1
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
2
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Kustiana BA, Elsherbeni SA, Linford‐Wood TG, Melen RL, Grayson MN, Morrill LC. B(C 6 F 5 ) 3 -Catalyzed E-Selective Isomerization of Alkenes. Chemistry 2022; 28:e202202454. [PMID: 35943082 PMCID: PMC9804281 DOI: 10.1002/chem.202202454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/05/2023]
Abstract
Herein, we report the B(C6 F5 )3 -catalyzed E-selective isomerization of alkenes. The transition-metal-free method is applicable across a diverse array of readily accessible substrates, giving access to a broad range of synthetically useful products containing versatile stereodefined internal alkenes. The reaction mechanism was investigated by using synthetic and computational methods.
Collapse
Affiliation(s)
- Betty A. Kustiana
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | - Salma A. Elsherbeni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| | | | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University Main BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
4
|
Zeng Y, Yang H, Du J, Huang Q, Huang G, Xia Y. Rh-catalyzed regio-switchable cross-coupling of gem-difluorinated cyclopropanes with allylboronates to structurally diverse fluorinated dienes. Chem Sci 2022; 13:12419-12425. [PMID: 36382270 PMCID: PMC9629036 DOI: 10.1039/d2sc04118a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
The control of linear/branched selectivity is one of the major focuses in transition-metal catalyzed allyl-allyl cross-coupling reactions, in which bond connection occurs at the terminal site of both the allyl fragments forming different types of 1,5-dienes. Herein, terminal/internal regioselectivity is investigated and found to be switchable in allyl-allyl cross-coupling reactions between gem-difluorinated cyclopropanes and allylboronates. The controlled terminal/internal regioselectivity arises from the fine-tuning of the rhodium catalytic system. Fluorinated 1,3-dienes, 1,4-dienes and 1,5-dienes are therefore produced in good yields with respectively isomerized terminal, internal, and terminal regioselectivity.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Hui Yang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jiayi Du
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
Conk RJ, Hanna S, Shi JX, Yang J, Ciccia NR, Qi L, Bloomer BJ, Heuvel S, Wills T, Su J, Bell AT, Hartwig JF. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 2022; 377:1561-1566. [PMID: 36173865 DOI: 10.1126/science.add1088] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The conversion of polyolefins to monomers would create a valuable carbon feedstock from the largest fraction of waste plastic. However, breakdown of the main chains in these polymers requires the cleavage of carbon-carbon bonds that tend to resist selective chemical transformations. Here, we report the production of propylene by partial dehydrogenation of polyethylene and tandem isomerizing ethenolysis of the desaturated chain. Dehydrogenation of high-density polyethylene with either an iridium-pincer complex or platinum/zinc supported on silica as catalysts yielded dehydrogenated material containing up to 3.2% internal olefins; the combination of a second-generation Hoveyda-Grubbs metathesis catalyst and [PdP(tBu)3(μ-Br)]2 as an isomerization catalyst selectively degraded this unsaturated polymer to propylene in yields exceeding 80%. These results show promise for the application of mild catalysis to deconstruct otherwise stable polyolefins.
Collapse
Affiliation(s)
- Richard J Conk
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven Hanna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake X Shi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ji Yang
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liang Qi
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steffen Heuvel
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tyler Wills
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ji Su
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alexis T Bell
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Yang W, Chernyshov IY, Weber M, Pidko EA, Filonenko GA. Switching between Hydrogenation and Olefin Transposition Catalysis via Silencing NH Cooperativity in Mn(I) Pincer Complexes. ACS Catal 2022; 12:10818-10825. [PMID: 36082051 PMCID: PMC9442580 DOI: 10.1021/acscatal.2c02963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Indexed: 11/30/2022]
Abstract
![]()
While Mn-catalyzed (de)hydrogenation of carbonyl derivatives
has
been well established, the reactivity of Mn hydrides with olefins
remains very rare. Herein, we report a Mn(I) pincer complex that effectively
promotes site-controlled transposition of olefins. This reactivity
is shown to emerge once the N–H functionality within the Mn/NH
bifunctional complex is suppressed by alkylation. While detrimental
for carbonyl (de)hydrogenation, such masking of the cooperative N–H
functionality allows for the highly efficient conversion of a wide
range of allylarenes to higher-value 1-propenybenzenes in near-quantitative
yield with excellent stereoselectivities. The reactivity toward a
single positional isomerization was also retained for long-chain alkenes,
resulting in the highly regioselective formation of 2-alkenes, which
are less thermodynamically stable compared to other possible isomerization
products. The detailed mechanistic analysis of the reaction between
the activated Mn catalyst and olefins points to catalysis operating
via a metal–alkyl mechanism—one of the three conventional
transposition mechanisms previously unknown in Mn complexes.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A. Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Wang Y, Huang Z, Liu G, Huang Z. A New Paradigm in Pincer Iridium Chemistry: PCN Complexes for (De)Hydrogenation Catalysis and Beyond. Acc Chem Res 2022; 55:2148-2161. [PMID: 35852837 DOI: 10.1021/acs.accounts.2c00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery and development of organometallic catalysts is of paramount importance in modern organic synthesis, among which the ligand scaffolds play a crucial role in controlling the activity and selectivity. Over the past several decades, d8 transition-metal complexes of pincer ligands have been developed extensively thanks to their easy structural modification, versatile reactivities, and high stability. One paradigm is the bis(phosphine)-based pincer iridium complexes PCP-Ir, which are highly active for alkane dehydrogenation, partly due to their high thermostability. However, except for alkane dehydrogenation and related transformations, few applications of pincer iridium catalysis have been seen in organic synthesis. This mainly arises from the low functional-group compatibility and poor substrate scope and the limited catalytic chemistry that invariably involves Ir(I/III) redox processes initiated by oxidative addition of substrates to 14-electron (PCP)Ir fragments (the proposed catalytically active intermediates). In this Account, we describe our endeavor on the development of a new family of PCN-Ir complexes with initial intention on creating more efficient alkane dehydrogenation catalysts. The replacement of a soft, σ-donor phosphine arm in the PCP ligands by a harder, π-acceptor N-heteroarene (pyridine or oxazoline) not only provides an additional platform to modify the structural properties but also offers new modes of bond activation and novel reactivities and catalysis. One uniqueness of the PCN-Ir system lies in the formation, via ortho-C(sp2)-H cyclometalation of the pyridine unit in the PCNPy ligand, of the neutral monohydride (PCC)IrIIIHL (L = neutral ligand), which catalyzes positional and stereoselective 1-alkene-to-(E)-2-alkene isomerization. Moreover, the PCN-Ir catalysts effect ethanol dehydrogenation without decarbonylation, allowing for transfer hydrogenation of unactivated alkenes and trans-selective semihydrogenation of internal alkynes with user-friendly ethanol as the H-donor. Another feature originates from the ability of the pentacoordinate hydrido chloride complex (PCN)IrIIIHCl to undergo reversible solvent-coordination-induced-ionization (SCII), furnishing a cationic monohydride [(PCN)IrIIIH(Sol)]+Cl- bearing an uncoordinated Cl anion that effects selective hydrometalation of internal alkynes over the corresponding (Z)-alkenes; the resulting (PCN)IrIII(vinyl)Cl complex undergoes amine-assisted formal alcoholysis involving the protonation of the Cl anion by the activated IrIII-bound EtOH, again via the SCII pathway. Together these elementary reactions lay the foundation for cis-selective semihydrogenation of alkynes with EtOH. Further, the design of the oxazoline-containing chiral complexes (PCNOxa)IrIIIHCl enables asymmetric transfer hydrogenation of alkenes/ketones with ethanol. The efficient catalytic α-alkylation of unactivated esters/amides with alcohols is another case showing the benefit that the PCN-Ir catalyst can offer. These examples illustrate the profound impact of the pincer ligands on the reactivities and catalysis. We hope this Account will provide an in-depth view into the fundamentals of pincer iridium chemistry and ultimately broaden its applications in organic synthesis.
Collapse
Affiliation(s)
- Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou310024, China
| |
Collapse
|
8
|
Royle CG, Sotorrios L, Gyton MR, Brodie CN, Burnage AL, Furfari SK, Marini A, Warren MR, Macgregor SA, Weller AS. Single-Crystal to Single-Crystal Addition of H 2 to [Ir( iPr-PONOP)(propene)][BAr F4] and Comparison Between Solid-State and Solution Reactivity. Organometallics 2022; 41:3270-3280. [DOI: 10.1021/acs.organomet.2c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Cameron G. Royle
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Matthew R. Gyton
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Claire N. Brodie
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| | - Arron L. Burnage
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | | - Anna Marini
- Diamond Light Source Ltd, Didcot OX11 0DE, U.K
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | | - Stuart A. Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Andrew S. Weller
- Department of Chemistry, University of York, Heslington YO10 5DD, York, U.K
| |
Collapse
|
9
|
Linke A, Decker D, Drexler HJ, Beweries T. Iridium(III) bis(thiophosphinite) pincer complexes: synthesis, ligand activation and applications in catalysis. Dalton Trans 2022; 51:10266-10271. [PMID: 35748648 DOI: 10.1039/d2dt01633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium(III) bis(thiophosphinite) complexes of the type [(RPSCSPR)Ir(H)(Cl)(py)] (RPSCSPR = κ3-(2,6-SPR2)C6H3) (R = tBu, iPr, Ph) can be prepared from the ligand precursors 1,3-(SPR2)C6H4 by C-H activation at Ir using [Ir(COE)2Cl]2 or [Ir(COD)Cl]2. Optimisation of the protocol for complexation showed that direct cyclometallation in the absence or presence of pyridine, as well as C-H activation in the presence of H2 are viable options that, depending on the phosphine substituent furnish the five-coordinate Ir(III) hydride chloride complexes 2-R or the base stabilised species 3-R in good yields. In case of the PhPSCSPPh ligand, P-S activation results in the formation of a thiophosphine stabilised Ir(III) hydride complex [(PhPSCSPPh)Ir(H)(Cl)(PPh2SH)] (4). Reaction of 2-tBu with H2 in the presence of base furnishes an Ir(III) dihydride complex (5) via a labile Ir(III) dihydride-dihydrogen complex (6). All complexes are inactive for transfer dehydrogenation of cyclooctane in the presence of NaOtBu and tert-butylethylene, likely due to decomposition of the Ir complex in the presence of base at higher temperature.
Collapse
Affiliation(s)
- Alexander Linke
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - David Decker
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Hans-Joachim Drexler
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Wu H, Hu L, Shi Y, Shen Z, Huang G. Computational Insights into Palladium/Boron-Catalyzed Allylic Substitution of Vinylethylene Carbonates with Water: Outer-Sphere versus Inner-Sphere Pathway and Origins of Regio- and Enantioselectivities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Yu Shi
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
11
|
Hanna S, Bloomer B, Ciccia NR, Butcher TW, Conk RJ, Hartwig JF. Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydroboration and Dehydroboration. Org Lett 2022; 24:1005-1010. [PMID: 35080409 PMCID: PMC8931855 DOI: 10.1021/acs.orglett.1c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a dehydroboration process that can be coupled with chain-walking hydroboration to create a one-pot, contra-thermodynamic, short- or long-range isomerization of internal olefins to terminal olefins. This dehydroboration occurs by a sequence comprising activation with a nucleophile, iodination, and base-promoted elimination. The isomerization proceeds at room temperature without the need for a fluoride base, and the substrate scope of this isomerization is expanded over those of previous isomerizations we have reported with silanes.
Collapse
Affiliation(s)
- Steven Hanna
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon Bloomer
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W Butcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard J Conk
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Zhou X, Malakar S, Dugan T, Wang K, Sattler A, Marler DO, Emge TJ, Krogh-Jespersen K, Goldman AS. Alkane Dehydrogenation Catalyzed by a Fluorinated Phebox Iridium Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas Dugan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Kun Wang
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Aaron Sattler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - David O. Marler
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
13
|
Biswas S, Blessent MJ, Gordon BM, Zhou T, Malakar S, Wang DY, Krogh-Jespersen K, Goldman AS. Origin of Regioselectivity in the Dehydrogenation of Alkanes by Pincer–Iridium Complexes: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumik Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Michael J. Blessent
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Benjamin M. Gordon
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - David Y. Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
14
|
Abraham JA, Mori S, Ishida M, Furuta H. Synthesis and Characterization of N-Fused Porphyrin Rhodium Complex with an Isomerized Cyclooctadiene Ligand. CHEM LETT 2021. [DOI: 10.1246/cl.210381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jibin Alex Abraham
- Department of Applied Chemistry, Graduate School of Engineering, and Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masatoshi Ishida
- Department of Applied Chemistry, Graduate School of Engineering, and Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, and Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Goossen LJ, Koley D, De S, Sivendran N. Isomerization of Functionalized Olefins Using the Dinuclear Catalyst [PdI(μ-Br)(PtBu3)]2: A Mechanistic Study. Chemistry 2021; 27:15226-15238. [PMID: 34387372 PMCID: PMC8596456 DOI: 10.1002/chem.202102554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/13/2022]
Abstract
In a combined experimental and computational study, the isomerization activity of the dinuclear palladium(I) complex [PdI(μ‐Br)(PtBu3)]2 towards allyl arenes, esters, amides, ethers, and alcohols has been investigated. The calculated energy profiles for catalyst activation for two alternative dinuclear and mononuclear catalytic cycles, and for catalyst deactivation are in good agreement with the experimental results. Comparison of experimentally observed E/Z ratios at incomplete conversion with calculated kinetic selectivities revealed that a substantial amount of product must form via the dinuclear pathway, in which the isomerization is promoted cooperatively by two palladium centers. The dissociation barrier towards mononuclear Pd species is relatively high, and once the catalyst enters the energetically more favorable mononuclear pathway, only a low barrier has to be overcome towards irreversible deactivation.
Collapse
Affiliation(s)
- Lukas J Goossen
- Ruhr-Universität Bochum, Organische Chemie I, Universitätsstraße 150, ZEMOS 2/27, 44801, 44801 Bochum, GERMANY
| | - Debasis Koley
- IISER-K: Indian Institute of Science Education and Research Kolkata, Chemical Sciences, Campus Rd, 741 246, Mohanpur, Nadia, INDIA
| | - Sriman De
- IISER-K: Indian Institute of Science Education and Research Kolkata, Chemical Sciences, Campus Rd, 741 246, Mohanpur, Nadia, INDIA
| | - Nardana Sivendran
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Chemistry and Biochemistry, Universitätsstr. 150, ZEMOS, 44795, Bochum, GERMANY
| |
Collapse
|
16
|
Abeynayake NS, Zamora-Moreno J, Gorla S, Donnadieu B, Muñoz-Hernández MA, Montiel-Palma V. 14-Electron Rh and Ir silylphosphine complexes and their catalytic activity in alkene functionalization with hydrosilanes. Dalton Trans 2021; 50:11783-11792. [PMID: 34368827 DOI: 10.1039/d1dt00677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh(iii) devoid of agostic interactions. The complexes [X-Rh(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl3 (Rh-5); derive from a bis(silyl)-o-tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl-Ir(κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et3SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et3SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomers by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M(iii) complexes.
Collapse
Affiliation(s)
- Niroshani S Abeynayake
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Xu S, Geng P, Li Y, Liu G, Zhang L, Guo Y, Huang Z. Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted ( Z)-Alkenyl Boronates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Songgen Xu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peiyu Geng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuling Li
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yinlong Guo
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
18
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
19
|
Suresh R, Massad I, Marek I. Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds. Chem Sci 2021; 12:9328-9332. [PMID: 34349902 PMCID: PMC8278922 DOI: 10.1039/d1sc02575a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C-C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4-positions. We employ an Ir-based alkene isomerization catalyst to form the reactive 2,3-divinyloxirane in situ with complete regio- and stereocontrol, which translates into excellent control over the stereochemistry of the resulting oxepines and ultimately to an attractive strategy towards 1,6-dicarbonyl compounds.
Collapse
Affiliation(s)
- Rahul Suresh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Itai Massad
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City 3200009 Haifa Israel
| |
Collapse
|
20
|
Kpante M, Wolf LM. Pathway Bifurcations in the Activation of Allylic Halides by Palladium and Their Influence on the Dynamics of η 1 and η 3 Allyl Intermediates. J Org Chem 2021; 86:9637-9650. [PMID: 34190566 DOI: 10.1021/acs.joc.1c00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-catalyzed allylic substitution often exhibits complex product selectivity patterns, which have been primarily attributed to π ↔ σ ↔ π isomerization of the η1 and η3 allyl intermediates. Product selectivity may be even further complicated if η1- and η3-allyls share a single transition state (TS), leading to their formation resulting in a post-transition-state bifurcation (PTSB). In this work, density functional theory calculations using ab initio molecular dynamics (AIMD) have been carried out that support the presence of a PTSB in Pd-catalyzed allylic halide activation directly influencing product selectivity. The AIMD results initiated from the TS predict the η1-allyl to be favored in the gas phase and a low dielectric (ε < 2.5) for trialkylphosphines, while the selectivity shifts toward the η3-allyl in higher dielectrics. The minimum energy path is also predicted to shift in product preference, consistent with the dynamics predictions. The bifurcation in allylic chloride activation is predicted to largely favor the η3-allyl at any solvent polarity. A PTSB was also discovered to be present in Ni and Pt allylic activation but with less bifurcation. These results offer a unique view into the mechanism of metal-catalyzed allylic substitution.
Collapse
Affiliation(s)
- Malkaye Kpante
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Lawrence M Wolf
- Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
21
|
Iwamoto H, Tsuruta T, Ogoshi S. Development and Mechanistic Studies of ( E)-Selective Isomerization/Tandem Hydroarylation Reactions of Alkenes with a Nickel(0)/Phosphine Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00908] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroaki Iwamoto
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Tsuruta
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Qiu J, Sako M, Tanaka T, Matsuzaki T, Takehara T, Suzuki T, Ohno S, Murai K, Arisawa M. Iridium-Catalyzed Isomerization/Cycloisomerization/Aromatization of N-Allyl- N-sulfonyl- o-(λ 1-silylethynyl)aniline Derivatives to Give Substituted Indole Derivatives. Org Lett 2021; 23:4284-4288. [PMID: 34032456 DOI: 10.1021/acs.orglett.1c01231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a one-iridium-catalyst system that transforms N-allyl-N-sulfonyl-2-(silylalkynyl)aniline derivatives, which are 1,7-enynes in which both multiple bonds have a heteroatom, to the corresponding substituted indole derivatives via isomerization/cycloisomerization/aromatization. This strategy provides an atom-economical and straightforward synthetic approach to a series of valuable indoles having vinyl and silylmethyl groups at the 2- and 3-positions.
Collapse
Affiliation(s)
- Jiawei Qiu
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Shohei Ohno
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Pandya C, Panicker RR, Senjaliya P, Hareendran MH, Anju P, Sarkar S, Bhat H, Jha PC, Rao KP, Smith GS, Sivaramakrishna A. Designing and synthesis of phosphine derivatives of Ru3(CO)12 – Studies on catalytic isomerization of 1-alkenes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kim D, Pillon G, DiPrimio DJ, Holland PL. Highly Z-Selective Double Bond Transposition in Simple Alkenes and Allylarenes through a Spin-Accelerated Allyl Mechanism. J Am Chem Soc 2021; 143:3070-3074. [DOI: 10.1021/jacs.1c00856] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Kim
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Guy Pillon
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Daniel J. DiPrimio
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Shi Y, Wu H, Huang G. Rhodium( i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates: a computational study. Org Chem Front 2021. [DOI: 10.1039/d1qo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DFT calculations were performed to investigate the rhodium(i)/bisoxazolinephosphine-catalyzed regio- and enantioselective amination of allylic carbonates.
Collapse
Affiliation(s)
- Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Hongli Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
26
|
Gitnes RM, Wang M, Bao Y, Scheuermann ML. In Situ Generation of Catalytically Relevant Nanoparticles from a Molecular Pincer Iridium Precatalyst during Polyol Deoxygenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachael M. Gitnes
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Maggie Wang
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Ying Bao
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| | - Margaret L. Scheuermann
- Department of Chemistry, Western Washington University, 516 High Street—MS-9150, Bellingham, Washington 98225, United States
| |
Collapse
|
27
|
Tang X, Gan L, Zhang X, Huang Z. n-Alkanes to n-alcohols: Formal primary C─H bond hydroxymethylation via quadruple relay catalysis. SCIENCE ADVANCES 2020; 6:6/47/eabc6688. [PMID: 33219029 PMCID: PMC7679163 DOI: 10.1126/sciadv.abc6688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/07/2020] [Indexed: 05/10/2023]
Abstract
Nature is able to synergistically combine multiple enzymes to conduct well-ordered biosynthetic transformations. Mimicking nature's multicatalysis in vitro may give rise to new chemical transformations via interplay of numerous molecular catalysts in one pot. The direct and selective conversion of abundant n-alkanes to valuable n-alcohols is a reaction with enormous potential applicability but has remained an unreached goal. Here, we show that a quadruple relay catalysis system involving three discrete transition metal catalysts enables selective synthesis of n-alcohols via n-alkane primary C─H bond hydroxymethylation. This one-pot multicatalysis system is composed of Ir-catalyzed alkane dehydrogenation, Rh-catalyzed olefin isomerization and hydroformylation, and Ru-catalyzed aldehyde hydrogenation. This system is further applied to synthesis of α,ω-diols from simple α-olefins through terminal-selective hydroxymethylation of silyl alkanes.
Collapse
Affiliation(s)
- Xinxin Tang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lan Gan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
28
|
Dodge HM, Kita MR, Chen CH, Miller AJM. Identifying and Evading Olefin Isomerization Catalyst Deactivation Pathways Resulting from Ion-Tunable Hemilability. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Henry M. Dodge
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R. Kita
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
29
|
De‐Botton S, Filippov DOA, Shubina ES, Belkova NV, Gelman D. Regioselective Isomerization of Terminal Alkenes Catalyzed by a PC(sp
3
)Pincer Complex with a Hemilabile Pendant Arm. ChemCatChem 2020. [DOI: 10.1002/cctc.202001308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sophie De‐Botton
- Institute of Chemistry, Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - D.Sc. Oleg A. Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Natalia V. Belkova
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilov Street 28 119991 Moscow Russia
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus The Hebrew University of Jerusalem Jerusalem 91904 Israel
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 117198 Moscow Russia
| |
Collapse
|
30
|
Kirkina VA, Silantyev GA, De-Botton S, Filippov OA, Titova EM, Pavlov AA, Belkova NV, Epstein LM, Gelman D, Shubina ES. Stereoisomerism as an Origin of Different Reactivities of Ir(III) PC(sp 3)P Pincer Catalysts. Inorg Chem 2020; 59:11962-11975. [PMID: 32806008 DOI: 10.1021/acs.inorgchem.0c00797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two stereoisomers of pentacoordinate iridium(III) hydridochloride with triptycene-based PC(sp3)P pincer ligand (1,8-bis(diisopropylphosphino)triptycene), 1 and 2, differ by the orientation of hydride ligand relative to the bridgehead ring of triptycene. According to DFT/B3PW91/def2-TZVP calculations performed, an equatorial Cl ligand can relatively easily change its position in 1, whereas that is not the case in 2. Both complexes 1 and 2 readily bind the sixth ligand to protect the empty coordination site. Variable temperature spectroscopic (NMR, IR, and UV-visible) studies show the existence of two isomers of hexacoordinate complexes 1·MeCN, 2·MeCN, and 2·Py with acetonitrile or pyridine coordinated trans to hydride or trans to metalated C(sp3), whereas only the equatorial isomer is found for 1·Py. These complexes are stabilized by various intramolecular noncovalent C-H···Cl interactions that are affected by the rotation of isopropyls or pyridine. The substitution of MeCN by pyridine is slow yielding axial Py complexes as kinetic products and the equatorial Py complexes as thermodynamic products with faster reactions of 1·L. Ultimately, that explains the higher activity of 1 in the catalytic alkenes' isomerization observed for allylbenzene, 1-octene, and pent-4-enenitrile, which proceeds as an insertion/elimination sequence rather than through the allylic mechanism.
Collapse
Affiliation(s)
- Vladislava A Kirkina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Gleb A Silantyev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Sophie De-Botton
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Ekaterina M Titova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Alexander A Pavlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Natalia V Belkova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Lina M Epstein
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University, Edmond Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Elena S Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| |
Collapse
|
31
|
Massad I, Sommer H, Marek I. Stereoselective Access to Fully Substituted Aldehyde-Derived Silyl Enol Ethers by Iridium-Catalyzed Alkene Isomerization. Angew Chem Int Ed Engl 2020; 59:15549-15553. [PMID: 32392394 DOI: 10.1002/anie.202005058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/10/2020] [Indexed: 11/06/2022]
Abstract
An in situ generated cationic Ir-catalyst isomerizes simple allylic silyl ethers into valuable, fully substituted aldehyde-derived silyl enol ethers. Importantly, by judicious choice of substrate, either of the two possible stereoisomers of a given enolate derivative is accessible with complete stereoselectivity. One-pot isomerization-aldol and isomerization-allylation processes illustrate the synthetic utility of this method.
Collapse
Affiliation(s)
- Itai Massad
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Heiko Sommer
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200009, Israel
| |
Collapse
|
32
|
Hanna S, Wills T, Butcher TW, Hartwig JF. Palladium-Catalyzed Oxidative Dehydrosilylation for Contra-Thermodynamic Olefin Isomerization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven Hanna
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, 718 Latimer Hall, Berkeley, California 94708, United States
| | - Tyler Wills
- Department of Chemistry, University of California, 718 Latimer Hall, Berkeley, California 94708, United States
| | - Trevor W. Butcher
- Department of Chemistry, University of California, 718 Latimer Hall, Berkeley, California 94708, United States
| | - John F. Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, 718 Latimer Hall, Berkeley, California 94708, United States
| |
Collapse
|
33
|
Massad I, Sommer H, Marek I. Stereoselective Access to Fully Substituted Aldehyde‐Derived Silyl Enol Ethers by Iridium‐Catalyzed Alkene Isomerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Itai Massad
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Heiko Sommer
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
34
|
Zhang X, Wu SB, Leng X, Chung LW, Liu G, Huang Z. N-Bridged Pincer Iridium Complexes for Highly Efficient Alkane Dehydrogenation and the Relevant Linker Effects. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00539] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Song-Bai Wu
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuebing Leng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lung Wa Chung
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
35
|
Wang Y, Qian L, Huang Z, Liu G, Huang Z. NCP‐Type
Pincer Iridium Complexes Catalyzed
Transfer‐Dehydrogenation
of Alkanes and Heterocycles
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lu Qian
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- China School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences 1 Sub‐lane Xiangshan Hangzhou Zhejiang 310024 China
- Chang‐Kung Chuang Institute, East China Normal University Shanghai 200062 China
| |
Collapse
|
36
|
Gao W, Zhang X, Xie X, Ding S. One simple Ir/hydrosilane catalytic system for chemoselective isomerization of 2-substituted allylic ethers. Chem Commun (Camb) 2020; 56:2012-2015. [PMID: 31961351 DOI: 10.1039/c9cc09055j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we describe one simple Ir/hydrosilane catalytic system for chemoselective isomerization of 2-substituted allylic ethers. This facile strategy shows high efficiency towards a variety of substrates, including derivatives from bioactive molecules. The substituent at the α position of the olefins is supposed to be critical in retarding the alkene hydrosilylation process and leading the reaction to go through the isomerization pathway.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | |
Collapse
|
37
|
Ren W, Sun F, Chu J, Shi Y. A Pd-Catalyzed Site-Controlled Isomerization of Terminal Olefins. Org Lett 2020; 22:1868-1873. [DOI: 10.1021/acs.orglett.0c00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenlong Ren
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Fei Sun
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Jianxiao Chu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
38
|
Martínez-Martínez AJ, Royle CG, Furfari SK, Suriye K, Weller AS. Solid-State Molecular Organometallic Catalysis in Gas/Solid Flow (Flow-SMOM) as Demonstrated by Efficient Room Temperature and Pressure 1-Butene Isomerization. ACS Catal 2020; 10:1984-1992. [PMID: 32296595 PMCID: PMC7147255 DOI: 10.1021/acscatal.9b03727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/05/2020] [Indexed: 02/06/2023]
Abstract
![]()
The
use of solid–state molecular organometallic chemistry
(SMOM–chem) to promote the efficient double bond isomerization
of 1-butene to 2-butenes under flow–reactor conditions is reported.
Single crystalline catalysts based upon the σ-alkane complexes
[Rh(R2PCH2CH2PR2)(η2η2-NBA)][BArF4] (R
= Cy, tBu; NBA = norbornane; ArF = 3,5-(CF3)2C6H3) are prepared by hydrogenation
of a norbornadiene precursor. For the tBu-substituted system
this results in the loss of long-range order, which can be re-established
by addition of 1-butene to the material to form a mixture of [Rh(tBu2PCH2CH2PtBu2)(cis-2-butene)][BArF4] and [Rh(tBu2PCH2CH2PtBu2)(1-butene)][BArF4], in an order/disorder/order phase change. Deployment under flow-reactor
conditions results in very different on-stream stabilities. With R
= Cy rapid deactivation (3 h) to the butadiene complex occurs, [Rh(Cy2PCH2CH2PCy2)(butadiene)][BArF4], which can be reactivated by simple addition
of H2. While the equivalent butadiene complex does not
form with R = tBu at 298 K and on-stream conversion
is retained up to 90 h, deactivation is suggested to occur via loss
of crystallinity of the SMOM catalyst. Both systems operate under
the industrially relevant conditions of an isobutene co-feed. cis:trans
selectivites for 2-butene are biased in favor of cis for the tBu system and are more leveled for Cy.
Collapse
Affiliation(s)
| | - Cameron G. Royle
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| | - Samantha K. Furfari
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| | - Kongkiat Suriye
- SCG Chemicals, 1 Siam Cement Road, Bangsue, Bangkok 10800, Thailand
| | - Andrew S. Weller
- Department of Chemistry, Chemistry Research Laboratories, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingsdom
| |
Collapse
|
39
|
Wu Z, Zhang M, Shi Y, Huang G. Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes via dynamic kinetic resolution: a computational study. Org Chem Front 2020. [DOI: 10.1039/d0qo00174k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT calculations were performed to investigate the Pd-catalyzed hydroamination of racemic internal allenes with pyrazoles.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Mei Zhang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yu Shi
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Genping Huang
- Department of Chemistry
- School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|
40
|
Hanna S, Butcher TW, Hartwig JF. Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydrofunctionalization and Formal Retro-hydrofunctionalization. Org Lett 2019; 21:7129-7133. [PMID: 31424215 DOI: 10.1021/acs.orglett.9b02695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report a contra-thermodynamic isomerization of internal olefins to terminal olefins driven by redox reactions and formation of Si-F bonds. This process involves chain-walking hydrosilylation of internal olefins and subsequent formal retro-hydrosilylation. The process rests upon the high activities of platinum hydrosilylation catalysts for isomerization of metal alkyl intermediates and a new, metal-free process for the conversion of alkylsilanes to alkenes. By this approach, 1,2-disubstituted and trisubstituted olefins are converted to terminal olefins.
Collapse
Affiliation(s)
- Steven Hanna
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W Butcher
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Shiekh BA, Kaur D. Mechanism of atom economical conversion of alcohols and amines to amides using Fe(ii) pincer catalyst. An outer-sphere metal-ligand pathway or an inner-sphere elimination pathway? RSC Adv 2019; 9:17479-17489. [PMID: 35519856 PMCID: PMC9064549 DOI: 10.1039/c9ra03309b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
In this present theoretical study, we investigated the reaction mechanism of atom-economical amide formation from alcohols and amines mediated by iron(ii) hydride complex (iPrPNP)Fe(H)(CO) (iPrPNP = N[CH2CH2(PiPr2)]2) using state-of-the-art density functional theory. Two scenarios of mechanistic pathways were considered, the inner-sphere and the outer-sphere pathways. In former case, the reaction of encounter complex of formaldehyde with amine is the rate-determining step with ΔG298 K = 33.75 kcal mol−1 while as in latter case dehydrogenation from trans-hydride is the rate-determining step having ΔG298 K = 21.34 kcal mol−1. Both the mechanistic scenarios operate through stepwise ionic pathways. The assessment of computational results demonstrate that inner-sphere pathway is energetically demanding and thus rendering outer-sphere pathway to be the most plausible mechanism of amide formation. Ligand modifications reveal that electron-withdrawing groups like CF3 near N of PNP ligand reduce the catalytic efficiency of the catalyst. Furthermore, changing the isopropyl moiety of phosphine scaffold with CH3 has a minimal impact on catalytic activity of the catalyst. Overall, our computational results provide new insights for the design and development of new Fe(ii) based pincer catalysts for atom economical amide formation from alcohols and amines. The schematic representation depicting the difference in inner and outer-sphere pathways for amide synthesis from alcohols and amines mediated by Fe(ii) hydride complex.![]()
Collapse
Affiliation(s)
- Bilal Ahmad Shiekh
- Department of Chemistry, UGC Sponsored Centre of Advanced Studies-I, Guru Nanak Dev University Amritsar India-143005
| | - Damanjit Kaur
- Department of Chemistry, UGC Sponsored Centre of Advanced Studies-I, Guru Nanak Dev University Amritsar India-143005
| |
Collapse
|
42
|
Zhou X, Malakar S, Zhou T, Murugesan S, Huang C, Emge TJ, Krogh-Jespersen K, Goldman AS. Catalytic Alkane Transfer Dehydrogenation by PSP-Pincer-Ligated Ruthenium. Deactivation of an Extremely Reactive Fragment by Formation of Allyl Hydride Complexes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoguang Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Santanu Malakar
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Tian Zhou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Sathiyamoorthy Murugesan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Carlos Huang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Karsten Krogh-Jespersen
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
43
|
Guan D, Godard C, Polas SM, Tooze RP, Whitwood AC, Duckett SB. Using para hydrogen induced polarization to study steps in the hydroformylation reaction. Dalton Trans 2019; 48:2664-2675. [PMID: 30702728 DOI: 10.1039/c8dt04723e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R')2 (1a-1e) [where 1a, PR2R' = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R') (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R')2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R') (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R') (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R') (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R')2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R'), Ir(η1-C3H5)(CO)(PR2R')2, Ir(η1-C3H5)(CO)2(PR2R'), Ir(CO-C3H5)(CO)2(PR2R'), Ir(CO-C3H7)(CO)2(PR2R') and Ir(CO-C3H5)(CO)(PR2R')2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds.
Collapse
Affiliation(s)
- Dexin Guan
- School of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Provence, China 310023
| | | | | | | | | | | |
Collapse
|
44
|
Sihag P, Jeganmohan M. Regioselective Synthesis of Isocoumarins via Iridium(III)-Catalyzed Oxidative Cyclization of Aromatic Acids with Propargyl Alcohols. J Org Chem 2019; 84:2699-2712. [DOI: 10.1021/acs.joc.8b03077] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| |
Collapse
|
45
|
Das K, Kumar A. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Hu L, Wu Z, Huang G. Mechanism and Origins of Regio- and Stereoselectivities in Iridium-Catalyzed Isomerization of 1-Alkenes to trans-2-Alkenes. Org Lett 2018; 20:5410-5413. [DOI: 10.1021/acs.orglett.8b02319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Zhenzhen Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
47
|
Anukumar A, Tamizmani M, Jeganmohan M. Ruthenium(II)-Catalyzed Regioselective-Controlled Allenylation/Cyclization of Benzimides with Propargyl Alcohols. J Org Chem 2018; 83:8567-8580. [DOI: 10.1021/acs.joc.8b01123] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adapa Anukumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Tamizmani
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
48
|
Azpeitia S, Prieto U, San Sebastián E, Rodríguez-Diéguez A, Garralda MA, Huertos MA. Alkene-alkyl interconversion: an experimental and computational study of the olefin insertion and β-hydride elimination processes. Dalton Trans 2018; 47:6808-6818. [PMID: 29722775 DOI: 10.1039/c8dt00448j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and characterization of various alkyl, allyl or alkene Rh(iii) and Ir(iii) complexes as well as studies on the intramolecular reactions leading to transformation of one into another are reported. The silyl-hydrido-Rh(iii) complex {Rh(H)[SiMe(o-C6H4SMe)2](PPh3)}[BArF4], with a vacant coordination site, reacts with 1,5-cyclooctadiene (cod) leading to olefin insertion into the Rh-H bond and rearrangement to yield the 16e cyclooctenyl-Rh(iii) complex {Rh(η3-cyclooctenyl)[SiMe(o-C6H4SMe)2]}[BArF4] (1). This compound can be also synthesized by reaction of the 18e chloride precursor {Rh(η3-cyclooctenyl)[SiMe(o-C6H4SMe)2]Cl} with NaBArF4. The reaction of the thioether-silane SiMeH(o-C6H4SMe)2 with [Rh(nbd)Cl]2 (nbd = norbornadiene) leads to {Rh(σ-ntyl)[SiMe(o-C6H4SMe)2]Cl} (ntyl = nortricyclyl) (2). The abstraction of chloride from this neutral 16e ntyl-Rh(iii) complex with NaBArF4 results in the unusual isomerization of σ-nortricyclyl into σ,π-norbornenyl forming the 16e and cationic {Rh(σ,π-nbyl)[SiMe(o-C6H4SMe)2][BArF4] (nbyl = norbornenyl)} compound 3. Coordinatively saturated {Ir(η3-cyclooctenyl)[SiMe(o-C6H4SMe)2]Cl} (4) has been synthesized by the reaction of [Ir(cod)Cl]2 with SiMeH(o-C6H4SMe)2. The reaction of 4 with NaBArF4 led to the formation of the unsaturated and cationic Ir(iii) compound {Ir(η3-cyclooctenyl)[SiMe(o-C6H4SMe)2]}[BArF4] (5). Compound 5 shows low stability in solution and undergoes successive β-hydride elimination and olefin insertion steps, which were elucidated by DFT calculations, to form 18e {Ir(H)[SiMe(o-C6H4SMe)2](η4-cod)}[BArF4] (6).
Collapse
Affiliation(s)
- S Azpeitia
- Facultad de Química de San Sebastián, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080, San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Jain P, Pal S, Avasare V. Ni(COD)2-Catalyzed ipso-Silylation of 2-Methoxynaphthalene: A Density Functional Theory Study. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pooja Jain
- Department of Chemistry, Indian Institution of Technology Bombay, Mumbai 400076, India
| | - Sourav Pal
- Department of Chemistry, Indian Institution of Technology Bombay, Mumbai 400076, India
| | - Vidya Avasare
- Department of Chemistry, Sir Parashurambhau College, Pune 411030, India
| |
Collapse
|
50
|
Affiliation(s)
- Robert W. Baker
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|