1
|
Gransbury G, Nicholas HM, Murphy SR, Emerson-King J, Vonci M, Goodwin CAP, Winpenny REP, Chilton NF, Giansiracusa MJ, Mills DP. Trigonal Planar Heteroleptic Lanthanide(III) Bis(silyl)amide Complexes Containing Aminoxyl Radicals and Anions. Inorg Chem 2024; 63:22422-22434. [PMID: 39531694 PMCID: PMC11600508 DOI: 10.1021/acs.inorgchem.4c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Modulation of the crystal field (CF) in lanthanide (Ln) complexes can enhance optical and magnetic properties, and large CF splitting can be achieved with low coordination numbers in specific geometries. We previously reported that the homoleptic near-linear Sm2+ complex [SmII{N(SiiPr3)2}2] (1-Sm) is oxidized by the 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO•) radical to give the heteroleptic, approximately trigonal planar Sm3+ complex, [SmIII{N(SiiPr3)2}2(TEMPO-)] (2-Sm). Here, we report the synthesis of homologous [LnIII{N(SiiPr3)2}2(TEMPO-)] (2-Ln; Ln = Tm, Yb) complexes by the oxidation of the parent [Ln{N(SiiPr3)2}2] (1-Ln; Ln = Tm, Yb) with TEMPO•; complexes 2-Ln all contain TEMPO- anions. The homoleptic bent Ln3+ complexes [LnIII{N(SiiPr3)2}2][B(C6F5)4] (3-Ln; Ln = Sm, Tm, Yb) were also treated with TEMPO• to yield the heteroleptic, approximately trigonal planar Ln3+ complexes [LnIII{N(SiiPr3)2}2(TEMPO•)][B(C6F5)4] (4-Ln; Ln = Sm, Tm, Yb); the cations of 4-Ln all contain TEMPO• radicals. We have compared the electronic structures of the two geometrically similar families of Ln3+ complexes with the TEMPO- anion (2-Ln) or TEMPO• radical (4-Ln) using a combination of UV-vis-NIR and EPR spectroscopy, magnetic measurements, and ab initio calculations. These studies revealed no single-molecule magnet behavior for 2-Yb despite evidence for sizable CF splitting and a high degree of purity of the ground stabilized mJ = |±7/2⟩ state, while the radical TEMPO• in 4-Yb did not significantly improve performance.
Collapse
Affiliation(s)
- Gemma
K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Hannah M. Nicholas
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Siobhan R. Murphy
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jack Emerson-King
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Michele Vonci
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Conrad A. P. Goodwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Building
137, Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - Marcus J. Giansiracusa
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Obey TJN, Nichol GS, Love JB. Controlled and sequential single-electron reduction of the uranyl dication. Dalton Trans 2024; 53:16229-16240. [PMID: 39302243 DOI: 10.1039/d4dt02367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A flexible tripodal pyrrole-imine ligand (H3L) has been used to facilitate the controlled and sequential single-electron reductions of the uranyl dication from the U(VI) oxidation state to U(V) and further to U(IV), processes that are important to understanding the reduction of uranyl and its environmental remediation. The uranyl(VI) complexes UO2(HL)(sol) (sol = THF, py) were straightforwardly accessed by the transamination reaction of H3L with UO2{N(SiMe3)2}2(THF)2 and adopt 'hangman' structures in which one of the pyrrole-imine arms is pendant. While deprotonation of this arm by LiN(SiMe3)2 causes no change in uranyl oxidation state, single-electron reduction of uranyl(VI) to uranyl(V) occurred on addition of two equivalents of KN(SiMe3)2 to UO2(HL)(sol). The potassium cations of this new [UVO2(K2L)]2 dimer were substituted by transmetalation with the appropriate metal chloride salt, forming the new uranyl(V) tetra-heterometallic complexes, [UVO2Zn(L)(py)2]2 and [UVO2Ln(Cl)(L)(py)2]2 (Ln = Y, Sm, Dy). The dimeric uranyl(V)-yttrium complex underwent further reduction and chloride abstraction to form the tetrametallic U(IV) complex [UIVO2YIII(py)]2, so highlighting the adaptability of this ligand to stabilise a variety of different uranium oxidation states.
Collapse
Affiliation(s)
- Tom J N Obey
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| | - Jason B Love
- EaStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
3
|
Wang Z, Cao Y, Li W, Liu R, Wu L, Zhao Q, Liu Y, Tang K, Jiang Y, Chen Z, Li X, Zhu L, Duan T. Natural Products of Licorice for Uranium Decorporation with Low Toxicity and High Efficiency. Inorg Chem 2024; 63:13653-13663. [PMID: 38967129 DOI: 10.1021/acs.inorgchem.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.
Collapse
Affiliation(s)
- Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yalan Cao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yao Jiang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| |
Collapse
|
4
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Quantifying Actinide-Carbon Bond Covalency in a Uranyl-Aryl Complex Utilizing Solution 13C NMR Spectroscopy. Inorg Chem 2024; 63:9427-9433. [PMID: 37788299 DOI: 10.1021/acs.inorgchem.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Reaction of [UO2Cl2(THF)2]2 with in situ generated LiFmes (FmesH = 1,3,5-(CF3)3C6H3) in Et2O resulted in the formation of the uranyl aryl complexes [Li(THF)3][UO2(Fmes)3] ([Li(THF)3][1]) and [Li(Et2O)3(THF)][UO2(Fmes)3] ([Li(Et2O)3(THF)][1]) in good to moderate yields after crystallization from hexanes and Et2O, respectively. Both complexes were characterized by X-ray crystallography and NMR spectroscopy. DFT calculations reveal that the Cispo resonance in [1]- exhibits a deshielding of 51 ppm from spin-orbit coupling effects originating at uranium, which indicates an appreciable covalency in the U-C bonding interaction.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Murillo J, Seed JA, Wooles AJ, Oakley MS, Goodwin CAP, Gregson M, Dan D, Chilton NF, Gaunt AJ, Kozimor SA, Liddle ST, Scott BL. Carbene Complexes of Plutonium: Structure, Bonding, and Divergent Reactivity to Lanthanide Analogs. J Am Chem Soc 2024; 146:4098-4111. [PMID: 38301208 PMCID: PMC10870714 DOI: 10.1021/jacs.3c12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Organoplutonium chemistry was established in 1965, yet structurally authenticated plutonium-carbon bonds remain rare being limited to π-bonded carbocycle and σ-bonded isonitrile and hydrocarbyl derivatives. Thus, plutonium-carbenes, including alkylidenes and N-heterocyclic carbenes (NHCs), are unknown. Here, we report the preparation and characterization of the diphosphoniomethanide-plutonium complex [Pu(BIPMTMSH)(I)(μ-I)]2 (1Pu, BIPMTMSH = (Me3SiNPPh2)2CH) and the diphosphonioalkylidene-plutonium complexes [Pu(BIPMTMS)(I)(DME)] (2Pu, BIPMTMS = (Me3SiNPPh2)2C) and [Pu(BIPMTMS)(I)(IMe4)2] (3Pu, IMe4 = C(NMeCMe)2), thus disclosing non-actinyl transneptunium multiple bonds and transneptunium NHC complexes. These Pu-C double and dative bonds, along with cerium, praseodymium, samarium, uranium, and neptunium congeners, enable lanthanide-actinide and actinide-actinide comparisons between metals with similar ionic radii and isoelectronic 4f5 vs 5f5 electron-counts within conserved ligand fields over 12 complexes. Quantum chemical calculations reveal that the orbital-energy and spatial-overlap terms increase from uranium to neptunium; however, on moving to plutonium the orbital-energy matching improves but the spatial overlap decreases. The bonding picture that emerges is more complex than the traditional picture of the bonding of lanthanides being ionic and early actinides being more covalent but becoming more ionic left to right. Multiconfigurational calculations on 2M and 3M (M = Pu, Sm) account for the considerably more complex UV/vis/NIR spectra for 5f5 2Pu and 3Pu compared to 4f5 2Sm and 3Sm. Supporting the presence of Pu═C double bonds in 2Pu and 3Pu, 2Pu exhibits metallo-Wittig bond metathesis involving the highest atomic number element to date, reacting with benzaldehyde to produce the alkene PhC(H)═C(PPh2NSiMe3)2 (4) and "PuOI". In contrast, 2Ce and 2Pr do not react with benzaldehyde to produce 4.
Collapse
Affiliation(s)
- Jesse Murillo
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John A. Seed
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Meagan S. Oakley
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Conrad A. P. Goodwin
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Matthew Gregson
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David Dan
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas F. Chilton
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra, ACT 2601, Australia
| | - Andrew J. Gaunt
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stosh A. Kozimor
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen T. Liddle
- Department
of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Brian L. Scott
- Materials
Physics & Applications Division, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Baker CF, Seed JA, Adams RW, Lee D, Liddle ST. 13C carbene nuclear magnetic resonance chemical shift analysis confirms Ce IV[double bond, length as m-dash]C double bonding in cerium(iv)-diphosphonioalkylidene complexes. Chem Sci 2023; 15:238-249. [PMID: 38131084 PMCID: PMC10732143 DOI: 10.1039/d3sc04449a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Diphosphonioalkylidene dianions have emerged as highly effective ligands for lanthanide and actinide ions, and the resulting formal metal-carbon double bonds have challenged and developed conventional thinking about f-element bond multiplicity and covalency. However, f-element-diphosphonioalkylidene complexes can be represented by several resonance forms that render their metal-carbon double bond status unclear. Here, we report an experimentally-validated 13C Nuclear Magnetic Resonance computational assessment of two cerium(iv)-diphosphonioalkylidene complexes, [Ce(BIPMTMS)(ODipp)2] (1, BIPMTMS = {C(PPh2NSiMe3)2}2-; Dipp = 2,6-diisopropylphenyl) and [Ce(BIPMTMS)2] (2). Decomposing the experimental alkylidene chemical shifts into their corresponding calculated shielding (σ) tensor components verifies that these complexes exhibit Ce[double bond, length as m-dash]C double bonds. Strong magnetic coupling of Ce[double bond, length as m-dash]C σ/π* and π/σ* orbitals produces strongly deshielded σ11 values, a characteristic hallmark of alkylidenes, and the largest 13C chemical shift tensor spans of any alkylidene complex to date (1, 801 ppm; 2, 810 ppm). In contrast, the phosphonium-substituent shielding contributions are much smaller than the Ce[double bond, length as m-dash]C σ- and π-bond components. This study confirms significant Ce 4f-orbital contributions to the Ce[double bond, length as m-dash]C bonding, provides further support for a previously proposed inverse-trans-influence in 2, and reveals variance in the 4f spin-orbit contributions that relate to the alkylidene hybridisation. This work thus confirms the metal-carbon double bond credentials of f-element-diphosphonioalkylidenes, providing quantified benchmarks for understanding diphosphonioalkylidene bonding generally.
Collapse
Affiliation(s)
- Cameron F Baker
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
8
|
Jain A, Karmakar H, Roesky PW, Panda TK. Role of Bis(phosphinimino)methanides as Universal Ligands in the Coordination Sphere of Metals across the Periodic Table. Chem Rev 2023. [PMID: 38048165 DOI: 10.1021/acs.chemrev.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The coordination chemistry of bis(phosphinimino)methanide ligands is widespread and accompanies a large number of metal ions in the periodic table ranging from lithium to neptunium. This unique class of ligand systems show copious coordination chemistry with the main-group, transition, rare-earth, and actinide metals and are considered to be among the most attractive ligand systems to researchers. The bis(phosphinimino)methanide metal complexes offer an extensive range of applications in various fields and have been demonstrated as one of the universal ligand systems to stabilize the metal ions in not only their usual but also their unusual oxidation states. The main-group and transition metal chemistry using bis(phosphinimino)methanides as ligands was last updated almost a decade ago. In this review, we provide a comprehensive overview of various state-of-the-art bis(phosphinimino)methanide-supported metal complexes by dealing with their synthesis, characterization, reactivity, and catalytic studies which were not included in the last critical reviews.
Collapse
Affiliation(s)
- Archana Jain
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology (MGIT), Gandipet-500075, Hyderabad, Telangana, India
| | - Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, Sangareddy, Telangana, India
| | - Peter W Roesky
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstr. 15 Geb. 30.45, 76131 Karlsruhe, Germany
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, Sangareddy, Telangana, India
| |
Collapse
|
9
|
Yao YR, Zhao J, Meng Q, Hu HS, Guo M, Yan Y, Zhuang J, Yang S, Fortier S, Echegoyen L, Schwarz WHE, Li J, Chen N. Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. J Am Chem Soc 2023; 145:25440-25449. [PMID: 37955678 DOI: 10.1021/jacs.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.
Collapse
Affiliation(s)
- Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països Catalans 16, 43007 Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - W H Eugen Schwarz
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Deng C, Liang J, Sun R, Wang Y, Fu PX, Wang BW, Gao S, Huang W. Accessing five oxidation states of uranium in a retained ligand framework. Nat Commun 2023; 14:4657. [PMID: 37537160 PMCID: PMC10400547 DOI: 10.1038/s41467-023-40403-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Understanding and exploiting the redox properties of uranium is of great importance because uranium has a wide range of possible oxidation states and holds great potential for small molecule activation and catalysis. However, it remains challenging to stabilise both low and high-valent uranium ions in a preserved ligand environment. Herein we report the synthesis and characterisation of a series of uranium(II-VI) complexes supported by a tripodal tris(amido)arene ligand. In addition, one- or two-electron redox transformations could be achieved with these compounds. Moreover, combined experimental and theoretical studies unveiled that the ambiphilic uranium-arene interactions are the key to balance the stabilisation of low and high-valent uranium, with the anchoring arene acting as a δ acceptor or a π donor. Our results reinforce the design strategy to incorporate metal-arene interactions in stabilising multiple oxidation states, and open up new avenues to explore the redox chemistry of uranium.
Collapse
Affiliation(s)
- Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peng-Xiang Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
11
|
Li T, Wang D, Heng Y, Hou G, Zi G, Ding W, Walter MD. A Comprehensive Study Concerning the Synthesis, Structure, and Reactivity of Terminal Uranium Oxido, Sulfido, and Selenido Metallocenes. J Am Chem Soc 2023. [PMID: 37376858 DOI: 10.1021/jacs.3c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Terminal uranium oxido, sulfido, and selenido metallocenes were synthesized, and their reactivity was comprehensively studied. Heating of an equimolar mixture of [η5-1,2,4-(Me3Si)3C5H2]2UMe2 (2) and [η5-1,2,4-(Me3Si)3C5H2]2U(NH-p-tolyl)2 (3) in the presence of 4-dimethylaminopyridine (dmap) in refluxing toluene forms [η5-1,2,4-(Me3Si)3C5H2]2U═N(p-tolyl)(dmap) (4), which is a useful precursor for the preparation of the terminal uranium oxido, sulfido, and selenido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2U═E(dmap) (E = O (5), S (6), Se (7)) employing a cycloaddition-elimination methodology with Ph2C═E (E = O, S) or (p-MeOPh)2CSe, respectively. Metallocenes 5-7 are inert toward alkynes, but they act as nucleophiles in the presence of alkylsilyl halides. The oxido and sulfido metallocenes 5 and 6 undergo [2 + 2] cycloadditions with isothiocyanate PhNCS or CS2, while the selenido derivative 7 does not. The experimental studies are complemented by density functional theory (DFT) computations.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universitüt Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Jiang H, Yu X, Guo M, Yao YR, Meng Q, Echegoyen L, Autschbach J, Chen N. USc 2C 2 and USc 2NC Clusters with U-C Triple Bond Character Stabilized Inside Fullerene Cages. J Am Chem Soc 2023; 145:5645-5654. [PMID: 36800216 DOI: 10.1021/jacs.2c10231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The chemistry of f-block metal-carbon multiple bonds is underdeveloped compared to well-established carbene complexes of the d-block transition metals. Herein, we report two new actinide-rare earth mixed metal carbides and nitrogen carbide cluster fullerenes, USc2C2@D5h(6)-C80 and USc2NC@D5h(6)-C80, which contain U-C bonds with triple bond character and were successfully synthesized and characterized by mass spectrometry, UV-vis-NIR spectroscopy, Fourier transform infrared spectroscopy, single crystal X-ray diffraction, and DFT calculations. Crystallographic studies show that the two previously unreported clusters, USc2C2 and USc2NC, are stabilized in the D5h(6)-C80 carbon cage and adopt unique trifoliate configurations, in which C2/NC units are almost vertically inserted into the plane defined by the U and two Sc atoms. Combined experimental and theoretical studies further reveal the bonding structure of USc2C2 and USc2NC, which contain C═U(VI)═C and C═U(V)═N bonding motifs. The electronic structures of the two compounds are determined as U6+(Sc2)6+(C4-)2@D5h(6)-C804- and U5+(Sc2)6+(N)3-(C)4-@D5h(6)-C804-, respectively. Quantum-chemical studies confirm that the U-C bonds in both molecules show unprecedented multicenter triple-bond character. The discovery of this unique U-C multiple bond offers a deeper understanding of the fundamentals of uranium chemistry.
Collapse
Affiliation(s)
- Hongjie Jiang
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
13
|
Uranyl Analogue Complexes—Current Progress and Synthetic Challenges. INORGANICS 2022. [DOI: 10.3390/inorganics10080121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes, and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety. This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ- and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but also references gas-phase and low-temperature-matrix experiments, as well as computational studies that may lead to valuable insights.
Collapse
|
14
|
Carpenter SH, Wolford NJ, Billow BS, Fetrow TV, Cajiao N, Radović A, Janicke MT, Neidig ML, Tondreau AM. Homoleptic Uranium-Bis(acyl)phosphide Complexes. Inorg Chem 2022; 61:12508-12517. [PMID: 35905438 DOI: 10.1021/acs.inorgchem.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide (Na(mesBAP)) or sodium bis(2,4,6-triisopropylbenzoyl)phosphide (Na(trippBAP)) and UI3(1,4-dioxane)1.5. Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density. The EPR spectrum of the trivalent U(trippBAP)3 has a rhombic signal near g = 2 (g1 = 2.03; g2 = 2.01; and g3 = 1.98) that is consistent with the EPR-observed unpaired electron being located in a molecular orbital that appears ligand-derived. However, upon warming the complex to room temperature, no resonance was observed, indicating the presence of uranium character.
Collapse
Affiliation(s)
| | - Nikki J Wolford
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brennan S Billow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taylor V Fetrow
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nathalia Cajiao
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael T Janicke
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aaron M Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Seed JA, Vondung L, Adams RW, Wooles AJ, Lu E, Liddle ST. Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV). Organometallics 2022; 41:1353-1363. [PMID: 36157256 PMCID: PMC9490841 DOI: 10.1021/acs.organomet.2c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/30/2022]
Abstract
We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of a thorium mesoionic carbene complex. Complexes 4U and 4Th were prepared via a C-H activation intramolecular cyclometallation reaction of actinide halides, with concomitant formal 1,4-proton migration of an N-heterocyclic olefin (NHO). Quantum chemical calculations suggest that the An-carbene bond comprises only a σ-component, in contrast to the uranium(III) analogue [U{N(SiMe3)2}3(MIC)] (1) where computational studies suggested that the 5f3 uranium(III) ion engages in a weak one-electron π-backbond to the MIC. This highlights the varying nature of actinide-MIC bonding as a function of actinide oxidation state. In solution, 4Th exists in equilibrium with the Th(IV) metallacycle [Th{N(SiMe3)2}2(CH2SiMe2NSiMe3)] (6Th) and free NHO (3). The thermodynamic parameters of this equilibrium were probed using variable-temperature NMR spectroscopy yielding an entropically favored but enthalpically endothermic process with an overall reaction free energy of ΔG 298.15K = 0.89 kcal mol-1. Energy decomposition analysis (EDA-NOCV) of the actinide-carbon bonds in 4U and 4Th reveals that the former is enthalpically stronger and more covalent than the latter, which accounts for the respective stabilities of these two complexes.
Collapse
Affiliation(s)
- John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lisa Vondung
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Erli Lu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
16
|
Goodwin CAP, Wooles AJ, Murillo J, Lu E, Boronski JT, Scott BL, Gaunt AJ, Liddle ST. Carbene Complexes of Neptunium. J Am Chem Soc 2022; 144:9764-9774. [PMID: 35609882 PMCID: PMC9490846 DOI: 10.1021/jacs.2c02152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Since the advent
of organotransuranium chemistry six decades ago,
structurally verified complexes remain restricted to π-bonded
carbocycle and σ-bonded hydrocarbyl derivatives. Thus, transuranium-carbon
multiple or dative bonds are yet to be reported. Here, utilizing diphosphoniomethanide
precursors we report the synthesis and characterization of transuranium-carbene
derivatives, namely, diphosphonio-alkylidene- and N-heterocyclic carbene–neptunium(III) complexes that exhibit
polarized-covalent σ2π2 multiple
and dative σ2 single transuranium-carbon bond interactions,
respectively. The reaction of [NpIIII3(THF)4] with [Rb(BIPMTMSH)] (BIPMTMSH = {HC(PPh2NSiMe3)2}1–) affords
[(BIPMTMSH)NpIII(I)2(THF)] (3Np) in situ, and subsequent treatment with the N-heterocyclic carbene {C(NMeCMe)2} (IMe4) allows
isolation of [(BIPMTMSH)NpIII(I)2(IMe4)] (4Np). Separate treatment of in situ
prepared 3Np with benzyl potassium in 1,2-dimethoxyethane
(DME) affords [(BIPMTMS)NpIII(I)(DME)] (5Np, BIPMTMS = {C(PPh2NSiMe3)2}2–). Analogously, addition of benzyl
potassium and IMe4 to 4Np gives [(BIPMTMS)NpIII(I)(IMe4)2] (6Np). The synthesis of 3Np–6Np was facilitated by adopting a scaled-down prechoreographed approach
using cerium synthetic surrogates. The thorium(III) and uranium(III)
analogues of these neptunium(III) complexes are currently unavailable,
meaning that the synthesis of 4Np–6Np provides an example of experimental grounding of 5f- vs 5f- and
5f- vs 4f-element bonding and reactivity comparisons being led by
nonaqueous transuranium chemistry rather than thorium and uranium
congeners. Computational analysis suggests that these NpIII=C bonds are more covalent than UIII=C,
CeIII=C, and PmIII=C congeners
but comparable to analogous UIV=C bonds in terms
of bond orders and total metal contributions to the M=C bonds.
A preliminary assessment of NpIII=C reactivity has
introduced multiple bond metathesis to transuranium chemistry, extending
the range of known metallo-Wittig reactions to encompass actinide
oxidation states III-VI.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jesse Murillo
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Erli Lu
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
17
|
Maria L, Bandeira NAG, Marçalo J, Santos IC, Ferreira ASD, Ascenso JR. Experimental and Computational Study of a Tetraazamacrocycle Bis(aryloxide) Uranyl Complex and of the Analogues {E═U═NR} 2+ (E = O and NR). Inorg Chem 2021; 61:346-356. [PMID: 34898186 DOI: 10.1021/acs.inorgchem.1c02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction of [U(κ6-{(t-Bu2ArO)2Me2-cyclam})I][I] (H2{(t-Bu2ArO)2Me2-cyclam} = 1,8-bis(2-hydroxy-3,5-di-tert-butyl)-4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane) with 2 equiv of NaNO2 in acetonitrile results in the isolation of the uranyl complex [UO2{(t-Bu2ArO)2Me2-cyclam}] (3) in 31% yield, which was fully characterized, including by single-crystal X-ray diffraction. Density functional theory (DFT) computations were performed to evaluate and compare the level of covalency within the U═E bonds in 3 and in the analogous trans-bis(imido) [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(NPh)2] (1) and trans-oxido-imido [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(NPh)] (2) complexes. Natural bond orbital (NBO) analysis allowed us to determine the mixing covalency parameter λ, showing that in 2, where both U-Ooxido and U-Nimido bonds are present, the U-Nimido bond registers more covalency with regard to 1, and the opposite is seen for U-Ooxido with respect to 3. However, the covalency driven by orbital overlap in the U-Nimido bond is slightly higher in 1 than in 2. The 15N-labeled complexes [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(15NPh)2] (1-15N) and [U(κ4-{(t-Bu2ArO)2Me2-cyclam})(O)(15NPh)] (2-15N) were prepared and analyzed by solution 15N NMR spectroscopy. The calculated and experimental 15N chemical shifts are in good agreement, displaying the same trend of δN (1-15N) > δN (2-15N) and reveal that the 15N chemical shift may serve as a probe for the covalency of the U═NR bond.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Nuno A G Bandeira
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela, Portugal
| | - Ana S D Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - José R Ascenso
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1000-049 Lisboa, Portugal
| |
Collapse
|
18
|
Staun SL, Kent GT, Gomez-Torres A, Wu G, Fortier S, Hayton TW. Reductive Coupling of Xylyl Isocyanide Mediated by Low-Valent Uranium. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Selena L. Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
19
|
Ortu F, Randall S, Moulding DJ, Woodward AW, Kerridge A, Meyer K, La Pierre HS, Natrajan LS. Photoluminescence of Pentavalent Uranyl Amide Complexes. J Am Chem Soc 2021; 143:13184-13194. [PMID: 34387466 PMCID: PMC8397311 DOI: 10.1021/jacs.1c05184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pentavalent uranyl species are crucial intermediates in transformations that play a key role for the nuclear industry and have recently been demonstrated to persist in reducing biotic and abiotic aqueous environments. However, due to the inherent instability of pentavalent uranyl, little is known about its electronic structure. Herein, we report the synthesis and characterization of a series of monomeric and dimeric, pentavalent uranyl amide complexes. These synthetic efforts enable the acquisition of emission spectra of well-defined pentavalent uranyl complexes using photoluminescence techniques, which establish a unique signature to characterize its electronic structure and, potentially, its role in biological and engineered environments via emission spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Ortu
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Simon Randall
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David J Moulding
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adam W Woodward
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Karsten Meyer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Henry S La Pierre
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Louise S Natrajan
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
20
|
Su W, Ma Y, Xiang L, Wang J, Wang S, Zhao L, Frenking G, Ye Q. Isolation of a Uranium(III)-Carbon Multiple Bond Complex. Chemistry 2021; 27:10006-10011. [PMID: 33913186 PMCID: PMC8362146 DOI: 10.1002/chem.202100699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Low-valent uranium-element multiple bond complexes remain scarce, though there is burgeoning interest regarding to their bonding and reactivity. Herein, isolation of a uranium(III)-carbon double bond complex [(Cp*)2 U(CDP)](BPh4 ) (1) comprising a tridentate carbodiphosphorane (CDP) was reported for the first time. Oxidation of 1 afforded the corresponding U(IV) complex [(Cp*)2 U(CDP)](BPh4 )2 (2). The distance between U and C in 2 is 2.481 Å, indicating the existence of a typical U=C double bond, which is further confirmed by quantum chemical calculations. Bonding analysis suggested that the CDP also serves as both σ- and π-donor in complex 1, though a longer U-C bond (2.666(3) Å) is observed. It implies that 1 is the first isolable mononuclear uranium(III) carbene complex. Moreover, these results suggest that CDPs are promising ligands to establish other low-valent f-block metal-carbon multiple bond complexes.
Collapse
Affiliation(s)
- Wei Su
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Yanshun Ma
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
| | - Libo Xiang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Junyi Wang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD−X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSooChow University199 Ren'ai Road215123SuzhouChina
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
| | - Gernot Frenking
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Qing Ye
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| |
Collapse
|
21
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Revathi S, Raja P, Saha S, Eisen MS, Ghatak T. Recent developments in highly basic N-heterocyclic iminato ligands in actinide chemistry. Chem Commun (Camb) 2021; 57:5483-5502. [PMID: 34008633 DOI: 10.1039/d1cc00933h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last decade, major conceptual advances in the chemistry of actinide molecules and materials have been made to demonstrate their distinct reactivity profiles as compared to lanthanide and transition metal compounds, but some difficult questions remain concerning the intriguing stability of low-valent actinide complexes, and the importance of the 5f-orbitals in reactivity and bonding. The imidazolin-2-iminato moiety has been extensively used in ligands for the advancement of actinide chemistry owing to its unique capability of stabilizing the reactive and highly electrophilic metal ions by virtue of its strong electron donation and steric tunability. The current review article describes recent developments in the chemistry of light actinide metal ions (thorium and uranium) bearing these N-heterocyclic iminato moieties as supporting ligands. In addition, the effect of ring expansion of the N-heterocycle on the catalytic aptitude of the organoactinides is also described herein. The synthesis and reactivity of actinide complexes bearing N-heterocyclic iminato ligands are presented, and promising apposite applications are also presented. The current review focuses on addressing the catalytic behavior of actinide complexes with oxygen-containing substrates such as in the Tishchenko reaction, hydroelementation processes, and polymerization reactions. Actinide complexes have also found new catalytic applications, as demonstrated by the potent chemoselective carbonyl hydroboration and tandem proton-transfer esterification (TPTE) reaction, featuring coupling between an aldehyde and alcohol.
Collapse
Affiliation(s)
- Shanmugam Revathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
23
|
Ordoñez O, Yu X, Wu G, Autschbach J, Hayton TW. Synthesis and Characterization of Two Uranyl-Aryl "Ate" Complexes. Chemistry 2021; 27:5885-5889. [PMID: 33270947 DOI: 10.1002/chem.202005078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/10/2022]
Abstract
Reaction of [UO2 Cl2 (THF)3 ] with 3 equivalents of LiC6 Cl5 in Et2 O resulted in the formation of first uranyl aryl complex [Li(Et2 O)2 (THF)][UO2 (C6 Cl5 )3 ] ([Li][1]) in good yields. Subsequent dissolution of [Li][1] in THF resulted in conversion into [Li(THF)4 ][UO2 (C6 Cl5 )3 (THF)] ([Li][2]), also in good yields. DFT calculations reveal that the U-C bonds in [Li][1] and [Li][2] exhibit appreciable covalency. Additionally, the 13 C NMR chemical shifts for their Cipso environments are strongly affected by spin-orbit coupling-a consequence of 5f orbital participation in the U-C bonds.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
24
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
25
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021; 60:8227-8235. [DOI: 10.1002/anie.202016123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
26
|
Casey KC, Brown AM, Robinson JR. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01438a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homoleptic yttrium and lanthanum complexes of bis(phosphineoxide) methanides, RE(HPhL)3 and RE2(HMeL)6, promote the first rare-earth mediated Horner-Wittig and acid-base chemistry consistent with multifunctional reactivity (Lewis-acid/Brønstedbase).
Collapse
|
27
|
Normand AT, Sosa Carrizo ED, Magnoux C, Lobato E, Cattey H, Richard P, Brandès S, Devillers CH, Romieu A, Le Gendre P, Fleurat-Lessard P. Reappraising Schmidpeter's bis(iminophosphoranyl)phosphides: coordination to transition metals and bonding analysis. Chem Sci 2020; 12:253-269. [PMID: 34163594 PMCID: PMC8178813 DOI: 10.1039/d0sc04736h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis and characterization of a range of bis(iminophosphoranyl)phosphide (BIPP) group 4 and coinage metals complexes is reported. BIPP ligands bind group 4 metals in a pseudo fac-fashion, and the central phosphorus atom enables the formation of d0-d10 heterobimetallic complexes. Various DFT computational tools (including AIM, ELF and NCI) show that the phosphorus-metal interaction is either electrostatic (Ti) or dative (Au, Cu). A bridged homobimetallic Cu-Cu complex was also prepared and its spectroscopic properties were investigated. The theoretical analysis of the P-P bond in BIPP complexes reveals that (i) BIPP are closely related to ambiphilic triphosphenium (TP) cations; (ii) the P-P bonds are normal covalent (i.e. not dative) in both BIPP and TP.
Collapse
Affiliation(s)
- Adrien T Normand
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - E Daiann Sosa Carrizo
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Corentin Magnoux
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Esteban Lobato
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Philippe Richard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Charles H Devillers
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302, CNRS, Université de Bourgogne 9, Avenue Alain Savary 21000 Dijon France
| |
Collapse
|
28
|
Boreen MA, Gould CA, Booth CH, Hohloch S, Arnold J. Structure and magnetism of a tetrahedral uranium(iii) β-diketiminate complex. Dalton Trans 2020; 49:7938-7944. [PMID: 32495782 DOI: 10.1039/d0dt01599g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the functionalisation of the previously reported uranium(iii) β-diketiminate complex (BDI)UI2(THF)2 (1) with one and two equivalents of a sterically demanding 2,6-diisopropylphenolate ligand (ODipp) leading to the formation of two heteroleptic complexes: [(BDI)UI(ODipp)]2 (2) and (BDI)U(ODipp)2 (3). The latter is a rare example of a tetrahedral uranium(iii) complex, and it shows single-molecule magnet behaviour.
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
29
|
Carbene complex formation versus cyclometallation from a phosphoryl-tethered methanide ruthenium complex. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Ward RJ, Rungthanaphatsophon P, Del Rosal I, Kelley SP, Maron L, Walensky JR. Divergent uranium- versus phosphorus-based reduction of Me 3SiN 3 with steric modification of phosphido ligands. Chem Sci 2020; 11:5830-5835. [PMID: 34094084 PMCID: PMC8159289 DOI: 10.1039/d0sc02261f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe an example of a two-electron metal- and ligand-based reduction of Me3SiN3 using uranium(iv) complexes with varying steric properties. Reaction of (C5Me5)2U(CH3)[P(SiMe3)(Ph)] with Me3SiN3 produces the imidophosphorane complex, (C5Me5)2U(CH3)[N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
P(SiMe3)2(Ph)] through oxidation of phosphorus. However, a similar reaction with a more sterically encumbering phosphido ligand, (C5Me5)2U(CH3)[P(SiMe3)(Mes)] forms the U(iv) complex, (C5Me5)2U[κ2-(N,N)–N(SiMe3)P(Mes)N(SiMe3)]. In probing the mechanism of this reaction, a U(vi) bis(imido) complex, (C5Me5)2U(NSiMe3){N[P(SiMe3)(Mes)]} was isolated. DFT calculations show an intramolecular reductive cycloaddition reaction leads to the formation of the U(iv) bis(amido)phosphane from the U(vi) bis(imido) complex. This is a rare example of the isolation of a reaction intermediate in f element chemistry. We describe an example of a two-electron metal- and ligand-based reduction of Me3SiN3 using uranium(iv) complexes with varying steric properties. With uranium-based reduction, a U(vi) intermediate is isolated.![]()
Collapse
Affiliation(s)
- Robert J Ward
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | | | - Iker Del Rosal
- Universite de Toulouse, CNRS, INSA, UPS, UMR, UMR 5215 LPCNO 135 Avenue de Ranguiel 31077 Toulouse France
| | - Steven P Kelley
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - Laurent Maron
- Universite de Toulouse, CNRS, INSA, UPS, UMR, UMR 5215 LPCNO 135 Avenue de Ranguiel 31077 Toulouse France
| | - Justin R Walensky
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| |
Collapse
|
31
|
Rice NT, McCabe K, Bacsa J, Maron L, La Pierre HS. Two-Electron Oxidative Atom Transfer at a Homoleptic, Tetravalent Uranium Complex. J Am Chem Soc 2020; 142:7368-7373. [PMID: 32248676 DOI: 10.1021/jacs.0c02693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A tetrahomoleptic, pseudotetrahedral U4+ imidophosphorane complex, [U(NP(pip)3)4], 1-U(PN), is reported. This complex can be oxidized by two electrons with either mesityl azide or nitrous oxide. This two-electron atom/group transfer oxidation is the first example observed at a homoleptic, tetravalent uranium complex. The mesityl imido compound [U(NMes)(NP(pip)3)4], 2-U(PN)NMes, exhibits a unique square pyramidal geometry in contrast to the expected trigonal bipyramidal geometry of the oxo complex [U(O)(NP(pip)3)4], 2-U(PN)O. The bonding driving the structural dichotomy of these structures and the absence of a structurally observable inverse trans-influence in 2-U(PN)NMes were examined by DFT and natural bonding orbital analysis.
Collapse
Affiliation(s)
- Natalie T Rice
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Karl McCabe
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquees, 31077 Toulouse, Cedex 4 France
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquees, 31077 Toulouse, Cedex 4 France
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
32
|
Maity AK, Ward RJ, Rupasinghe DMRYP, Zeller M, Walensky JR, Bart SC. Organometallic Uranyl Complexes Featuring a Carbodicarbene Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab K. Maity
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Ge S, Zhao J, Ferguson MJ, Ma G, Cavell RG. Rare Carbon-Bridged Bimetallic Lanthanide (Nd or Sm) and Tl(I) Geminal Carbon Derivatives of a Bis(iminophosphorano)methanediide. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, People’s Republic of China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, People’s Republic of China
| | - Michael J. Ferguson
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guibin Ma
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ronald G. Cavell
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
34
|
Platts JA, Baker RJ. A computational investigation of orbital overlap versus energy degeneracy covalency in [UE2]2+ (E = O, S, Se, Te) complexes. Dalton Trans 2020; 49:1077-1088. [DOI: 10.1039/c9dt04484a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalency in analogues of uranyl with heavy chalcogens is explored using DFT, and traced to increased energy-degeneracy as the group is descended.
Collapse
Affiliation(s)
| | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
35
|
Wei R, Chen X, Gong Y. Sulfur-substituted uranyl stabilized by fluoride ligands: matrix preparation of U(O)(S)F2via oxidation of U(0) by SOF2. Chem Commun (Camb) 2020; 56:6782-6785. [DOI: 10.1039/d0cc03139a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A neutral sulfur-substituted uranyl complex [U(O)(S)F2] in which the SUO2+ moiety is stabilized by electron withdrawing fluoride ligands was prepared via oxidation of U(0) by SOF2 in cryogenic matrixes.
Collapse
Affiliation(s)
- Rui Wei
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Xiuting Chen
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Yu Gong
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| |
Collapse
|
36
|
Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex. Nat Chem 2019; 11:806-811. [DOI: 10.1038/s41557-019-0306-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/08/2019] [Indexed: 11/08/2022]
|
37
|
Cowie BE, Purkis JM, Austin J, Love JB, Arnold PL. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [UVIO2]2+. Chem Rev 2019; 119:10595-10637. [DOI: 10.1021/acs.chemrev.9b00048] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bradley E. Cowie
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jamie M. Purkis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jonathan Austin
- National Nuclear Laboratory, Chadwick House,
Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Polly L. Arnold
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
38
|
Rosenzweig MW, Hümmer J, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Mazzanti M, Meyer K. A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te. Dalton Trans 2019; 48:10853-10864. [PMID: 30950469 DOI: 10.1039/c9dt00530g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Carlos Alvarez Lamsfus
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
39
|
Sharma P, Pahls DR, Ramirez BL, Lu CC, Gagliardi L. Multiple Bonds in Uranium-Transition Metal Complexes. Inorg Chem 2019; 58:10139-10147. [PMID: 31329432 DOI: 10.1021/acs.inorgchem.9b01264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel heterobimetallic complexes featuring a uranium atom paired with a first-row transition metal have been computationally predicted and analyzed using density functional theory and multireference wave function based methods. The synthetically inspired metalloligands U{(iPr2PCH2NAr)3tacn} (1) and U(iPr2PCH2NPh)3 (2) are explored in this study. We report the presence of multiple bonds between uranium and chromium, uranium and manganese, and uranium and iron. The calculations predict a 5-fold bonding between uranium and manganese in the UMn(iPr2PCH2NPh)3 complex, which is unprecedented in the literature.
Collapse
|
40
|
Fustier-Boutignon M, Nebra N, Mézailles N. Geminal Dianions Stabilized by Main Group Elements. Chem Rev 2019; 119:8555-8700. [PMID: 31194516 DOI: 10.1021/acs.chemrev.8b00802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review is dedicated to the chemistry of stable and isolable species that bear two lone pairs at the same C center, i.e., geminal dianions, stabilized by main group elements. Three cases can thus be considered: the geminal-dilithio derivative, for which the two substituents at C are neutral, the yldiide derivatives, for which one substituent is neutral while the other is charged, and finally the geminal bisylides, for which the two substituents are positively charged. In this review, the syntheses and electronic structures of the geminal dianions are presented, followed by the studies dedicated to their reactivity toward organic substrates and finally to their coordination chemistry and applications.
Collapse
Affiliation(s)
- Marie Fustier-Boutignon
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Noel Nebra
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| | - Nicolas Mézailles
- UPS, CNRS, LHFA UMR 5069 , Université de Toulouse , 118 Route de Narbonne , 31062 Toulouse , France
| |
Collapse
|
41
|
Yue Z, Lu H, Li Z, Guo S, Song J, Ren Y, Huang YY, Lin J, Wang JQ. The structural evolution and tunable photoluminescence of f-element bearing coordination polymers of the 2,4,6-tri-α-pyridyl-1,3,5-triazine ligand. CrystEngComm 2019. [DOI: 10.1039/c9ce00867e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An attempt at expanding the family of f-element bearing TPTZ coordination polymers has resulted in fifteen new complexes with topologies that evolved along the periodic table and tunable photoluminescence properties.
Collapse
Affiliation(s)
- Zenghui Yue
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Zijian Li
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Shangyao Guo
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Junze Song
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Yiming Ren
- Institute of Materials
- China Academy of Engineering Physics
- Mianyang 621907
- China
| | - Yu-Ying Huang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201210
- China
| | - Jian Lin
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| |
Collapse
|
42
|
Double dative bond between divalent carbon(0) and uranium. Nat Commun 2018; 9:4997. [PMID: 30479324 PMCID: PMC6258733 DOI: 10.1038/s41467-018-07377-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022] Open
Abstract
Dative bonds between p- and d-block atoms are common but species containing a double dative bond, which donate two-electron pairs to the same acceptor, are far less common. The synthesis of complexes between UCl4 and carbodiphosphoranes (CDP), which formally possess double dative bonds Cl4U⇇CDP, is reported in this paper. Single-crystal X-ray diffraction shows that the uranium-carbon distances are in the range of bond lengths for uranium-carbon double bonds. A bonding analysis suggests that the molecules are uranium-carbone complexes featuring divalent carbon(0) ligands rather than uranium-carbene species. The complexes represent rare examples with a double dative bond in f-block chemistry. Our study not only introduces the concept of double dative bonds between carbones and f-block elements but also opens an avenue for the construction of other complexes with double dative bonds, thus providing new opportunities for the applications of f-block compounds.
Collapse
|
43
|
Fryer-Kanssen I, Kerridge A. Elucidation of the inverse trans influence in uranyl and its imido and carbene analogues via quantum chemical simulation. Chem Commun (Camb) 2018; 54:9761-9764. [PMID: 30112524 DOI: 10.1039/c8cc06088f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inverse trans influence (ITI) is investigated in uranyl, UO22+, and its isoelectronic imido (U(NH)22+) and carbene (U(CH2)22+) analogues at the density functional and complete active space self consistent field levels of theory. The quantum theory of atoms in molecules is employed to quantify, for the first time, the effect of the ITI on covalent bond character and its relationship to bond lengths and complex stability.
Collapse
Affiliation(s)
- Izaak Fryer-Kanssen
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.
| | | |
Collapse
|
44
|
Zhang X, Li W, Feng L, Chen X, Hansen A, Grimme S, Fortier S, Sergentu DC, Duignan TJ, Autschbach J, Wang S, Wang Y, Velkos G, Popov AA, Aghdassi N, Duhm S, Li X, Li J, Echegoyen L, Schwarz WHE, Chen N. A diuranium carbide cluster stabilized inside a C 80 fullerene cage. Nat Commun 2018; 9:2753. [PMID: 30013067 PMCID: PMC6048043 DOI: 10.1038/s41467-018-05210-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing Ih(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
Collapse
Affiliation(s)
- Xingxing Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanlu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Lai Feng
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Skye Fortier
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Thomas J Duignan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Shuao Wang
- School of Radiological and Interdisciplinary Sciences & Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yaofeng Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Giorgios Velkos
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Alexey A Popov
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Nabi Aghdassi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaohong Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Luis Echegoyen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany.
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, 57068, Siegen, Germany
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
45
|
Wooles AJ, Mills DP, Tuna F, McInnes EJL, Law GTW, Fuller AJ, Kremer F, Ridgway M, Lewis W, Gagliardi L, Vlaisavljevich B, Liddle ST. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings. Nat Commun 2018; 9:2097. [PMID: 29844376 PMCID: PMC5974406 DOI: 10.1038/s41467-018-04560-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.
Collapse
Affiliation(s)
- Ashley J Wooles
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David P Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eric J L McInnes
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gareth T W Law
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Adam J Fuller
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Felipe Kremer
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mark Ridgway
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - William Lewis
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, Supercomputing Institute and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of South Dakota, 414 E Clark Street, Vermillion, SD, 57069, USA.
| | - Stephen T Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
46
|
Lu E, Boronski JT, Gregson M, Wooles AJ, Liddle ST. Silyl-Phosphino-Carbene Complexes of Uranium(IV). Angew Chem Int Ed Engl 2018; 57:5506-5511. [PMID: 29534326 PMCID: PMC6001699 DOI: 10.1002/anie.201802080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/08/2018] [Indexed: 11/08/2022]
Abstract
Unprecedented silyl-phosphino-carbene complexes of uranium(IV) are presented, where before all covalent actinide-carbon double bonds were stabilised by phosphorus(V) substituents or restricted to matrix isolation experiments. Conversion of [U(BIPMTMS )(Cl)(μ-Cl)2 Li(THF)2 ] (1, BIPMTMS =C(PPh2 NSiMe3 )2 ) into [U(BIPMTMS )(Cl){CH(Ph)(SiMe3 )}] (2), and addition of [Li{CH(SiMe3 )(PPh2 )}(THF)]/Me2 NCH2 CH2 NMe2 (TMEDA) gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5 ]2 (3) by α-hydrogen abstraction. Addition of 2,2,2-cryptand or two equivalents of 4-N,N-dimethylaminopyridine (DMAP) to 3 gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(Cl)][Li(2,2,2-cryptand)] (4) or [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(DMAP)2 ] (5). The characterisation data for 3-5 suggest that whilst there is evidence for 3-centre P-C-U π-bonding character, the U=C double bond component is dominant in each case. These U=C bonds are the closest to a true uranium alkylidene yet outside of matrix isolation experiments.
Collapse
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Josef T. Boronski
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
47
|
Lu E, Boronski JT, Gregson M, Wooles AJ, Liddle ST. Silyl-Phosphino-Carbene Complexes of Uranium(IV). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erli Lu
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Josef T. Boronski
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
48
|
Hohloch S, Garner ME, Parker BF, Arnold J. New supporting ligands in actinide chemistry: tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans 2018; 46:13768-13782. [PMID: 28959804 DOI: 10.1039/c7dt02682j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis, characterization, and preliminary reactivity of new heteroleptic thorium and uranium complexes supported by the macrocyclic TMTAA ligand (TMTAA = Tetramethyl-tetra-aza-annulene). The dihalide complexes Th(TMTAA)Cl2(THF)2 (1), [UCl2(TMTAA)]2 (2) and U(TMTAA)I2 (3) are further functionalized to the Cp* derivatives ThCp*(TMTAA)Cl (4), UCp*(TMTAA)Cl (5) and UCp*(TMTAA)I (6) (Cp* = pentamethylcyclopentadienide). Compounds 4-6 are also obtained through a one-pot reaction from standard thorium(iv) and uranium(iv) starting materials, Li2TMTAA and KCp*. Complexes 1-6 function as valuable starting materials for salt metathesis chemistry. Treatment of precursors 4 or 5 with trimethylsilylmethyllithium (LiCH2TMS) results in the new actinide TMTAA alkyl complexes ThCp*(TMTAA)(CH2TMS) (7) and UCp*(TMTAA)(CH2TMTS) (8), respectively. The TMTAA-derived alkyl complexes (7 and 8) show unexpected stability and are stable for several weeks at room temperature in solution and in the solid-state. Additionally, double substitution of the halide ligands in 1-3 shows a strong dependence on the nucleophile used. While weaker nucleophiles, such as amides, and more sterically demanding nucleophiles, such as Cp (Cp = cyclopenadienide), favour the formation of bis-TMTAA "sandwich" complexes [An(TMTAA)2] (An = Th (9) and An = U (10)), the use of oxygen-functionalized ligands like the ODipp anion (Dipp = diisopropylphenyl) results in the formation of the doubly substituted species Th(ODipp)2TMTAA (11) and U(ODipp)2TMTAA (12). We also describe the divergent reactivity of the TMTAA ligand towards uranium(iii). Unlike the syntheses of actinide(iv) TMTAA complexes, the synthesis of a uranium(iii) TMTAA was not successful and only uranium(iv) species could be obtained.
Collapse
Affiliation(s)
- Stephan Hohloch
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
49
|
Liu J, Seed JA, Formanuik A, Ortu F, Wooles AJ, Mills DP, Liddle ST. Thorium(IV) alkyl synthesis from a thorium(III) cyclopentadienyl complex and an N-heterocyclic olefin. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Rungthanaphatsophon P, Barnes CL, Kelley SP, Walensky JR. Four-electron reduction chemistry using a uranium(iii) phosphido complex. Dalton Trans 2018; 47:8189-8192. [DOI: 10.1039/c8dt01406j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first uranium(iii) phosphido complex is reported.
Collapse
|