1
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
2
|
Understanding the local chemical environment of bioelectrocatalysis. Proc Natl Acad Sci U S A 2022; 119:2114097119. [PMID: 35058361 PMCID: PMC8795565 DOI: 10.1073/pnas.2114097119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach −8.0 mA ⋅ cm−2 for the H2 evolution reaction and −3.6 mA ⋅ cm−2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme–electrode interface as well as device performance.
Collapse
|
3
|
Oszajca M, Drabik G, Radoń M, Franke A, van Eldik R, Stochel G. Experimental and Computational Insight into the Mechanism of NO Binding to Ferric Microperoxidase. The Likely Role of Tautomerization to Account for the pH Dependence. Inorg Chem 2021; 60:15948-15967. [PMID: 34476946 DOI: 10.1021/acs.inorgchem.1c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to the current paradigm, the metal-hydroxo bond in a six-coordinate porphyrin complex is believed to be significantly less reactive in ligand substitution than the analogous metal-aqua bond, due to a much higher strength of the former bond. Here, we report kinetic studies for nitric oxide (NO) binding to a heme-protein model, acetylated microperoxidase-11 (AcMP-11), that challenge this paradigm. In the studied pH range 7.4-12.6, ferric AcMP-11 exists in three acid-base forms, assigned in the literature as [(AcMP-11)FeIII(H2O)(HisH)] (1), [(AcMP-11)FeIII(OH)(HisH)] (2), and [(AcMP-11)FeIII(OH)(His-)] (3). From the pH dependence of the second-order rate constant for NO binding (kon), we determined individual rate constants characterizing forms 1-3, revealing only a ca. 10-fold decrease in the NO binding rate on going from 1 (kon(1) = 3.8 × 106 M-1 s-1) to 2 (kon(2) = 4.0 × 105 M-1 s-1) and the inertness of 3. These findings lead to the abandonment of the dissociatively activated mechanism, in which the reaction rate can be directly correlated with the Fe-OH bond energy, as the mechanistic explanation for the process with regard to 2. The reactivity of 2 is accounted for through the existence of a tautomeric equilibrium between the major [(AcMP-11)FeIII(OH)(HisH)] (2a) and minor [(AcMP-11)FeIII(H2O)(His-)] (2b) species, of which the second one is assigned as the NO binding target due to its labile Fe-OH2 bond. The proposed mechanism is further substantiated by quantum-chemical calculations, which confirmed both the significant labilization of the Fe-OH2 bond in the [(AcMP-11)FeIII(H2O)(His-)] tautomer and the feasibility of the tautomer formation, especially after introducing empirical corrections to the computed relative acidities of the H2O and HisH ligands based on the experimental pKa values. It is shown that the "effective lability" of the axial ligand (OH-/H2O) in 2 may be comparable to the lability of the H2O ligand in 1.
Collapse
Affiliation(s)
- Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Gabriela Drabik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alicja Franke
- Department of Chemistry, Ludwigs-Maximilians University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Kim Y, Kriegel S, Bessmertnykh‐Lemeune A, Harris KD, Limoges B, Balland V. Interplay Between Charge Accumulation and Oxygen Reduction Catalysis in Nanostructured TiO
2
Electrodes Functionalized with a Molecular Catalyst. ChemElectroChem 2021. [DOI: 10.1002/celc.202100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yee‐Seul Kim
- Université de Paris Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS 75013 Paris France
| | - Sébastien Kriegel
- Université de Paris Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS 75013 Paris France
| | - Alla Bessmertnykh‐Lemeune
- ENS de Lyon, UMR 5182, CNRS Université Claude Bernard Lyon 1 Laboratoire de Chimie 69342 Lyon France
| | - Kenneth D. Harris
- NRC Nanotechnology Research Centre Edmonton Alberta T6G 2 M9 Canada
- Department of Mechanical Engineering University of Alberta Edmonton Alberta T6G 2 V4 Canada
| | - Benoît Limoges
- Université de Paris Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS 75013 Paris France
| | - Véronique Balland
- Université de Paris Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS 75013 Paris France
| |
Collapse
|
5
|
Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. SENSORS 2020; 20:s20133692. [PMID: 32630267 PMCID: PMC7374321 DOI: 10.3390/s20133692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
Heme peroxidases are widely used as biological recognition elements in electrochemical biosensors for hydrogen peroxide and phenolic compounds. Various nature-derived and fully synthetic heme peroxidase mimics have been designed and their potential for replacing the natural enzymes in biosensors has been investigated. The use of semiconducting materials as transducers can thereby offer new opportunities with respect to catalyst immobilization, reaction stimulation, or read-out. This review focuses on approaches for the construction of electrochemical biosensors employing natural heme peroxidases as well as various mimics immobilized on semiconducting electrode surfaces. It will outline important advances made so far as well as the novel applications resulting thereof.
Collapse
|
6
|
A Combined Experimental and Theoretical Study of Screen-printing High Transparent Conductive Mesoscopic ITO Films. Sci Rep 2020; 10:5024. [PMID: 32193403 PMCID: PMC7081275 DOI: 10.1038/s41598-020-61124-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
We have successfully fabricated transparent conductive mesoporous indium tin oxide (TCM-ITO) films by a screen-printing method. The TCM-ITO films possess approximately 22 nm mesopores and obtain electrical conductivity up to 14.96 S/cm by adjusting the mass ratio of cubic-shaped ITO nanoparticles to ethyl cellulose (EC) and precisely controlling the annealing process. The regulation mechanism of EC and the heat-induced recrystallization process of ITO nanoparticles are elaborated. The internal kinetic processes of the films based on different surface states are analysed, and an extensible impedance model is established.
Collapse
|
7
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Gabriunaite I, Valiūnienė A, Valincius G. Formation and properties of phospholipid bilayers on fluorine doped tin oxide electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Huerta-Miranda G, Arrocha-Arcos A, Miranda-Hernández M. Gold nanoparticles/4-aminothiophenol interfaces for direct electron transfer of horseradish peroxidase: Enzymatic orientation and modulation of sensitivity towards hydrogen peroxide detection. Bioelectrochemistry 2018; 122:77-83. [DOI: 10.1016/j.bioelechem.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/30/2022]
|
10
|
Kim YS, Fournier S, Lau-Truong S, Decorse P, Devillers CH, Lucas D, Harris KD, Limoges B, Balland V. Introducing Molecular Functionalities within High Surface Area Nanostructured ITO Electrodes through Diazonium Electrografting. ChemElectroChem 2018. [DOI: 10.1002/celc.201800418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yee-Seul Kim
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité; 15 rue J-A de Baïf F-75205 Paris Cedex 13 France
| | - Sophie Fournier
- UCMUB UMR 6302; CNRS Université Bourgogne Franche Comté; F-21000 Dijon France
| | - Stéphanie Lau-Truong
- Laboratoire ITODYS, UMR CNRS 7086; Université Paris Diderot, Sorbonne Paris Cité; 15 rue J-A de Baïf F-75205 Paris Cedex 13 France
| | - Philippe Decorse
- Laboratoire ITODYS, UMR CNRS 7086; Université Paris Diderot, Sorbonne Paris Cité; 15 rue J-A de Baïf F-75205 Paris Cedex 13 France
| | | | - Dominique Lucas
- UCMUB UMR 6302; CNRS Université Bourgogne Franche Comté; F-21000 Dijon France
| | - Kenneth D. Harris
- NRC Nanotechnology Research Center, Edmonton, Alberta T6G 2M9, Canada, & Department of Mechanical Engineering; University of Alberta; Edmonton Alberta T6G 2V4 Canada
| | - Benoît Limoges
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité; 15 rue J-A de Baïf F-75205 Paris Cedex 13 France
| | - Véronique Balland
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591; Université Paris Diderot, Sorbonne Paris Cité; 15 rue J-A de Baïf F-75205 Paris Cedex 13 France
| |
Collapse
|
11
|
Tanabe J, Nakano K, Hirata R, Himeno T, Ishimatsu R, Imato T, Okabe H, Matsuda N. Totally synthetic microperoxidase-11. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172311. [PMID: 29892416 PMCID: PMC5990835 DOI: 10.1098/rsos.172311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
A totally synthetic microperoxidase-11 (MP-11) is reported. Accordingly, the undecapeptide (VQKCAQCHTVE) was synthesized by solid-phase peptide synthesis followed by the thiol-ene click reaction with haemin for reconstitution. High-speed atomic force microscopy measurement conducted in water confirmed the protein reconstitution by visualizing the morphological differences as animated molecular images. The synthetic MP-11 showed a considerable magnitude of catalytic activity (27%) against the natural MP-11 in the oxidation of 3,3',5,5'-tetramethylbenzidine by hydrogen peroxide, whereas it showed very low (2.7%) activity of a synthetic variant with a point mutation (VQKCAQC M TVE, H8M). Slab waveguide spectroscopic measurements revealed that the ferrous/ferric redox reaction occurred by the direct electron transfer with specific spectral changes. Indeed, if hydrogen peroxide existed in the solution phase, the peroxidase-modified electrode showed catalytic current-voltage behaviour regardless of whether it was prepared using natural MP-11 or the synthetic MP-11. If a substrate recycling reaction was assumed, computer simulation well reproduced the experimental curves to give a global set of electrocatalytic reaction parameters. In any of the experiments, the synthetic MP-11 and natural MP-11 gave almost identical results. Our approach will be a convenient means of preparing MP-11, as well as its mutants, that does not rely on nature.
Collapse
Affiliation(s)
- Junichi Tanabe
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Nakano
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryutaro Hirata
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiki Himeno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshihiko Imato
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirotaka Okabe
- National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku-machi, Tosu, Saga 841-0052, Japan
| | - Naoki Matsuda
- National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku-machi, Tosu, Saga 841-0052, Japan
| |
Collapse
|
12
|
Mierzwa M, Lamouroux E, Walcarius A, Etienne M. Porous and Transparent Metal-oxide Electrodes : Preparation Methods and Electroanalytical Application Prospects. ELECTROANAL 2018. [DOI: 10.1002/elan.201800020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maciej Mierzwa
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR7565 CNRS -; Université de Lorraine, BP 239; F-54506 Vandoeuvre-lès-Nancy cedex France
| | - Emmanuel Lamouroux
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR7565 CNRS -; Université de Lorraine, BP 239; F-54506 Vandoeuvre-lès-Nancy cedex France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
| | - Mathieu Etienne
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
| |
Collapse
|
13
|
Lee CY, Reuillard B, Sokol KP, Laftsoglou T, Lockwood CWJ, Rowe SF, Hwang ET, Fontecilla-Camps JC, Jeuken LJC, Butt JN, Reisner E. A decahaem cytochrome as an electron conduit in protein-enzyme redox processes. Chem Commun (Camb) 2018; 52:7390-3. [PMID: 27193068 DOI: 10.1039/c6cc02721k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The decahaem cytochrome MtrC from Shewanella oneidensis MR-1 was employed as a protein electron conduit between a porous indium tin oxide electrode and redox enzymes. Using a hydrogenase and a fumarate reductase, MtrC was shown as a suitable and efficient diode to shuttle electrons to and from the electrode with the MtrC redox activity regulating the direction of the enzymatic reactions.
Collapse
Affiliation(s)
- Chong-Yong Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Bertrand Reuillard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Theodoros Laftsoglou
- School of Biomedical Sciences and the Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK.
| | - Colin W J Lockwood
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Sam F Rowe
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ee Taek Hwang
- School of Biomedical Sciences and the Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK.
| | - Juan C Fontecilla-Camps
- Metalloproteins Unit, Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, 38044 Grenoble, France
| | - Lars J C Jeuken
- School of Biomedical Sciences and the Astbury Centre, University of Leeds, Leeds, LS2 9JT, UK.
| | - Julea N Butt
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
14
|
Ash PA, Hidalgo R, Vincent KA. Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase. J Vis Exp 2017:55858. [PMID: 29286464 PMCID: PMC5755520 DOI: 10.3791/55858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different proteins. Full chemical understanding requires electrochemical control to be combined with other techniques that can add additional structural and mechanistic insight. Here we demonstrate a technique, protein film infrared electrochemistry, which combines protein film electrochemistry with infrared spectroscopic sampling of redox proteins. The technique uses a multiple-reflection attenuated total reflectance geometry to probe a redox protein immobilized on a high surface area carbon black electrode. Incorporation of this electrode into a flow cell allows solution pH or solute concentrations to be changed during measurements. This is particularly powerful in addressing redox enzymes, where rapid catalytic turnover can be sustained and controlled at the electrode allowing spectroscopic observation of long-lived intermediate species in the catalytic mechanism. We demonstrate the technique with experiments on E. coli hydrogenase 1 under turnover (H2 oxidation) and non-turnover conditions.
Collapse
Affiliation(s)
- Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Ricardo Hidalgo
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory;
| |
Collapse
|
15
|
|
16
|
Götz R, Ly HK, Wrzolek P, Schwalbe M, Weidinger IM. Surface enhanced resonance Raman spectroscopy of iron Hangman complexes on electrodes during electrocatalytic oxygen reduction: advantages and problems of common drycast methods. Dalton Trans 2017; 46:13220-13228. [PMID: 28682383 DOI: 10.1039/c7dt01174a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drycast methods have been used frequently in recent decades to adsorb a range of synthetic catalysts on electrodes. The uncoordinated multilayers that are formed via this immobilization method can however have a strong impact on the electrocatalytic reaction pathway as slow electron transfer and intermolecular interactions can alter the chemistry of the catalysts on the surface. To gain insight into the structure of Fe porphyrin Hangman catalysts during electrocatalytic oxygen reduction a combination of electrochemistry and surface enhanced resonance Raman spectroscopy (SERRS) was applied. The Hangman complexes were attached to the electrodes via different methods and the influence of the immobilisation technique on oxygen chemistry was studied. In multilayer systems, new intermediates could be identified via potential dependent SERRS that were not present in solution or in monolayer systems under catalytic conditions. A comparison of Raman spectra obtained either via Soret or Q-band excitation showed that the porphyrin symmetry is strongly distorted under reducing conditions, which was interpreted by the transient formation of dimer complexes during catalysis.
Collapse
Affiliation(s)
- R Götz
- Fachbereich Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden, Germany.
| | | | | | | | | |
Collapse
|
17
|
López-Bernabeu S, Gamero-Quijano A, Huerta F, Morallón E, Montilla F. Enhancement of the direct electron transfer to encapsulated cytochrome c by electrochemical functionalization with a conducting polymer. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Bioelectrocatalytic Reduction of Hydrogen Peroxide by Microperoxidase-11 Immobilized on Mesoporous Antimony-Doped Tin Oxide. ChemElectroChem 2017. [DOI: 10.1002/celc.201600776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Kleingardner EC, Asher WB, Bren KL. Efficient and Flexible Preparation of Biosynthetic Microperoxidases. Biochemistry 2016; 56:143-148. [DOI: 10.1021/acs.biochem.6b00915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erin C. Kleingardner
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Wesley B. Asher
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
20
|
Kalaivani G, Sivanesan A, Kannan A, Sevvel R. Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis. Colloids Surf B Biointerfaces 2016; 146:722-30. [DOI: 10.1016/j.colsurfb.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
|
21
|
Sengupta K, Chatterjee S, Dey A. In Situ Mechanistic Investigation of O2 Reduction by Iron Porphyrin Electrocatalysts Using Surface-Enhanced Resonance Raman Spectroscopy Coupled to Rotating Disk Electrode (SERRS-RDE) Setup. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
22
|
Ash P, Reeve HA, Quinson J, Hidalgo R, Zhu T, McPherson IJ, Chung MW, Healy AJ, Nayak S, Lonsdale TH, Wehbe K, Kelley CS, Frogley MD, Cinque G, Vincent KA. Synchrotron-Based Infrared Microanalysis of Biological Redox Processes under Electrochemical Control. Anal Chem 2016; 88:6666-71. [PMID: 27269716 PMCID: PMC4935962 DOI: 10.1021/acs.analchem.6b00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 μm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.
Collapse
Affiliation(s)
- Philip
A. Ash
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Jonathan Quinson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Tianze Zhu
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Ian J. McPherson
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Min-Wen Chung
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Adam J. Healy
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Simantini Nayak
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Thomas H. Lonsdale
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| | - Katia Wehbe
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Chris S. Kelley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Mark D. Frogley
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Gianfelice Cinque
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Kylie A. Vincent
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QR, United Kingdom
| |
Collapse
|
23
|
Mersch D, Lee CY, Zhang JZ, Brinkert K, Fontecilla-Camps JC, Rutherford AW, Reisner E. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting. J Am Chem Soc 2015; 137:8541-9. [DOI: 10.1021/jacs.5b03737] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dirk Mersch
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Chong-Yong Lee
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jenny Zhenqi Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Katharina Brinkert
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Juan C. Fontecilla-Camps
- Metalloproteins
Unit, Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, 38044 Grenoble, France
| | | | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
24
|
Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 2015; 872:7-25. [PMID: 25892065 PMCID: PMC4405630 DOI: 10.1016/j.aca.2014.10.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomás E Benavidez
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
25
|
Adsorption of Microperoxidase-11 in Vertical Silica Mesochannels and Electrochemical Investigation of Its Electron Transfer Properties. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Lockwood CWJ, Burlat B, Cheesman MR, Kern M, Simon J, Clarke TA, Richardson DJ, Butt JN. Resolution of Key Roles for the Distal Pocket Histidine in Cytochrome c Nitrite Reductases. J Am Chem Soc 2015; 137:3059-68. [DOI: 10.1021/ja512941j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Melanie Kern
- Microbial
Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jörg Simon
- Microbial
Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
27
|
Forget A, Limoges B, Balland V. Efficient chemisorption of organophosphorous redox probes on indium tin oxide surfaces under mild conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1931-1940. [PMID: 25611977 DOI: 10.1021/la503760x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a mild and straightforward one-step chemical surface functionalization of indium tin oxide (ITO) electrodes by redox-active molecules bearing an organophosphoryl anchoring group (i.e., alkyl phosphate or alkyl phosphonate group). The method takes advantage of simple passive adsorption in an aqueous solution at room temperature. We show that organophosphorus compounds can adsorb much more strongly and stably on an ITO surface than analogous redox-active molecules bearing a carboxylate or a boronate moiety. We provide evidence, through quantitative electrochemical characterization (i.e., by cyclic voltammetry) of the adsorbed organophosphoryl redox-active molecules, of the occurrence of three different adsorbate fractions on ITO, exhibiting different stabilities on the surface. Among these three fractions, one is observed to be strongly chemisorbed, exhibiting high stability and resistance to desorption/hydrolysis in a free-redox probe aqueous buffer. We attribute this remarkable stability to the formation of chemical bonds between the organophosphorus anchoring group and the metal oxide surface, likely occurring through a heterocondensation reaction in water. From XPS analysis, we also demonstrate that the surface coverage of the chemisorbed molecules is highly affected by the degree of surface hydroxylation, a parameter that can be tuned by simply preconditioning the freshly cleaned ITO surfaces in water. The lower the relative surface hydroxide density on ITO, the higher was the surface coverage of the chemisorbed species. This behavior is in line with a chemisorption mechanism involving coordination of a deprotonated phosphoryl oxygen atom to the non-hydroxylated acidic metal sites of ITO.
Collapse
Affiliation(s)
- Amélie Forget
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot , Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris, Cedex 13, France
| | | | | |
Collapse
|
28
|
Prasad KS, Walgama C, Krishnan S. Enhanced electroactivity and substrate affinity of microperoxidase-11 attached to pyrene-linkers π–π stacked on carbon nanostructure electrodes. RSC Adv 2015. [DOI: 10.1039/c4ra14361b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An exceptionally large electroactively connected microperoxidase-11 (MP-11) with strong affinity for organic peroxide and offering a high electrocatalytic reduction current density of 7.5 mA cm−2 is achieved for the first time.
Collapse
|
29
|
Forget A, Tucker RT, Brett MJ, Limoges B, Balland V. Tuning the reactivity of nanostructured indium tin oxide electrodes toward chemisorption. Chem Commun (Camb) 2015; 51:6944-7. [DOI: 10.1039/c5cc01792k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This contribution highlights correlation between the surface concentration of a chemisorbed organophosphorous probe (flavin mononucleotide) and the relative hydroxyl surface coverage of nanostructured ITO electrodes, which can be tuned during post-deposition reductive annealing.
Collapse
Affiliation(s)
- A. Forget
- Laboratoire d’Electrochimie Moléculaire
- UMR CNRS 7591
- Université Paris Diderot
- Sorbonne Paris Cité
- F-75205 Paris Cedex 13
| | - R. T. Tucker
- Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada T6G 2V4
| | - M. J. Brett
- Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada T6G 2V4
- NRC National Institute for Nanotechnology
| | - B. Limoges
- Laboratoire d’Electrochimie Moléculaire
- UMR CNRS 7591
- Université Paris Diderot
- Sorbonne Paris Cité
- F-75205 Paris Cedex 13
| | - V. Balland
- Laboratoire d’Electrochimie Moléculaire
- UMR CNRS 7591
- Université Paris Diderot
- Sorbonne Paris Cité
- F-75205 Paris Cedex 13
| |
Collapse
|
30
|
Zhang B, Zhou J, Li S, Zhang X, Huang D, He Y, Wang M, Yang G, Shen Y. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta 2015; 131:243-8. [DOI: 10.1016/j.talanta.2014.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/16/2022]
|
31
|
Renault C, Nicole L, Sanchez C, Costentin C, Balland V, Limoges B. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry. Phys Chem Chem Phys 2015; 17:10592-607. [DOI: 10.1039/c5cp00023h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Voltabsorptometry provides a unique access to the dynamics of heterogeneous electron transfer in mesoporous semiconductive TiO2 films loaded with a redox-active dye.
Collapse
Affiliation(s)
- Christophe Renault
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- Université Paris Diderot
- F-75205 Paris Cedex 13
- France
| | - Lionel Nicole
- Laboratoire de Chimie de la Matière Condensée de Paris
- UMR 7574 CNRS
- UPMC-Paris 6-Collège de France
- 75231 Paris Cedex 05
- France
| | - Clément Sanchez
- Laboratoire de Chimie de la Matière Condensée de Paris
- UMR 7574 CNRS
- UPMC-Paris 6-Collège de France
- 75231 Paris Cedex 05
- France
| | - Cyrille Costentin
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- Université Paris Diderot
- F-75205 Paris Cedex 13
- France
| | - Véronique Balland
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- Université Paris Diderot
- F-75205 Paris Cedex 13
- France
| | - Benoît Limoges
- Laboratoire d'Electrochimie Moléculaire
- UMR 7591 CNRS
- Université Paris Diderot
- F-75205 Paris Cedex 13
- France
| |
Collapse
|
32
|
Gamero-Quijano A, Huerta F, Morallón E, Montilla F. Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome c. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10531-8. [PMID: 25111076 DOI: 10.1021/la5023517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The direct electron transfer between indium-tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol-gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol-gel route. These modified electrodes were characterized by cyclic voltammetry, UV-vis spectroscopy, and in situ UV-vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante , Ap. 99, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|
33
|
de Poulpiquet A, Ciaccafava A, Lojou E. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.133] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Vitale R, Lista L, Lau-Truong S, Tucker RT, Brett MJ, Limoges B, Pavone V, Lombardi A, Balland V. Spectroelectrochemistry of FeIII- and CoIII-mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes. Chem Commun (Camb) 2014; 50:1894-6. [DOI: 10.1039/c3cc48489k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV-visible absorption spectroelectrochemistry elucidated the different redox behaviours of FeIII- and CoIII-mimochrome VI artificial enzymes, adsorbed on mesoporous conductive films of ITO.
Collapse
Affiliation(s)
- R. Vitale
- Department of Chemical Sciences
- Complesso Universitario Monte S. Angelo, University of Naples “Federico II”
- 80126 Naples, Italy
| | - L. Lista
- Department of Chemical Sciences
- Complesso Universitario Monte S. Angelo, University of Naples “Federico II”
- 80126 Naples, Italy
| | - S. Lau-Truong
- ITODYS
- UMR CNRS 7086
- Université Paris Diderot
- Sorbonne Paris Cité
- 75205 Paris Cedex 13, France
| | - R. T. Tucker
- Electrical and Computer Engineering
- University of Alberta
- Edmonton, Canada T6G 2V4
| | - M. J. Brett
- Electrical and Computer Engineering
- University of Alberta
- Edmonton, Canada T6G 2V4
- NRC National Institute for Nanotechnology
- Edmonton, Canada T6G 2M9
| | - B. Limoges
- Laboratoire d'Electrochimie Moléculaire
- Université Paris Diderot
- UMR CNRS 7591
- 75205 Paris Cedex 13, France
| | - V. Pavone
- Department of Chemical Sciences
- Complesso Universitario Monte S. Angelo, University of Naples “Federico II”
- 80126 Naples, Italy
| | - A. Lombardi
- Department of Chemical Sciences
- Complesso Universitario Monte S. Angelo, University of Naples “Federico II”
- 80126 Naples, Italy
| | - V. Balland
- Laboratoire d'Electrochimie Moléculaire
- Université Paris Diderot
- UMR CNRS 7591
- 75205 Paris Cedex 13, France
| |
Collapse
|
35
|
Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes—Electrochemical characterization and direct enzyme communication. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Hamd W, Chavarot-Kerlidou M, Fize J, Muller G, Leyris A, Matheron M, Courtin E, Fontecave M, Sanchez C, Artero V, Laberty-Robert C. Dye-Sensitized Nanostructured Crystalline Mesoporous Tin-doped Indium Oxide Films with Tunable Thickness for Photoelectrochemical Applications. JOURNAL OF MATERIALS CHEMISTRY. A 2013; 1. [PMID: 24404381 PMCID: PMC3880857 DOI: 10.1039/c3ta10728k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A simple route towards nanostructured mesoporous Indium-Tin Oxide (templated nano-ITO) electrodes exhibiting both high conductivities and optimized bicontinuous pore-solid network is reported. The ITO films are first produced as an X-ray-amorphous, high surface area material, by adapting recently established template-directed sol-gel methods using Sn(IV) and In(III) salts. Carefully controlled temperature/atmosphere treatments convert the as-synthesized ITO films into nano-crystalline coatings with the cubic bixbyite structure. Specially, a multi-layered synthesis was successfully undertaken for tuning the film thickness. In order to evaluate the performances of templated nano-ITO as an electrode substrate for photoelectrochemical applications, photoelectrodes were prepared by covalent grafting of a redox-active dye, the complex [Ru(bpy)2(4,4'-(CH2PO3H2)2-bpy)]Cl21 (bpy=bipyridine). Surface coverage was shown to increase with the film thickness, from 0.7 × 10-9 mol.cm-2 (one layer, 45 nm) to 3.5 × 10-9 mol.cm-2 (ten layers, 470 nm), the latter value being ~ 100 times larger than that for commercially available planar ITO. In the presence of an electron mediator, photocurrents up to 50 μA.cm-2 have been measured under visible light irradiation, demonstrating the potential of this new templated nano-ITO preparation for the construction of efficient photoelectrochemical devices.
Collapse
Affiliation(s)
- W Hamd
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, CNRS, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris
| | - M Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble cedex 9
| | - J Fize
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble cedex 9
| | - G Muller
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, CNRS, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris
| | - A Leyris
- Department of Technology for Biology and Health, CEA LETI-MINATEC, 17 rue des Martyrs, F-38054 Grenoble CEDEX 9, France
| | - M Matheron
- Department of Technology for Biology and Health, CEA LETI-MINATEC, 17 rue des Martyrs, F-38054 Grenoble CEDEX 9, France
| | - E Courtin
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, CNRS, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris
| | - M Fontecave
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble cedex 9 ; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris
| | - C Sanchez
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, CNRS, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris ; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris
| | - V Artero
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble 1, CNRS, CEA, 17 rue des Martyrs 38054 Grenoble cedex 9
| | - C Laberty-Robert
- Laboratoire de Chimie de la Matière Condensée de Paris-UMR7574, CNRS, Université Paris 6, Collège de France, 11 place Marcelin Berthelot 75005 Paris
| |
Collapse
|
37
|
Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Schaming D, Renault C, Tucker RT, Lau-Truong S, Aubard J, Brett MJ, Balland V, Limoges B. Spectroelectrochemical characterization of small hemoproteins adsorbed within nanostructured mesoporous ITO electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14065-14072. [PMID: 22957653 DOI: 10.1021/la302913j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
3D nanostructured transparent indium tin oxide (ITO) electrodes prepared by glancing angle deposition (GLAD) were used for the spectroelectrochemical characterization of cytochrome c (Cyt c) and neuroglobin (Nb). These small hemoproteins, involved as electron-transfer partners in the prevention of apoptosis, are oppositely charged at physiological pH and can each be adsorbed within the ITO network under different pH conditions. The resulting modified electrodes were investigated by UV-visible absorption spectroscopy coupled with cyclic voltammetry. By using nondenaturating adsorption conditions, we demonstrate that both proteins are capable of direct electron transfer to the conductive ITO surface, sharing apparent standard potentials similar to those reported in solution. Preservation of the 3D protein structure upon adsorption was confirmed by resonance Raman (rR) spectroscopy. Analysis of the derivative cyclic voltabsorptograms (DCVA) monitored either in the Soret or the Q bands at scan rates up to 1 V s(-1) allowed us to investigate direct interfacial electron transfer kinetics. From the DCVA shape and scan rate dependences, we conclude that the interaction of Cyt c with the ITO surface is more specific than Nb, suggesting an oriented adsorption of Cyt c and a random adsorption of Nb on the ITO surface. At the same time, Cyt c appears more sensitive to the experimental adsorption conditions, and complete denaturation of Cyt c may occur as evidenced from cross-correlation of rR spectroscopy and spectroelectrochemistry.
Collapse
Affiliation(s)
- Delphine Schaming
- Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|