1
|
Su L, Gao S, Liu J. Enantioconvergent synthesis of axially chiral amides enabled by Pd-catalyzed dynamic kinetic asymmetric aminocarbonylation. Nat Commun 2024; 15:7248. [PMID: 39179590 PMCID: PMC11344157 DOI: 10.1038/s41467-024-51717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Atropisomeric biaryls bearing carbonyl groups have attracted increasing attention due to their prevalence in diverse bioactive molecules and crucial role as efficient organo-catalysts or ligands in asymmetric transformations. However, their preparation often involves tedious multiple steps, and the direct synthesis via asymmetric carbonylation has scarcely been investigated. Herein, we report an efficient palladium-catalyzed enantioconvergent aminocarbonylation of racemic heterobiaryl triflates with amines via dynamic kinetic asymmetric transformation (DyKAT). This protocol features a broad substrate scope and excellent compatibility for rapid construction of axially chiral amides in good to high yields with excellent enantioselectivities. Detailed mechanistic investigations discover that the base can impede the intramolecular hydrogen bond-assisted axis rotation of the products, thus allowing for the success to achieve high enantioselectivity. Moreover, the achieved axially chiral heterobiaryl amides can be directly utilized as N,N,N-pincer ligands in copper-catalyzed enantioselective formation of C(sp3)-N and C(sp3)-P bonds.
Collapse
Affiliation(s)
- Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Kitagawa O. Structural Chemistry of C-N Axially Chiral Compounds. J Org Chem 2024; 89:11089-11099. [PMID: 39087953 DOI: 10.1021/acs.joc.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In the last several years, atropisomers owing to the rotational restriction around a C-N single bond (C-N axially chiral compounds) have attracted significant attention in the field of synthetic organic chemistry. In particular, the highly enantioselective synthesis of various C-N axially chiral compounds and their application to asymmetric reactions have been reported by many groups. On the other hand, studies on the structural chemistry of C-N axially chiral compounds have attracted scant attention in comparison with synthetic studies. For over 25 years, our group has explored asymmetric synthesis of C-N axially chiral compounds and their synthetic application. In the course of these synthetic studies, we found several notable structural properties in relation to the C-N bond rotation and an association of enantiomers (the relationship between the rotational stability and the structure or electronic effect, the chirality-dependent halogen bond, and the self-disproportionation of enantiomers). Furthermore, on the basis of these structural properties, the development of acid-mediated molecular rotors and the synthesis of isotopic atropisomers possessing high stereochemical purity and rotational stability were achieved. Through this Perspective, I wish to make the chemistry community aware that C-N axially chiral compounds are attractive molecules from the viewpoints of both synthetic organic chemistry and structural chemistry.
Collapse
Affiliation(s)
- Osamu Kitagawa
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo, 135-8548, Japan
| |
Collapse
|
3
|
Wang Y, Yang Y, Homma D, Caytan E, Roussel C, Sato A, Yanai H, Kitagawa O. Rotational Behavior about the N3-Pyridyl Bond in 3-(Pyridin-2-yl)quinazolin-4-one and 4-Thione Derivatives. J Org Chem 2024; 89:11072-11077. [PMID: 39038369 DOI: 10.1021/acs.joc.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The rotational barriers about the N3-(2-pyridyl) bond in 2-iso-propyl-3-(pyridin-2-yl)quinazolin-4-one and the thione analogue were evaluated though VT-NMR measurement of a diastereotopic iso-propyl group followed by a line-shape simulation. In 3-(pyridin-2-yl)quinazoline-4-thione bearing a chiral center as the C2 substituent, the formation of dynamic diastereomers was detected by NMR. The rotational pathway about the N3-(2-pyridyl) bond and the stereochemistries of dynamic diastereomers were revealed through a computational study.
Collapse
Affiliation(s)
- Yuxiang Wang
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Yue Yang
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Daiki Homma
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Elsa Caytan
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Christian Roussel
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Cedex 20 Marseille, France
| | - Azusa Sato
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Osamu Kitagawa
- Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
4
|
Berry SN, Zou M, Nguyen SL, Sajowitz AE, Qin L, Lewis W, Jolliffe KA. Supramolecular Control of the Temperature Responsiveness of Fluorescent Macrocyclic Molecular Rotamers. Chemistry 2024; 30:e202400504. [PMID: 38499467 DOI: 10.1002/chem.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
To fully harness the potential of molecular machines, it is crucial to develop methods by which to exert control over their speed of motion through the application of external stimuli. A conformationally strained macrocyclic fluorescent rotamer, CarROT, displays a reproducible and linear fluorescence decrease towards temperature over the physiological temperature range. Through the external addition of anions, cations or through deprotonation, the compound can access four discreet rotational speeds via supramolecular interactions (very slow, slow, fast and very fast) which in turn stop, reduce or enhance the thermoluminescent properties due to increasing or decreasing non-radiative decay processes, thereby providing a means to externally control the temperature sensitivity of the system. Through comparison with analogues with a higher degree of conformational freedom, the high thermosensitivity of CarROT over the physiological temperature range was determined to be due to conformational strain, which causes a high energy barrier to rotation over this range. Analogues with a higher degree of conformational freedom display lower sensitivities towards temperature over the same temperature range. This study provides an example of an information rich small molecule, in which programable rotational speed states can be observed with facile read-out.
Collapse
Affiliation(s)
- Stuart N Berry
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Meijun Zou
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Sarah L Nguyen
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Aidan E Sajowitz
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - Lei Qin
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- Sydney Analytical, The University of Sydney, NSW, 2006, Australia
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Xu Q, Jia J, Fan H, Ma Z, Wu Y, Zhang Y, Su P, Gao W, Wang Y, Li D. Catalytic Atroposelective Synthesis of Axially Chiral Heterobiaryl Oxime Ethers via the One-Step Dynamic Kinetic Condensation Reaction. Org Lett 2024. [PMID: 38502802 DOI: 10.1021/acs.orglett.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic atroposelective synthesis of axially chiral heterobiaryls was first developed through the direct one-step dynamic kinetic condensation reaction with the simple transformation of the C═O bond to the C═N bond, delivering a series of novel axially chiral heterobiaryl oxime ethers.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Haitong Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhifeng Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Dong Z, Ma X, Yu Y, Gu X, Zhao D. The Effect of Intramolecular Hydrogen Bonds on the Rotational Barriers of the Biaryl C-C Axis. Chemistry 2023; 29:e202302292. [PMID: 37548253 DOI: 10.1002/chem.202302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Axially chiral compounds are attracting more attention recently. Although hydrogen bonds are reported as a vital weak force that influences the properties of compounds, the effect of intramolecular hydrogen bonds on the atropisomerization of the Caryl -Caryl single bonds has not yet been well quantitatively investigated. Here, a series of axially chiral biaryl compounds were synthesized to study the effect of hydrogen bonds on the rotational barriers of the biaryl C-C axis. Experimental studies demonstrated that the rotational barrier of hydrogen bonding biaryl 9 was significantly lower (46.7 kJ mol-1 ) than biaryl 10 without hydrogen bonds. Furthermore, theoretical studies revealed that the intramolecular hydrogen bond stabilized the transition state (TS) of tri-ortho-substituted biaryl 9, relieving the steric repulsion in the TS. We believe that this study will provide chemists with a deeper understanding of the atropisomerization process of axially chiral biaryl compounds.
Collapse
Affiliation(s)
- Zheng Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoqiang Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yueyang Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xubin Gu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
8
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
9
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Huth SE, Stone EA, Crotti S, Miller SJ. On the Ability of the N-O Bond to Support a Stable Stereogenic Axis: Peptide-Catalyzed Atroposelective N-Oxidation. J Org Chem 2023; 88:12857-12862. [PMID: 37561942 PMCID: PMC11316589 DOI: 10.1021/acs.joc.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
During studies of atroposelective, peptide-catalyzed N-oxidations of pyridines, we observed lower-than-expected barriers to atropisomerization for these stereodynamic processes under the reaction conditions. Mechanistic studies indicate a hydrogen bond-assisted racemization mechanism intrinsic to both the starting materials and products. We also identified a protonation-dependent barrier to rotation that operates for the starting materials alone. Nonetheless, several substrates were amenable to atroposelective N-oxidations via kinetic resolution, yielding krel values of up to 12.6 and the isolation of one N-oxide with >99:1 er after recrystallization.
Collapse
Affiliation(s)
- Susannah E. Huth
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Simone Crotti
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
11
|
Li T, Shi L, Zhao X, Wang J, Si XJ, Yang D, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation. Org Lett 2023. [PMID: 37428108 DOI: 10.1021/acs.orglett.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Herein, the atroposelective construction of five-six heterobiaryl skeleton-based C-N chiral axis has been successfully accomplished via a Co-catalyzed C-H bond activation and annulation process, in which the isonitrile was employed as the C1 source and the 8-aminoquinoline moiety served as both directing group and integral part of C-N atropisomers, respectively. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere, generating the target axial heterobiaryls with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives, and the obtained 3-iminoisoindolinone products with a five membered N-heterocycle exhibit high atropostability. Additionally, the C-N axially chiral monophosphine backbones derived from this protocol possess the potential to become an alternative ligand platform.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Hum G, Phang SJI, Ong HC, León F, Quek S, Khoo YXJ, Li C, Li Y, Clegg JK, Díaz J, Stuparu MC, García F. Main Group Molecular Switches with Swivel Bifurcated to Trifurcated Hydrogen Bond Mode of Action. J Am Chem Soc 2023. [PMID: 37267593 DOI: 10.1021/jacs.2c12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain. The oxidation states and valency ranges within the p-block provide a tremendous wealth of structures with various chemical properties. Such chemical diversity─when implemented in molecular machines─could become a transformative force in the field. Within this context, we have rationally designed a series of NH-bridged acyclic dimeric cyclodiphosphazane species, [(μ-NH){PE(μ-NtBu)2PE(NHtBu)}2] (E = O and S), bis-PV2N2, displaying bimodal bifurcated R21(8) and trifurcated R31(8,8) hydrogen bonding motifs. The reported species reversibly switch their topological arrangement in the presence and absence of anions. Our results underscore these species as versatile building blocks for molecular machines and switches, as well as supramolecular chemistry and crystal engineering based on cyclophosphazane frameworks.
Collapse
Affiliation(s)
- Gavin Hum
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Si Jia Isabel Phang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - How Chee Ong
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felix León
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Shina Quek
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yi Xin Joycelyn Khoo
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Chenfei Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yongxin Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia 4072, Queensland, Australia
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria Extremadura, Avda de la Universidad s/n, Cáceres 10003, Spain
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
13
|
Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat Commun 2023; 14:590. [PMID: 36737437 PMCID: PMC9898256 DOI: 10.1038/s41467-023-36131-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.
Collapse
|
14
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022; 61:e202206631. [PMID: 35852813 PMCID: PMC9826306 DOI: 10.1002/anie.202206631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Department of ChemistryGraduate School of ScienceTohoku University6-3 Aramaki-Aza-AobaAobaku, Sendai980-8578Japan
| | - Romain Costil
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
15
|
Corti V, Thøgersen MK, Enemærke VJ, Rezayee NM, Barløse CL, Anker Jørgensen K. Construction of C‐N Atropisomers by Aminocatalytic Enantioselective Addition of Indole‐2‐carboxaldehydes to
o
‐Quinone Derivatives. Chemistry 2022; 28:e202202395. [DOI: 10.1002/chem.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Vasco Corti
- Department of Chemistry Aarhus University Aarhus 8000 Aarhus C Denmark
| | | | | | - Nomaan M. Rezayee
- Department of Chemistry Aarhus University Aarhus 8000 Aarhus C Denmark
| | - Casper L. Barløse
- Department of Chemistry Aarhus University Aarhus 8000 Aarhus C Denmark
| | | |
Collapse
|
16
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Mondal
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chmistry NETHERLANDS
| | - Romain Costil
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
17
|
Homma D, Taketani S, Shirai T, Caytan E, Roussel C, Elguero J, Alkorta I, Kitagawa O. Rotational Behavior of N-(5-Substituted-pyrimidin-2-yl)anilines: Relayed Electronic Effect in Two N-Ar Bond Rotations. J Org Chem 2022; 87:8118-8125. [PMID: 35657258 DOI: 10.1021/acs.joc.2c00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N-Methyl-2-methoxymethylanilines 1 bearing various 5-substituted-pyrimidin-2-yl groups were prepared, and their rotational behaviors were explored in detail. It was revealed that the rotational barriers around two N-Ar bonds increase in proportion to the electron-withdrawing ability of substituents X at the 5-position.
Collapse
Affiliation(s)
- Daiki Homma
- Department of Applied Chemistry (Japanese Association of Bio-intelligence for Well-being), Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Shuhei Taketani
- Department of Applied Chemistry (Japanese Association of Bio-intelligence for Well-being), Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Takeshi Shirai
- Department of Applied Chemistry (Japanese Association of Bio-intelligence for Well-being), Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Elsa Caytan
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Christian Roussel
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Cedex 20 Marseille, France
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Osamu Kitagawa
- Department of Applied Chemistry (Japanese Association of Bio-intelligence for Well-being), Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
18
|
Chen ZJ, Lu HF, Chao I, Yang JS. A Rotation-Inversion Dual-Motion Molecular Switch: Race for NMR Signaling. J Org Chem 2022; 87:5029-5034. [PMID: 35321542 DOI: 10.1021/acs.joc.2c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interplay between the thermal helical inversion (THI) of the stiff-stilbene moiety and the rotation of the dimethylamino (DMA) group in 1 results in a dependence of the DMA NMR signals on the THI kinetics in (E)-1 but the rotation kinetics in (Z)-1, because the faster motion mode is responsible. Consequently, the photochemical switching from (E)-1 to (Z)-1 illustrates the phenomenon of "switchable motion detection" by the same set of NMR signals in a dual-motion molecular system.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
19
|
Sweet JS, Wang R, Manesiotis P, Dingwall P, Knipe PC. Atropselective synthesis of N-aryl pyridones via dynamic kinetic resolution enabled by non-covalent interactions. Org Biomol Chem 2022; 20:2392-2396. [PMID: 35257135 DOI: 10.1039/d2ob00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic kinetic resolution of C-N atropisomeric pyridones was achieved via asymmetric phase-transfer catalysis, exploiting a rotational barrier-lowering hydrogen bond in the starting materials. X-ray and NMR experiments revealed the presence of a barrier-raising ground state CH⋯π interaction in the product, supported by DFT calculations. A co-crystal of the quinidine-derived phase-transfer catalyst and substrate reveals key substrate-catalyst non-covalent interactions.
Collapse
Affiliation(s)
- Jamie S Sweet
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Ruichen Wang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Paul Dingwall
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| | - Peter C Knipe
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK.
| |
Collapse
|
20
|
Saha S, Kundu S, Biswas PK, Bolte M, Schmittel M. Dynamics of the alkyne → copper( i) interaction and its use in a heteroleptic four-component catalytic rotor. Chem Commun (Camb) 2022; 58:13019-13022. [DOI: 10.1039/d2cc04497h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of alkyne → copper(i) interactions has been determined and used to self-assemble a fast nanorotor, which underwent a self-catalyzed click transformation to a triazole rotor, an interesting process for the production of biohybrid devices.
Collapse
Affiliation(s)
- Suchismita Saha
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Pronay Kumar Biswas
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| | - Michael Bolte
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany
| |
Collapse
|
21
|
Lin B, Karki I, Pellechia PJ, Shimizu KD. Electrostatically-gated molecular rotors. Chem Commun (Camb) 2022; 58:5869-5872. [DOI: 10.1039/d2cc00512c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N-phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the...
Collapse
|
22
|
Yang B, Yang J, Zhang J. Synthesis of Axially Chiral Anilides Enabled by a Palladium/
Ming‐Phos‐Catalyzed
Desymmetric Sonogashira Reaction. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bin Yang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
23
|
|
24
|
Yang F, Yao L, Zeng XL. The crystal structure of 4-chloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H9ClN2O2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
C17H9ClN2O2, monoclinic, P21/c (no. 14), a = 13.6888(4) Å, b = 8.3775(2) Å, c = 12.9180(3) Å, β = 110.515(3)°, V = 1387.46(7) Å3, Z = 4, R
gt
(F) = 0.0420, wR
ref
(F
2) = 0.1224, T = 293(2) K.
Collapse
Affiliation(s)
- Fan Yang
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| | - Lin Yao
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| | - Xu-Li Zeng
- Respiratory Medicine People’s Hospital of Changshan , Changshan , 324200 , Zhejiang , P. R. China
| |
Collapse
|
25
|
Quintana-Romero OJ, Ariza-Castolo A. Complex molecular logic gates from simple molecules. RSC Adv 2021; 11:20933-20943. [PMID: 35479359 PMCID: PMC9034006 DOI: 10.1039/d1ra00930c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/07/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular logic gates (MLGs) are compounds that can solve Boolean logic operations to give an answer (OUTPUT) upon receiving a stimulus (INPUT). These derivatives can be used as biological sensors and are promising substitutes for the present logic gates. Although MLGs with complex molecular structures have been reported, they often show stability problems. To address this problem, we describe herein six stable pseudo-hemiindigo-derived MLGs capable of solving complex logic operations. MLGs 7, 8, 9, and 10 can solve a complex logic operation connecting 4 logic gates using 2 different wavelengths (445 nm and 400 nm) and the presence of p-TsOH and triethylamine (TEA) as inputs; MLG 11 solves a complex logic operation connecting 3 logic gates and uses 3 inputs, one wavelength of 445 nm and the presence of p-TsOH and TEA; and MLG 12 can only solve one logic operation (INH) and uses only the presence of p-TsOH and TEA as an input. Each operating method of the MLGs was evaluated with several techniques; proton interactions with MLGs were screened with NMR by titrating with p-TsOH, the photochemical properties were examined with absorption ultraviolet-visible (UV-Vis) spectroscopy, and the isomerization dynamics were examined with NMR using the two wavelengths for isomerization (photostationary isomer). The results indicate that the pseudo-hemiindigo-derived MLGs described herein can be applied as multiplexers or data selectors that are necessary for the transient flow of information for biological and computer systems. Finally, to design different MLGs and a system that can treat more information as complex logic gates (demultiplexers), two and three MLGs were mixed in different experiments. In both cases, four inputs were employed (445 nm, 400 nm, p-TsOH and TEA), yielding more outputs. Detailed information about the system dynamics was obtained from NMR experiments.
Collapse
Affiliation(s)
- Osvaldo J Quintana-Romero
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, San Pedro Zacatenco 07360, Ciudad de México Mexico
| | - Armando Ariza-Castolo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. IPN 2508, San Pedro Zacatenco 07360, Ciudad de México Mexico
| |
Collapse
|
26
|
Gao Z, Yan CX, Qian J, Yang H, Zhou P, Zhang J, Jiang G. Enantioselective Synthesis of Axially Chiral Sulfonamides via Atroposelective Hydroamination of Allenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zeng Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Xian Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
27
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Iwanaga O, Fukuyama K, Mori S, Song JT, Ishihara T, Miyazaki T, Ishida M, Furuta H. Ruthenium( iv) N-confused porphyrin μ-oxo-bridged dimers: acid-responsive molecular rotors. RSC Adv 2021; 11:24575-24579. [PMID: 35481054 PMCID: PMC9036866 DOI: 10.1039/d1ra05063j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Ruthenium(iv) N-confused porphyrin μ-oxo-bridged complexes were synthesized via oxidative dimerization of a ruthenium(ii) N-confused porphyrin complex using 2,2,6,6-tetramethylpiperidine 1-oxyl. The deformed core planes in the dimers conferred a relatively high ring rotational barrier of ca. 16 kcal mol−1. Rotation of the complexes was controlled by protonating the peripheral nitrogen. Ring rotation of ruthenium(iv) N-confused porphyrin μ-oxo-dimer was controlled by protonation at the peripheral nitrogen moieties.![]()
Collapse
Affiliation(s)
- Osamu Iwanaga
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Kazuki Fukuyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Shigeki Mori
- Advanced Research Support Center
- Ehime University
- Matsuyama 790-8577
- Japan
| | - Jun Tae Song
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Tatsumi Ishihara
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Takaaki Miyazaki
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Masatoshi Ishida
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| | - Hiroyuki Furuta
- Department of Applied Chemistry
- Graduate School of Engineering
- Center for Molecular Systems
- Kyushu University
- Fukuoka 819-0395
| |
Collapse
|
29
|
Chen H, Tang X, Ye H, Wang X, Zheng H, Hai Y, Cao X, You L. Effects of n → π* Orbital Interactions on Molecular Rotors: The Control and Switching of Rotational Pathway and Speed. Org Lett 2020; 23:231-235. [PMID: 33351640 DOI: 10.1021/acs.orglett.0c03969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of n → π* orbital interactions in the rotational pathway and barrier of biaryl-based molecular rotors was elucidated through a combined experimental and computational study. The n → π* interaction in the transition state can lead to the acceleration of rotors. The competition between the n → π* interaction and hydrogen bonding further enabled the reversal of the pathway and greasing/braking the rotor in response to acid/base stimuli, thereby creating a switchable molecular rotor.
Collapse
Affiliation(s)
- Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinchang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hao Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Biswas PK, Goswami A, Saha S, Schmittel M. Dynamics of Hydrogen Bonding in Three-Component Nanorotors. Chemistry 2020; 26:14095-14099. [PMID: 32744381 PMCID: PMC7702118 DOI: 10.1002/chem.202002877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Indexed: 11/23/2022]
Abstract
The dynamics of hydrogen bonding do not only play an important role in many biochemical processes but also in Nature's multicomponent machines. Here, a three-component nanorotor is presented where both the self-assembly and rotational dynamics are guided by hydrogen bonding. In the rate-limiting step of the rotational exchange, two phenolic O-H-N,N(phenanthroline) hydrogen bonds are cleaved, a process that was followed by variable-temperature 1 H NMR spectroscopy. Activation data (ΔG≠ 298 =46.7 kJ mol-1 at 298 K, ΔH≠ =55.3 kJ mol-1 , and ΔS≠ =28.8 J mol-1 K-1 ) were determined, furnishing a rotational exchange frequency of k298 =40.0 kHz. Fully reversible disassembly/assembly of the nanorotor was achieved by addition of 5.0 equivalents of trifluoroacetic acid (TFA)/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) over three cycles.
Collapse
Affiliation(s)
- Pronay Kumar Biswas
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Suchismita Saha
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering, Organische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
31
|
Vik EC, Li P, Maier JM, Madukwe DO, Rassolov VA, Pellechia PJ, Masson E, Shimizu KD. Large transition state stabilization from a weak hydrogen bond. Chem Sci 2020; 11:7487-7494. [PMID: 34123031 PMCID: PMC8159443 DOI: 10.1039/d0sc02806a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯O
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol−1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯OC hydrogen bond (1.5 kcal mol−1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms. A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond.![]()
Collapse
Affiliation(s)
- Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Ping Li
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Josef M Maier
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
32
|
Frey J, Malekafzali A, Delso I, Choppin S, Colobert F, Wencel-Delord J. Enantioselective Synthesis of N-C Axially Chiral Compounds by Cu-Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020; 59:8844-8848. [PMID: 32157781 DOI: 10.1002/anie.201914876] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/18/2022]
Abstract
N-C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal-catalyzed atroposelective N-arylations have been described. Herein, we disclose an unprecedented Cu-catalyzed atroposelective N-C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N-C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post-modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Alaleh Malekafzali
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Isabel Delso
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| |
Collapse
|
33
|
Enantioselective Synthesis of N–C Axially Chiral Compounds by Cu‐Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Furukawa G, Shirai T, Homma Y, Caytan E, Vanthuyne N, Farran D, Roussel C, Kitagawa O. Relayed Proton Brake in N-Pyridyl-2- iso-propylaniline Derivative: Two Brakes with One Proton. J Org Chem 2020; 85:5109-5113. [PMID: 32138515 DOI: 10.1021/acs.joc.0c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of methanesulfonic acid to N-(2,6-dimethylpyridin-4-yl)-N-methyl-2-iso-propylaniline led to the selective protonation of the pyridine nitrogen atom, resulting in a significant deceleration of the rotation rates around both N-pyridyl and N-(i-Pr)phenyl bonds through a relayed brake mechanism.
Collapse
Affiliation(s)
- Gaku Furukawa
- Department of Applied Chemistry, Japanese Association of Bio-intelligence for Well-being, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Takeshi Shirai
- Department of Applied Chemistry, Japanese Association of Bio-intelligence for Well-being, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Yuki Homma
- Department of Applied Chemistry, Japanese Association of Bio-intelligence for Well-being, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| | - Elsa Caytan
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseillei, Sm2, UMR 7313, 13397 Cedex 20, Marseille, France
| | - Daniel Farran
- Aix Marseille Univ, CNRS, Centrale Marseillei, Sm2, UMR 7313, 13397 Cedex 20, Marseille, France
| | - Christian Roussel
- Aix Marseille Univ, CNRS, Centrale Marseillei, Sm2, UMR 7313, 13397 Cedex 20, Marseille, France
| | - Osamu Kitagawa
- Department of Applied Chemistry, Japanese Association of Bio-intelligence for Well-being, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan
| |
Collapse
|
35
|
Li D, Jia Z, Jiang Y, Jia J, Zhao X, Li Z, Xu Z. One‐Pot Functionalization of 8‐Aminoquinolines through the Acylation and Regioselective C5‐H Halogenation under Transition‐Metal‐Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201904286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dandan Li
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Zhenzhen Jia
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Yongshuai Jiang
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Jingpeng Jia
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Xiaowei Zhao
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Zehui Li
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| | - Zhihong Xu
- School of Chemistry and Chemical EngineeringXuchang University No.88, Bayi Road, Xuchang Henan 461000 P. R. China
| |
Collapse
|
36
|
Mechanical movement of the novel sailboat-shaped molecular switches and their unique fluorescence behaviours in rotation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Li Z, Zhang H, Yu S. NaClO-Promoted Atroposelective Couplings of 3-Substituted Indoles with Amino Acid Derivatives. Org Lett 2019; 21:4754-4758. [DOI: 10.1021/acs.orglett.9b01638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaojie Li
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Ghosh R, Nandi A, Kushwaha A, Das D. Ultrafast Conformational Relaxation Dynamics in Anthryl-9-benzothiazole: Dynamic Planarization Driven Delocalization and Protonation-Induced Twisting Dynamics. J Phys Chem B 2019; 123:5307-5315. [DOI: 10.1021/acs.jpcb.9b01373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amitabha Nandi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Archana Kushwaha
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Dipanwita Das
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
39
|
Cabon Y, Ricard L, Frison G, Carmichael D. A Self‐Assembling Ligand Switch That Involves Hydroxide Addition to an sp
2
Hybridised Phosphorus Atom – A System Allowing OH
–
Mediated Uptake of [MCl
2
] (M = Pd, Pt) Centres. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yves Cabon
- Laboratoire de Chimie Moléculaire CNRS UMR 9168, Ecole Polytechnique 2 route de Saclay 91128 Palaiseau cedex France
| | - Louis Ricard
- Laboratoire de Chimie Moléculaire CNRS UMR 9168, Ecole Polytechnique 2 route de Saclay 91128 Palaiseau cedex France
| | - Gilles Frison
- Laboratoire de Chimie Moléculaire CNRS UMR 9168, Ecole Polytechnique 2 route de Saclay 91128 Palaiseau cedex France
| | - Duncan Carmichael
- Laboratoire de Chimie Moléculaire CNRS UMR 9168, Ecole Polytechnique 2 route de Saclay 91128 Palaiseau cedex France
| |
Collapse
|
40
|
Colizzi F, Hospital A, Zivanovic S, Orozco M. Predicting the Limit of Intramolecular Hydrogen Bonding with Classical Molecular Dynamics. Angew Chem Int Ed Engl 2019; 58:3759-3763. [DOI: 10.1002/anie.201810922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/17/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Sanja Zivanovic
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Departament de Bioquímica i Biomedicina, Facultat de BiologiaUniversitat de Barcelona Avgda Diagonal 647 Barcelona 08028 Spain
| |
Collapse
|
41
|
Fugard AJ, Lahdenperä ASK, Tan JSJ, Mekareeya A, Paton RS, Smith MD. Hydrogen-Bond-Enabled Dynamic Kinetic Resolution of Axially Chiral Amides Mediated by a Chiral Counterion. Angew Chem Int Ed Engl 2019; 58:2795-2798. [PMID: 30644159 PMCID: PMC6492105 DOI: 10.1002/anie.201814362] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/06/2022]
Abstract
Non-biaryl atropisomers are valuable in medicine, materials, and catalysis, but their enantioselective synthesis remains a challenge. Herein, a counterion-mediated O-alkylation method for the generation of atropisomeric amides with an er up to 99:1 is outlined. This dynamic kinetic resolution is enabled by the observation that the rate of racemization of atropisomeric naphthamides is significantly increased by the presence of an intramolecular O-H⋅⋅⋅NCO hydrogen bond. Upon O-alkylation of the H-bond donor, the barrier to rotation is significantly increased. Quantum calculations demonstrate that the intramolecular H-bond reduces the rotational barrier about the aryl-amide bond, stabilizing the planar transition state for racemization by approximately 40 kJ mol-1 , thereby facilitating the observed dynamic kinetic resolution.
Collapse
Affiliation(s)
- Alison J. Fugard
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Jaqueline S. J. Tan
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Aroonroj Mekareeya
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Robert S. Paton
- Department of ChemistryColorado State UniversityFort CollinsCO80523USA
| | - Martin D. Smith
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
42
|
Fugard AJ, Lahdenperä ASK, Tan JSJ, Mekareeya A, Paton RS, Smith MD. Hydrogen‐Bond‐Enabled Dynamic Kinetic Resolution of Axially Chiral Amides Mediated by a Chiral Counterion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alison J. Fugard
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Jaqueline S. J. Tan
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Aroonroj Mekareeya
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Robert S. Paton
- Department of ChemistryColorado State University Fort Collins CO 80523 USA
| | - Martin D. Smith
- Chemistry Research LaboratoryUniversity of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
43
|
Colizzi F, Hospital A, Zivanovic S, Orozco M. Predicting the Limit of Intramolecular Hydrogen Bonding with Classical Molecular Dynamics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Sanja Zivanovic
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Departament de Bioquímica i Biomedicina, Facultat de BiologiaUniversitat de Barcelona Avgda Diagonal 647 Barcelona 08028 Spain
| |
Collapse
|
44
|
Nikitin K, O'Gara R. Mechanisms and Beyond: Elucidation of Fluxional Dynamics by Exchange NMR Spectroscopy. Chemistry 2019; 25:4551-4589. [PMID: 30421834 DOI: 10.1002/chem.201804123] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 12/31/2022]
Abstract
Detailed mechanistic information is crucial to our understanding of reaction pathways and selectivity. Dynamic exchange NMR techniques, in particular 2D exchange spectroscopy (EXSY) and its modifications, provide indispensable intricate information on the mechanisms of organic and inorganic reactions and other phenomena, for example, the dynamics of interfacial processes. In this Review, key results from exchange NMR studies of small molecules over the last few decades are systemised and discussed. After a brief introduction to the theory, the key types of dynamic processes are identified and fundamental examples given of intra- and intermolecular reactions, which, in turn, could involve, or not, bond-making and bond-breaking events. Following that logic, internal molecular rotation, intramolecular stereomutation and molecular recognition will first be considered because they do not typically involve bond breaking. Then, rearrangements, substitution-type reactions, cyclisations, additions and other processes affecting chemical bonds will be discussed. Finally, interfacial molecular dynamics and unexpected combinations of different types of fluxional processes will also be highlighted. How exchange NMR spectroscopy helps to identify conformational changes, coordination and molecular recognition processes as well as quantify reaction energy barriers and extract detailed mechanistic information by using reaction rate theory in conjunction with computational techniques will be shown.
Collapse
Affiliation(s)
- Kirill Nikitin
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Ryan O'Gara
- School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
45
|
Özer MS, Paul I, Goswami A, Schmittel M. Cation exchange reversibly switches rotor speed and is monitored by a networked fluorescent reporter. Dalton Trans 2019; 48:9043-9047. [DOI: 10.1039/c9dt01633c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The three-step transformation of a turnstile into a zinc rotor (8 kHz) and then into a copper rotor (30 kHz) was achieved with the last transformation being monitored by a fluorescence reporter.
Collapse
Affiliation(s)
- Merve S. Özer
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Indrajit Paul
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Abir Goswami
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and Engineering
- Organische Chemie I
- Universität Siegen
- D-57068 Siegen
- Germany
| |
Collapse
|
46
|
Qiao L, Cao X, Chai K, Shen J, Xu J, Zhang P. Remote radical halogenation of aminoquinolines with aqueous hydrogen halide (HX) and oxone. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Abstract
Despite having significant applications in building nanomachines, molecular rotors with the rotational speed modulations to multiple stages in a wide range of frequency have not yet been well established. Here, we report the discovery of a stimuli-responsive molecular rotor, the rotational speed of which in the slow-to-fast range could be modulated to at least four stages triggered by acid/base and metal cations. The rotor itself rotates rapidly at ambient or elevated temperature but displays a restricted rotation after deprotonation due to the produced intramolecular electrostatic repulsion. Subsequent addition of Li+ or Na+ cations introduces an electrostatic bridge to stabilize the transition state of the deprotonated rotor, thus giving a cation-radius-dependent acceleration of the rotation to render the rotor running at a mid-speed. All the stimuli are highly reversible. Our studies provide a conceptual approach for constructing multistage rotational-speed-changing molecular rotors, and further, the practical nanomachines. Molecular rotors with rotational speed modulation have not yet been well established. Here, the authors report a pH and metal cation triggered molecular rotor, which allows for a four stage speed modulation in the slow-to-fast frequency range.
Collapse
|
48
|
Bonne D, Rodriguez J. A Bird's Eye View of Atropisomers Featuring a Five-Membered Ring. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800078] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Damien Bonne
- Aix Marseille Université, CNRS; iSm2 Centrale Marseille France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS; iSm2 Centrale Marseille France
| |
Collapse
|
49
|
Rushton GT, Vik EC, Burns WG, Rasberry RD, Shimizu KD. Guest control of a hydrogen bond-catalysed molecular rotor. Chem Commun (Camb) 2018; 53:12469-12472. [PMID: 29105705 DOI: 10.1039/c7cc07672j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, the control of a molecular rotor using hydrogen bonding guests is demonstrated. With a properly positioned phenol substituent, the N-arylimide rotors can form an intramolecular hydrogen bond that catalyses the rotational isomerization process. The addition of the guests disrupts the hydrogen bond and raises the rotational barrier, slowing the rotation by two orders of magnitude.
Collapse
Affiliation(s)
- Gregory T Rushton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
50
|
Iwasaki Y, Morisawa R, Yokojima S, Hasegawa H, Roussel C, Vanthuyne N, Caytan E, Kitagawa O. N−C Axially Chiral Anilines: Electronic Effect on Barrier to Rotation and A Remote Proton Brake. Chemistry 2018; 24:4453-4458. [DOI: 10.1002/chem.201706115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Yumiko Iwasaki
- Department of Applied Chemistry; Shibaura Institute of Technology; 3-7-5 Toyosu, Kohto-ku Tokyo 135-8548 Japan
| | - Ryuichi Morisawa
- Department of Applied Chemistry; Shibaura Institute of Technology; 3-7-5 Toyosu, Kohto-ku Tokyo 135-8548 Japan
| | - Satoshi Yokojima
- School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; 1432-1, Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Hiroshi Hasegawa
- School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; 1432-1, Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Christian Roussel
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Nicolas Vanthuyne
- Aix Marseille Univ; CNRS, Centrale Marseille, iSm2; Marseille France
| | - Elsa Caytan
- Univ Rennes; CNRS, ISCR-UMR 6226; 35000 Rennes France
| | - Osamu Kitagawa
- Department of Applied Chemistry; Shibaura Institute of Technology; 3-7-5 Toyosu, Kohto-ku Tokyo 135-8548 Japan
| |
Collapse
|