2021; 57:1202-1205. [PMID: 33427251 DOI: 10.1039/d0cc06701f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple H2O2-forming mechanisms are accessible in Fe(porphyrin)-catalysed oxygen reduction, a key reaction in both fuel cell technologies and oxygen-utilizing enzymes. Our kinetic analysis reveals that the porphyrin secondary structure dictates the pathway for H2O2 formation. This approach is generalizable to other electrocatalytic processes and provides insight into the selectivity-determining steps.
Collapse
Affiliation(s)
- Anna C Brezny
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. and Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866, USA
| | | | - James M Mayer
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Zhang R, Warren JJ. Recent Developments in Metalloporphyrin Electrocatalysts for Reduction of Small Molecules: Strategies for Managing Electron and Proton Transfer Reactions. CHEMSUSCHEM 2021; 14:293-302. [PMID: 33064354 DOI: 10.1002/cssc.202001914] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Porphyrins are archetypal ligands in inorganic chemistry. The last 10 years have seen important new advances in the use of metalloporphyrins as catalysts in the activation and reduction of small molecules, in particular O2 and CO2 . Recent developments of new molecular designs, scaling relationships, and theoretical modeling of mechanisms have rapidly advanced the utility of porphyrins as electrocatalysts. This Minireview focuses on the summary and evaluation of recent developments of metalloporphyrin O2 and CO2 reduction electrocatalysts, with an emphasis on contrasting homogeneous and heterogeneous electrocatalysis. Comparisons for proposed reaction mechanisms are provided for both CO2 and O2 reduction, and ideas are proposed about how lessons from the last decade of research can lead to the development of practical, applied porphyrin-derived catalysts.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| |
Collapse
|
41
|
Straistari T, Morozan A, Shova S, Réglier M, Orio M, Artero V. Catalytic Reduction of Oxygen by a Copper Thiosemicarbazone Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatiana Straistari
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
- Institute of Chemistry. Academy of Sciences of Moldova 3, Academiei street MD 2028 Chisinau Republic of Moldova
| | - Adina Morozan
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
| | - Sergiu Shova
- Institute of Macromolecular Chemistry "Petru Poni" 41A Grigore Ghica Voda Alley 700487 Iasi Romania
| | - Marius Réglier
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
| | - Maylis Orio
- Centrale Marseille, iSm2 Aix‐Marseille Univ., CNRS Marseille France
| | - Vincent Artero
- CEA/IRIG, Laboratoire de Chimie et Biologie des Métaux Univ. Grenoble Alpes, CNRS 17 rue des Martyrs, F‐ 38054 Grenoble cedex 9 France
| |
Collapse
|
42
|
Lu X, Lee YM, Sankaralingam M, Fukuzumi S, Nam W. Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorg Chem 2020; 59:18010-18017. [PMID: 33300784 DOI: 10.1021/acs.inorgchem.0c02400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear nonheme iron(III) complex with a tetraamido macrocyclic ligand (TAML), [(TAML)FeIII]- (1), is a selective precatalyst for four-electron reduction of dioxygen by ferrocene derivatives in the presence of acetic acid (CH3COOH) in acetone. This is the first work to show that a nonheme iron(III) complex catalyzes the four-electron reduction of O2 by one-electron reductants. An iron(V)-oxo complex, [(TAML)FeV(O)]- (2), was produced by oxygenation of 1 with O2 via the formation of triacetone triperoxide (TATP), acting as an autocatalyst that shortened the induction time for the generation of 2. Decamethylferrocene (Me10Fc) and octamethylferrocene (Me8Fc) reduced 2 to 1 by two electrons in the presence of CH3COOH to produce decamethylferrocenium cation (Me10Fc+) and octamethylferrocenium cation (Me8Fc+), respectively. Then, 1 was oxygenated by O2 to regenerate 2 via the formation of TATP. In the cases of ferrocene (Fc), bromoferrocene (BrFc) and 1,1'-dibromoferrocene (Br2Fc), initial electron transfer from ferrocene derivatives to 2 occurred; however, neither a second proton-coupled electron transfer from ferrocene derivatives to 2 nor a catalytic four-electron reduction of O2 occurred.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
43
|
Lashgari A, Williams CK, Glover JL, Wu Y, Chai J, Jiang JJ. Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO 2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry 2020; 26:16774-16781. [PMID: 32701198 DOI: 10.1002/chem.202002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/05/2022]
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jenna L Glover
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Yueshen Wu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221, United States
| |
Collapse
|
44
|
Zhao L, Xu Q, Shao Z, Chen Y, Xue Z, Li H, Zhang J. Enhanced Oxygen Reduction Reaction Performance Using Intermolecular Forces Coupled with More Exposed Molecular Orbitals of Triphenylamine in Co-porphyrin Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45976-45986. [PMID: 32975398 DOI: 10.1021/acsami.0c11742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Triphenylamine (TPA) has often been used as a building block to construct functional organic materials yet is rarely employed in oxygen reduction reaction (ORR) due to its strong electron-donating ability. This versatile segment bears a three-dimensional spatial structure whose effect has not been fully explored in catalytic systems. To this end, five symmetric cobalt porphyrins with carbazole and TPA derivatives have been synthesized and their ORR performance has been evaluated in acid medium. It was found that all compounds produced mainly hydrogen peroxide in oxygen reduction, with CP1 attaching benzyl derivatives and XCP4 possessing TPA-carbazole substituents at the meso-position of porphyrin, showing similar but more positive ORR potential as compared to the other analogues. Importantly, XCP4 achieved the greatest response current and the largest electron transfer numbers and H2O2 yields among the investigated molecules. Detailed electrochemical measurements suggested that the dipole-induced partial charges on the porphyrin in tandem with the more exposed molecular orbitals on TPA contributed to this enhancement, with the former attracting more protons to the affinity of reactive sites and the latter increasing the collision frequency between the electrocatalyst and H+ in solution. This is the first attempt to integrate the intermolecular forces with more exposed molecular orbitals in altering the electrochemical process.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qingxiang Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiwen Shao
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yan Chen
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhaoli Xue
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianming Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
45
|
Chowdhury SN, Biswas S, Das P, Paul S, Biswas AN. Oxygen Reduction Assisted by the Concert of Redox Activity and Proton Relay in a Cu(II) Complex. Inorg Chem 2020; 59:14012-14022. [PMID: 32916051 DOI: 10.1021/acs.inorgchem.0c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A copper complex, [Cu(dpaq)](ClO4) (1), of a monoanionic pentadentate amidate ligand (dpaq) has been isolated and characterized to study its efficacy toward electrocatalytic reduction of oxygen in neutral aqueous medium. The Cu(II) mononuclear complex, poised in a distorted trigonal bipyramidal structure, reduces oxygen at an onset potential of 0.50 V vs RHE. Kinetics study by hydrodynamic voltammetry and chronoamperometry suggests a stepwise mechanism for sequential reduction of O2 to H2O2 to H2O at a single-site Cu-catalyst. The foot-of-the-wave analysis records a turnover frequency of 5.65 × 102 s-1. At pH 7.0, complex 1 undergoes a quasi-reversible mixed metal-ligand-based reduction and triggers the reduction of dioxygen to water. Electrochemical studies in tandem with quantum chemical investigation, conducted at different redox states, portray the active participation of ligand in completing the process of proton-coupled electron transfer internally. The protonated carboxamido moiety acts as a proton relay, while the quinoline-based orbital supplies the necessary redox equivalent for the conversion of complex 1 to Cu(II)-hydroperoxo species. Thus, a suitable combination of redox non-innocence and proton shuttling functionality in the ligand makes it an effective electron-proton-transfer mediator and subsequently assists the process of oxygen reduction.
Collapse
Affiliation(s)
- Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| | - Purak Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati 743165, India
| | - Satadal Paul
- Department of Science and Humanities, Darjeeling Polytechnic, Kurseong 734203, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla, South Sikkim 737139, India
| |
Collapse
|
46
|
Williams CK, Lashgari A, Tomb JA, Chai J, Jiang JJ. Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO
2
Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.202000909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Amir Lashgari
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jenny A. Tomb
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jingchao Chai
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati, Ohio 45221-0172 USA
| |
Collapse
|
47
|
Zhang R, Warren JJ. Controlling the Oxygen Reduction Selectivity of Asymmetric Cobalt Porphyrins by Using Local Electrostatic Interactions. J Am Chem Soc 2020; 142:13426-13434. [DOI: 10.1021/jacs.0c03861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rui Zhang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6 Canada
| | - Jeffrey J. Warren
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6 Canada
| |
Collapse
|
48
|
Noel J, Kostopoulos N, Achaibou C, Fave C, Anxolabéhère‐Mallart E, Kanoufi F. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Nikolaos Kostopoulos
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | - Célia Achaibou
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | - Claire Fave
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | | | | |
Collapse
|
49
|
Noel JM, Kostopoulos N, Achaibou C, Fave C, Anxolabéhère-Mallart E, Kanoufi F. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O 2. Angew Chem Int Ed Engl 2020; 59:16376-16380. [PMID: 32543058 DOI: 10.1002/anie.202004977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 02/02/2023]
Abstract
Herein we report the first example of using scanning electrochemical microscopy (SECM) to quantitatively analyze O2 reductive activation in organic media catalyzed by three different Fe porphyrins. For each porphyrin, SECM can provide in one single experiment the redox potential of various intermediates, the association constant of FeII with O2 , and the pKa of the FeIII (OOH- )/ FeIII (OO2- ) couple. The results obtained can contribute to a further understanding of the parameters controlling the catalytic efficiency of the Fe porphyrin towards O2 activation and reduction.
Collapse
Affiliation(s)
| | - Nikolaos Kostopoulos
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | - Célia Achaibou
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | - Claire Fave
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | | | | |
Collapse
|
50
|
Williams CK, Lashgari A, Chai J, Jiang JJ. Enhanced Molecular CO 2 Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. CHEMSUSCHEM 2020; 13:3412-3417. [PMID: 32379922 DOI: 10.1002/cssc.202001037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The effects of primary and second coordination spheres on molecular electrocatalysis have been extensively studied, yet investigations of third functional spheres are rarely reported. Here, an electrocatalyst (ZnPEG8T) was developed with a hydrophilic channel as a third functional sphere that facilitates relay proton shuttling to the primary and second coordination spheres for enhanced catalytic CO2 reduction. Using foot-of-the-wave analysis, the ZnPEG8T catalyst displayed CO2 -to-CO activity (TOFmax ) thirty times greater than that of the benchmark catalyst without a third functional sphere. A kinetic isotopic effect (KIE) study, in conjunction with voltammetry and UV/Vis spectroscopy, uncovered that the rate-limiting step was not the protonation step of the metallocarboxylate intermediate, as observed in many other molecular CO2 reduction electrocatalysts, but rather the replenishment of protons in the proton-shuttling channel. Controlled-potential electrolysis using ZnPEG8T displayed a faradaic efficiency of 100 % for CO2 -to-CO conversion at -2.4 V vs. Fc/Fc+ . A Tafel plot was also generated for a comparison to other reported molecular catalysts. This report validates a strategy for incorporating higher functional spheres for enhanced catalytic efficiency in proton-coupled electron-transfer reactions.
Collapse
Affiliation(s)
- Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Amir Lashgari
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jingchao Chai
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio, 45221, United States
| |
Collapse
|