1
|
Rafiei M, Shojaei A, Chau Y. Machine learning-assisted design of immunomodulatory lipid nanoparticles for delivery of mRNA to repolarize hyperactivated microglia. Drug Deliv 2025; 32:2465909. [PMID: 40028722 DOI: 10.1080/10717544.2025.2465909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Regulating inflammatory microglia presents a promising strategy for treating neurodegenerative and autoimmune disorders, yet effective therapeutic agents delivery to these cells remains a challenge. This study investigates modified lipid nanoparticles (LNP) for mRNA delivery to hyperactivated microglia, particularly those with pro-inflammatory characteristics, utilizing supervised machine learning (ML) classifiers. We developed and screened a library of 216 LNP formulations with varying lipid compositions, N/P ratios, and hyaluronic acid (HA) modifications. The transfection efficiency of eGFP mRNA was assessed in the BV-2 murine microglia cell line under different immunological states, including resting and activated conditions (LPS-activated and IL4/IL13-activated). ML-guided morphometric analysis tracked the phenotypes of various microglia subtypes before and after transfection. Four supervised ML classifiers were investigated to predict transfection efficiency and phenotypic changes based on LNP design parameters. The Multi-Layer Perceptron (MLP) neural network emerged as the best-performing model, achieving weighted F1-scores ≥0.8. While it accurately predicted responses from LPS-activated and resting cells, it struggled with IL4/IL13-activated cells. The MLP model was validated by predicting the performance of four unseen LNP formulations delivering eGFP mRNA to LPS-activated BV2 cells. HA-LNP2 emerged as optimal formulation for delivering target IL10 mRNA, effectively suppressing inflammatory phenotypes, evidenced by shifts in cell morphology, increased IL10 expression, and reduced TNF-α levels. We also evaluated HA-LNP2 on LPS-activated human iPSC-derived microglia, confirming its efficacy in modulating inflammatory responses. This study highlights the potential of tailored LNP design and ML techniques to enhance mRNA therapy for neuroinflammatory disorders by leveraging carrier's immunogenic properties to modulate microglial responses.
Collapse
Affiliation(s)
- Mehrnoosh Rafiei
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Center for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Akbar Shojaei
- Center for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Kim SG, Park SH, Jeong S, Song G, Oh SS, Yi GR. Scalable production of uniform gene-loaded lipid nanoparticles via a fluidity-controlled membrane extrusion. J Colloid Interface Sci 2025; 687:74-84. [PMID: 39946970 DOI: 10.1016/j.jcis.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/18/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
Lipid nanoparticles (LNPs) encapsulating genetic material can be produced on a large scale using the bulk-mixing method. However, this approach often lacks precise control over particle size and cargo loading, limiting its efficiency in gene delivery. We have developed a membrane extrusion process that enables large-scale production of LNPs with a narrow size distribution. Initially, an ethanolic lipid solution is mixed with an aqueous buffer containing nucleic acids, forming a pre-mix of swollen LNPs. These soft, swollen LNPs are then extruded through a polycarbonate filter membrane, producing uniform LNPs, in which the ethanol concentration and extrusion pH are adjusted for LNP fluidity. Subsequent addition of citrate buffer (pH 4) enhances encapsulation efficiency by reassembling the dissociated mRNA and lipids during the extrusion process. Finally, the LNP solution is adjusted to physiological pH through buffer exchange. Optimizing the extrusion parameters allowed us to achieve highly uniform 100 nm LNPs with over 80 % encapsulation efficiency for mRNA, siRNA, and DNA. This work provides valuable insights into LNP formation, highlights critical formulation parameters, and demonstrates the potential for large-scale, controlled LNP production.
Collapse
Affiliation(s)
- Su-Gyeom Kim
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seolyeong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Geonho Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Seung Soo Oh
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea
| | - Gi-Ra Yi
- Division of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 36763, Republic of Korea.
| |
Collapse
|
3
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025. [PMID: 40176316 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B Ewa Snaar-Jagalska
- Department of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
4
|
Yun Y, An J, Kim HJ, Choi HK, Cho HY. Recent advances in functional lipid-based nanomedicines as drug carriers for organ-specific delivery. NANOSCALE 2025; 17:7617-7638. [PMID: 40026004 DOI: 10.1039/d4nr04778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Lipid-based nanoparticles have emerged as promising drug delivery systems for a wide range of therapeutic agents, including plasmids, mRNA, and proteins. However, these nanoparticles still encounter various challenges in drug delivery, including drug leakage, poor solubility, and inadequate target specificity. In this comprehensive review, we present an in-depth investigation of four distinct drug delivery methods: liposomes, lipid nanoparticle formulations, solid lipid nanoparticles, and nanoemulsions. Moreover, we explore recent advances in lipid-based nanomedicines (LBNs) for organ-specific delivery, employing ligand-functionalized particles that specifically target receptors in desired organs. Through this strategy, LBNs enable direct and efficient drug delivery to the intended organs, leading to superior DNA or mRNA expression outcomes compared to conventional approaches. Importantly, the development of novel ligands and their judicious combination holds promise for minimizing the side effects associated with nonspecific drug delivery. By leveraging the unique properties of lipid-based nanoparticles and optimizing their design, researchers can overcome the limitations associated with current drug delivery systems. In this review, we aim to provide valuable insights into the advancements, challenges, and future directions of lipid-based nanoparticles in the field of drug delivery, paving the way for enhanced therapeutic strategies with improved efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jeongmin An
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hyun Joong Kim
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
5
|
Lim J, Oh D, Cheng M, Chintapula U, Liu S, Reynolds D, Zhang X, Zhou Y, Xu X, Ko J. Enhancing Chimeric Antigen Receptor T-Cell Generation via Microfluidic Mechanoporation and Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410975. [PMID: 40103509 DOI: 10.1002/smll.202410975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment by engineering patients' T cells to specifically target cancer cells. Traditional CAR-T cell manufacturing methods use viral transduction to integrate CAR genes into T cells, but this can cause severe side effects and immune reactions and is costly. To overcome these challenges, non-viral methods, such as plasmid DNA (pDNA) transfection, are being explored. Here, a high-throughput intracellular delivery platform that integrates microfluidic mechanoporation with lipid nanoparticle (LNP)-based delivery, LNP + Squeeze, is introduced. This system enhances pDNA transfection efficiency in T cells while maintaining cell viability compared to other non-viral transfection methods like electroporation. This platform successfully engineers CAR-T cells using primary human T cells with a high transfection efficiency and demonstrates potent cytotoxicity against melanoma cells. This approach offers a promising, cost-effective, and scalable alternative to viral methods, potentially improving the accessibility and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
- Jianhua Lim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Oh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Makayla Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Uday Chintapula
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Reynolds
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaogang Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yumeng Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Wang H, Pestre H, Tan EKN, Wedemann L, Schuhmacher JS, Schuhmacher M, Stellacci F. Facile lipid nanoparticle size engineering approach via controllable fusion induced by depletion forces. J Colloid Interface Sci 2025; 691:137334. [PMID: 40147373 DOI: 10.1016/j.jcis.2025.137334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Lipid nanoparticles (LNPs) are among the most promising drug delivery carriers in research and development, with one major clinical application being messenger RNA (mRNA) vaccine. Current LNP production methods have the limit of generating low polydispersity index (PDI; PDI < 0.1) only for relatively small particles (<100 nm). It is known that larger LNPs have desirable properties, for example, particles with diameters in the 100 to 200 nm range have good immunogenicity. Yet, these larger particles' large PDI limits their clinical translation because of concerns about manufacturing reproducibility and possible side effects. We report here a facile approach to produce large and monodisperse (100-200 nm, PDI < 0.1) LNPs. The approach is based on adding 10 kDa polyethylene glycol (PEG) to a solution containing smaller LNPs. We show that PEG-induced depletion forces lead to the fusion of LNPs to form particles of approximately double the original size while keeping the same starting PDI. We discuss the fusion mechanism and show the parameters it depends on. In particular, we show that the fusion leads to a decrease in the fraction of empty LNPs. We show that the purification for PEG after fusion is simple and complete, thus, we believe that this is a method for the production of large LNP with low PDI that has a lot of potential to find industrial use.
Collapse
Affiliation(s)
- Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Hugo Pestre
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Emie-Kim Ngo Tan
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Linda Wedemann
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Jan S Schuhmacher
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Milena Schuhmacher
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland; Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland; Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Hourdel L, Lebaz N, Peral F, Ripoll M, Briançon S, Bensaid F, Luthra S, Cogné C. Overview on LNP-mRNA encapsulation unit operation: Mixing technologies, scalability, and influence of formulation & process parameters on physico-chemical characteristics. Int J Pharm 2025; 672:125297. [PMID: 39900125 DOI: 10.1016/j.ijpharm.2025.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Nanoparticles carrying active drug substances have been used since the 70's and have undergone numerous improvements since then. Nowadays, the latest generation of nanoparticles, called lipid nanoparticles (LNPs), is used for different applications such as vaccines and cancer treatments and offer a versatile approach to delivering genetic materials like RNA. LNPs are non-viral delivery vehicles obtained by the self-assembly of lipids during the rapid mixing of an aqueous phase containing mRNA with an organic phase containing lipids. During this process, mRNA is encapsulated within the LNP due to electrostatic interaction with an ionizable lipid. Different methods to produce LNPs are described in the literature and, as of now, continuous methods are mostly used to produce LNP-encapsulated mRNA (LNP-mRNA). T-shaped mixers are commonly used to produce mRNA-LNPs. This technology can operate at two different scales: microfluidic chips which can range from tens to hundreds of microns in size, and millimetric tubing for production scale up. This review intends to describe LNP-mRNA characteristics and their production modes with a special focus on the challenges related to the mixing quality, especially during scale-up.
Collapse
Affiliation(s)
- Laurine Hourdel
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France; Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| | - Noureddine Lebaz
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Florent Peral
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Manon Ripoll
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Stéphanie Briançon
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Fethi Bensaid
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Sumit Luthra
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Claudia Cogné
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
8
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Yuan Y, Li Y, Li G, Lei L, Huang X, Li M, Yao Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol Pharm 2025; 22:1142-1159. [PMID: 39878334 DOI: 10.1021/acs.molpharmaceut.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP technology, which is expected to drive transformative progress in the field of gene therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Ying Li
- Research Center for Space Computing System, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Liqun Lei
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Xingxu Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
10
|
Ruppl A, Kiesewetter D, Köll-Weber M, Lemazurier T, Süss R, Allmendinger A. Formulation screening of lyophilized mRNA-lipid nanoparticles. Int J Pharm 2025; 671:125272. [PMID: 39875036 DOI: 10.1016/j.ijpharm.2025.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Lipid nanoparticles (LNPs) have demonstrated their therapeutic potential as safe and effective drug delivery systems for nucleic acids during the COVID-19 pandemic. However, one of the main challenges during technical CMC (Chemistry, Manufacturing, and Controls) development is their long-term stability at temperatures of 2-8 °C or higher, which may be improved by the removal of water by lyophilization. In this study, we identified lyo-/cryo-protectants for freeze-dried mRNA-LNP formulations beyond conventional excipients such as sucrose and trehalose as Tg-modifiers using polyA as a surrogate. Hydroxypropyl-beta-cyclodextrin, Kollidon® 12 PF (PVP), and dextran 40 kDa were tested in combinations to best stabilize the mRNA-LNPs during the lyophilization process as well as during storage for up to 6 months at 2-8 °C, 25 °C/60 % r.h., and 40 °C/75 % r.h.. We also tested the formulation principle including protectants in- and outside of the LNPs. Formulations were assessed for size, PDI, encapsulation efficiency, and properties related to the lyophilized dosage form. While 10 % (w/V) sucrose formulations successfully stabilized LNPs during the lyophilization process, they were not suitable for storage at temperatures beyond 2-8 °C. The most promising formulations for storage at higher temperatures were identified as 9 % (w/V) trehalose + 1 % (w/V) PVP with only a small increase in size over 6 months at 25 °C maintaining PDI and encapsulation efficiency. Results were verified with eGFP-mRNA-LNPs and tested in cell culture experiments. This study may serve as guidance for formulation scientists to further optimize freeze-dried mRNA-LNP formulations and eventually eliminate the cold chain for mRNA-LNP products.
Collapse
Affiliation(s)
- Anna Ruppl
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany
| | - Denis Kiesewetter
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany
| | - Monika Köll-Weber
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany
| | | | - Regine Süss
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany
| | - Andrea Allmendinger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, Freiburg i. Br. 79104 Germany; ten23 health AG, Mattenstr. 22, Basel 4058 Switzerland.
| |
Collapse
|
11
|
Baghban R, Namvar E, Attar A, Mortazavi M. Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy. Biomed Pharmacother 2025; 183:117786. [PMID: 39753094 DOI: 10.1016/j.biopha.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/08/2025] Open
Abstract
The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects. This review highlights the progress, challenges, and opportunities in developing effective diagnostics and therapeutics for DR. Additionally, it explores innovative engineering techniques that leverage our growing understanding of nano-bio interactions to create more potent nanotherapeutics for patients.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Namvar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
12
|
Padilla MS, Shepherd SJ, Hanna AR, Kurnik M, Zhang X, Chen M, Byrnes J, Joseph RA, Yamagata HM, Ricciardi AS, Mrksich K, Issadore D, Gupta K, Mitchell MJ. Solution biophysics identifies lipid nanoparticle non-sphericity, polydispersity, and dependence on internal ordering for efficacious mRNA delivery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629496. [PMID: 39763759 PMCID: PMC11702722 DOI: 10.1101/2024.12.19.629496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Lipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use. However, our understanding of how the composition and mixing method influences the structural, biophysical, and biological properties of the resulting LNPs remains limited, hindering the development of LNPs. Our lack of structural understanding extends from the physical and compositional polydispersity of LNPs, which render traditional characterization methods, such as dynamic light scattering (DLS), unable to accurately quantitate the physicochemical characteristics of LNPs. In this study, we address the challenge of structurally characterizing polydisperse LNP formulations using emerging solution-based biophysical methods that have higher resolution and provide biophysical data beyond size and polydispersity. These techniques include sedimentation velocity analytical ultracentrifugation (SV-AUC), field-flow fractionation followed by multi-angle light scattering (FFF-MALS), and size-exclusion chromatography in-line with synchrotron small-angle X-ray scattering (SEC-SAXS). Here, we show that the LNPs have intrinsic polydispersity in size, RNA loading, and shape, and that these parameters are dependent on both the formulation technique and lipid composition. Lastly, we demonstrate that these biophysical methods can be employed to predict transfection in human primary T cells, intravenous administration, and intramuscular administration by examining the relationship between mRNA translation and physicochemical characteristics. We envision that employing solution-based biophysical methods will be essential for determining LNP structure-function relationships, facilitating the creation of new design rules for LNPs.
Collapse
Affiliation(s)
- Marshall S. Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J. Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew R. Hanna
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Xujun Zhang
- Wyatt Technology, LLC, Goleta, CA 93117, USA
| | | | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryann A. Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah M. Yamagata
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele S. Ricciardi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Xue L, Xiong X, Zhao G, Molina-Arocho W, Palanki R, Xiao Z, Han X, Yoon IC, Figueroa-Espada CG, Xu J, Gong N, Shi Q, Chen Q, Alameh MG, Vaughan AE, Haldar M, Wang K, Weissman D, Mitchell MJ. Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen. J Am Chem Soc 2025; 147:1542-1552. [PMID: 39742515 DOI: 10.1021/jacs.4c10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as pivotal vehicles for messenger RNA (mRNA) delivery to hepatocytes upon systemic administration and to antigen-presenting cells following intramuscular injection. However, achieving systemic mRNA delivery to non-hepatocytes remains challenging without the incorporation of targeting ligands such as antibodies, peptides, or small molecules. Inspired by comb-like polymeric architecture, here we utilized a multiarm-assisted design to construct a library of 270 dendron-like degradable ionizable lipids by altering the structures of amine heads and multiarmed tails for optimal mRNA delivery. Following in vitro high-throughput screening, a series of top-dendron-like LNPs with high transfection efficacy were identified. These dendron-like ionizable lipids facilitated greater mRNA delivery to the spleen in vivo compared to ionizable lipid analogs lacking dendron-like structure. Proteomic analysis of corona-LNP pellets showed enhancement of key protein clusters, suggesting potential endogenous targeting to the spleen. A lead dendron-like LNP formulation, 18-2-9b2, was further used to encapsulate Cre mRNA and demonstrated excellent genome modification in splenic macrophages, outperforming a spleen-tropic MC3/18PA LNP in the Ai14 mice model. Moreover, 18-2-9b2 LNP encapsulating therapeutic BTB domain and CNC homologue 1 (BACH1) mRNA exhibited proficient BACH1 expression and subsequent Spic downregulation in splenic red pulp macrophages (RPM) in a Spic-GFP transgene model upon intravenous administration. These results underscore the potential of dendron-like LNPs to facilitate mRNA delivery to splenic macrophages, potentially opening avenues for a range of mRNA-LNP therapeutic applications, including regenerative medicine, protein replacement, and gene editing therapies.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William Molina-Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qiangqiang Shi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qinyuan Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Sahoo D, Atochina-Vasserman EN, Lu J, Maurya DS, Ona N, Vasserman JA, Ni H, Berkihiser S, Park WJ, Weissman D, Percec V. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA. Biomacromolecules 2025; 26:726-737. [PMID: 39688403 DOI: 10.1021/acs.biomac.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA. Simplified synthesis and assembly processes allow for rapid IAJD screening for discovery. The role of the primary structure of IAJDs in activity indicated, with preliminary investigations, that ionizable amine (IA), sequence, and architecture of hydrophilic and hydrophobic domains are important for in vivo targeted delivery. Here, we study the role of the interconnecting linker length between the IA and the hydrophobic domain of pentaerythritol-based IAJDs. The linker length determines, through inductive effects, the position of the IA and the pKa of the IAJDs and through flexibility, the stability of the DNPs, highlighting their extraordinarily important role in effective targeted delivery.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sydni Berkihiser
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wook-Jin Park
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Swingle KL, Hamilton AG, Safford HC, Geisler HC, Thatte AS, Palanki R, Murray AM, Han EL, Mukalel AJ, Han X, Joseph RA, Ghalsasi AA, Alameh MG, Weissman D, Mitchell MJ. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature 2025; 637:412-421. [PMID: 39663452 DOI: 10.1038/s41586-024-08291-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Pre-eclampsia is a placental disorder that affects 3-5% of all pregnancies and is a leading cause of maternal and fetal morbidity worldwide1,2. With no drug available to slow disease progression, engineering ionizable lipid nanoparticles (LNPs) for extrahepatic messenger RNA (mRNA) delivery to the placenta is an attractive therapeutic option for pre-eclampsia. Here we use high-throughput screening to evaluate a library of 98 LNP formulations in vivo and identify a placenta-tropic LNP (LNP 55) that mediates more than 100-fold greater mRNA delivery to the placenta in pregnant mice than a formulation based on the Food and Drug Administration-approved Onpattro LNP (DLin-MC3-DMA)3. We propose an endogenous targeting mechanism based on β2-glycoprotein I adsorption that enables LNP delivery to the placenta. In both inflammation- and hypoxia-induced models of pre-eclampsia, a single administration of LNP 55 encapsulating vascular endothelial growth factor (VEGF) mRNA resolves maternal hypertension until the end of gestation. In addition, with our VEGF mRNA LNP 55 therapeutic, we demonstrate improvements in fetal health and partially restore placental vasculature, the local and systemic immune landscape and serum levels of soluble Fms-like tyrosine kinase-1, a clinical biomarker of pre-eclampsia1. Together, these results demonstrate the potential of this mRNA LNP platform for treating placental disorders such as pre-eclampsia.
Collapse
Affiliation(s)
- Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi A Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Wang W, Chen K, Jiang T, Wu Y, Wu Z, Ying H, Yu H, Lu J, Lin J, Ouyang D. Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery. Nat Commun 2024; 15:10804. [PMID: 39738043 DOI: 10.1038/s41467-024-55072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids were evaluated through two iterations of AI-driven generation and screening, yielding three and six new molecules, respectively. In mouse test validation, one lipid from the initial iteration, featuring a benzene ring, demonstrated performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six lipids from the second iteration equaled or outperformed MC3, with one exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI model is interpretable in structure-activity relationships.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Kepan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for mRNA Translational Research, Fudan University, Shanghai, China
| | - Ting Jiang
- Center for mRNA Translational Research, Fudan University, Shanghai, China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, China
| | - Yiyang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Zheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Hang Ying
- Center for mRNA Translational Research, Fudan University, Shanghai, China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, China
| | - Hang Yu
- Center for mRNA Translational Research, Fudan University, Shanghai, China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, China
| | - Jing Lu
- Center for mRNA Translational Research, Fudan University, Shanghai, China
- Shanghai RNACure Biopharma Co., Ltd, Shanghai, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Center for mRNA Translational Research, Fudan University, Shanghai, China.
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
18
|
Cheng J, Jian L, Chen Z, Li Z, Yu Y, Wu Y. In Vivo Delivery Processes and Development Strategies of Lipid Nanoparticles. Chembiochem 2024; 25:e202400481. [PMID: 39101874 DOI: 10.1002/cbic.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/06/2024]
Abstract
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
Collapse
Affiliation(s)
- Jiashun Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lina Jian
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhaolin Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhuoyuan Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaobang Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yihang Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
19
|
Witten J, Raji I, Manan RS, Beyer E, Bartlett S, Tang Y, Ebadi M, Lei J, Nguyen D, Oladimeji F, Jiang AY, MacDonald E, Hu Y, Mughal H, Self A, Collins E, Yan Z, Engelhardt JF, Langer R, Anderson DG. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat Biotechnol 2024:10.1038/s41587-024-02490-y. [PMID: 39658727 DOI: 10.1038/s41587-024-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Beyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Bartlett
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mehrnoosh Ebadi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Junying Lei
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Dien Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Favour Oladimeji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allen Yujie Jiang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise MacDonald
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yizong Hu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ava Self
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
21
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024; 113:3413-3433. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
22
|
Moradialvand M, Asri N, Jahdkaran M, Beladi M, Houri H. Advancements in Nanoparticle-Based Strategies for Enhanced Antibacterial Interventions. Cell Biochem Biophys 2024; 82:3071-3090. [PMID: 39023679 DOI: 10.1007/s12013-024-01428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The escalating global threat of antibiotic resistance underscores the urgent need for innovative antimicrobial strategies. This review explores the cutting-edge applications of nanotechnology in combating bacterial infections, addressing a critical healthcare challenge. We critically assess the antimicrobial properties and mechanisms of diverse nanoparticle systems, including liposomes, polymeric micelles, solid lipid nanoparticles, dendrimers, zinc oxide, silver, and gold nanoparticles, as well as nanoencapsulated essential oils. These nanomaterials offer distinct advantages, such as enhanced drug delivery, improved bioavailability, and efficacy against antibiotic-resistant strains. Recent advancements in nanoparticle synthesis, functionalization, and their synergistic interactions with conventional antibiotics are highlighted. The review emphasizes biocompatibility considerations, stressing the need for rigorous safety assessments in nanomaterial applications. By synthesizing current knowledge and identifying emerging trends, this review provides crucial insights for researchers and clinicians aiming to leverage nanotechnology for next-generation antimicrobial therapies. The integration of nanotechnology represents a promising frontier in combating infectious diseases, underscoring the timeliness and imperative of this comprehensive analysis.
Collapse
Affiliation(s)
- Madineh Moradialvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Center for Theoretical Physics, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Beladi
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
24
|
Fardoost A, Karimi K, Govindaraju H, Jamali P, Javanmard M. Applications of microfluidics in mRNA vaccine development: A review. BIOMICROFLUIDICS 2024; 18:061502. [PMID: 39553921 PMCID: PMC11567697 DOI: 10.1063/5.0228447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
The transformative potential of microfluidics in the development of mRNA vaccines is explored in this review, highlighting its pivotal role in enhancing easy-to-use functionality, efficacy, and production efficiency. Moreover, we examine the innovative applications of microfluidics in biomedical research, including its contribution to the rapid and cost-effective synthesis of lipid nanoparticles for mRNA delivery and delve into the advantages of mRNA vaccines, such as targeted delivery and controlled expression. Furthermore, it outlines the future prospects of microfluidic devices, their cutting-edge examples in both research and industry, and the potential to revolutionize vaccine formulation and production. The integration of microfluidics with mRNA vaccine development represents a significant advancement in public health and disease prevention strategies.
Collapse
Affiliation(s)
- Ali Fardoost
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Koosha Karimi
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Harshitha Govindaraju
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Pegah Jamali
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
25
|
Kim H, Zenhausern R, Gentry K, Lian L, Huayamares SG, Radmand A, Loughrey D, Podilapu AR, Hatit MZC, Ni H, Li A, Shajii A, Peck HE, Han K, Hua X, Jia S, Martinez M, Lee C, Santangelo PJ, Tarantal A, Dahlman JE. Lipid nanoparticle-mediated mRNA delivery to CD34 + cells in rhesus monkeys. Nat Biotechnol 2024:10.1038/s41587-024-02470-2. [PMID: 39578569 DOI: 10.1038/s41587-024-02470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
Transplantation of ex vivo engineered hematopoietic stem cells (HSCs) can lead to robust clinical responses but carries risks of adverse events from bone marrow mobilization, chemotherapy conditioning and other factors. HSCs have been modified in vivo using lipid nanoparticles (LNPs) decorated with targeting moieties, which increases manufacturing complexity. Here we screen 105 LNPs without targeting ligands for effective homing to the bone marrow in mouse. We report an LNP named LNP67 that delivers mRNA to murine HSCs in vivo, primary human HSCs ex vivo and CD34+ cells in rhesus monkeys (Macaca mulatta) in vivo at doses of 0.25 and 0.4 mg kg-1. Without mobilization and conditioning, LNP67 can mediate delivery of mRNA to HSCs and their progenitor cells (HSPCs), as well as to the liver in rhesus monkeys, without serum cytokine activation. These data support the hypothesis that in vivo delivery to HSCs and HSPCs in nonhuman primates is feasible without targeting ligands.
Collapse
Affiliation(s)
- Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kara Gentry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ananda R Podilapu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Marine Z C Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Michele Martinez
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Charles Lee
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Tarantal
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
26
|
Athaydes Seabra Ferreira H, Ricardo Aluotto Scalzo Júnior S, Kelton Santos de Faria K, Henrique Costa Silva G, Túllio Rodrigues Alves M, Oliveira Lobo A, Pires Goulart Guimarães P. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Int J Pharm 2024; 665:124696. [PMID: 39265853 DOI: 10.1016/j.ijpharm.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Advances in gene therapy, exemplified by mRNA vaccines against COVID-19, highlight the importance of lipid nanoparticles (LNPs) for nucleic acid delivery despite challenging storage conditions. Substituting mRNA with pDNA in LNPs may enhance stability and efficacy, yet maintaining LNP stability poses challenges, particularly during freeze-drying. Cryoprotectants offer potential to mitigate destabilization, improving LNP properties and in vivo performance. Here, we evaluated the effects of different concentrations of various cryoprotectants on the freeze-drying process of pDNA-loaded LNPs, assessing their physicochemical characteristics and transfection efficiency. Stability was examined under various storage conditions, confirming biological efficacy post-storage. Our results highlight the role of cryoprotectants in optimizing freeze-drying for the extended shelf life of nucleic acid-loaded LNPs. Trehalose emerged as an efficient cryoprotectant, maintaining LNP stability after the freeze-drying process for up to 2 years, with diameters and transfection efficiency comparable to fresh formulations. These findings demonstrate the optimized concentration of cryoprotectants to sustain LNP stability despite freeze-drying and prolonged storage, providing valuable insights for nucleic acid-based therapies.
Collapse
Affiliation(s)
- Heloísa Athaydes Seabra Ferreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Sérgio Ricardo Aluotto Scalzo Júnior
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Kevin Kelton Santos de Faria
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Gabriel Henrique Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Marco Túllio Rodrigues Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Anderson Oliveira Lobo
- Department of Materials Engineering, Federal University of Piauí, Teresina, 64049-550, Piauí, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| |
Collapse
|
27
|
Omidi Y, Pourseif MM, Ansari RA, Barar J. Design and development of mRNA and self-amplifying mRNA vaccine nanoformulations. Nanomedicine (Lond) 2024; 19:2699-2725. [PMID: 39535127 DOI: 10.1080/17435889.2024.2419815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The rapid evolution of mRNA vaccines, highlighted by Pfizer-BioNTech and Moderna's COVID-19 vaccines, has transformed vaccine development and therapeutic approaches. Self-amplifying mRNA (saRNA) vaccines, a groundbreaking advancement in RNA-based vaccines, offer promising possibilities for disease prevention and treatment, including potential applications in cancer and neurodegenerative diseases. This review explores the complex design and development of these innovative vaccines, with a focus on their nanoscale formulations that utilize nanotechnology to improve their delivery and effectiveness. It articulates the fundamental principles of mRNA and saRNA vaccines, their mechanisms of action, and the role of synthetic mRNA in eliciting immune responses. The review further elaborates on various nanoscale delivery systems (e.g., lipid nanoparticles, polymeric nanoparticles and other nanocarriers), emphasizing their advantages in enhancing mRNA stability and cellular uptake. It addresses advanced nanoscale delivery techniques such as microfluidics and discusses the challenges in formulating mRNA and saRNA vaccines. By incorporating the latest technologies and current research, this review provides a thorough overview of recent mRNA and saRNA nanovaccines advancements, highlighting their potential to revolutionize vaccine technology and broaden clinical applications.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Engineered Biomaterial Research Center, Khazar University, Baku, Azerbaijan
| | - Rais A Ansari
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
28
|
Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M, Caracciolo G, Podda MV, Tasciotti E. Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics. Front Immunol 2024; 15:1447567. [PMID: 39600701 PMCID: PMC11588692 DOI: 10.3389/fimmu.2024.1447567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
Collapse
Affiliation(s)
| | - Anna Baroni
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, Università telematica San Raffaele, Rome, Italy
| |
Collapse
|
29
|
Gordon A, Li B, Witten J, Nguyen H, Anderson DG. Inhalable Dry Powders for Lung mRNA Delivery. Adv Healthc Mater 2024; 13:e2400509. [PMID: 39352052 PMCID: PMC11582499 DOI: 10.1002/adhm.202400509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Indexed: 10/03/2024]
Abstract
Despite great promise, application of mRNA therapeutics in the lung has proven challenging. Many groups have reported success instilling liquid mRNA formulations in animal models, but direct intratracheal administration of large liquid quantities to the human lung presents significant safety and distribution concerns. To accomplish safe and effective mRNA delivery to the lung, formulations must be prepared for dosing via inhalation. An inhaled mRNA delivery system for the lung must be both robust enough to survive inhalation conditions and potent enough to deliver mRNA upon reaching the lung. In this work dry powder lipid nanoparticle formulations are developed, using spray-freeze-drying, to produce stable, biologically active, inhalable dry powders for mRNA delivery. The final powders have suitable aerosolization properties, with mean mass aerodynamic diameter (MMAD) of 3-4 microns, and fine particle fraction (FPF) ≈40%, allowing for efficient mRNA delivery to the deep lung following inhalation. Importantly, the formulations developed here are suitable for use with different ionizable lipids. Four different ionizable lipid-based formulations are evaluated as powders, and all exhibit in vivo pulmonary mRNA delivery equal to that of instilled liquid formulations. These results lay promising groundwork for the eventual development of an inhalable mRNA dry powder therapeutic.
Collapse
Affiliation(s)
- Akiva Gordon
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bowen Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jacob Witten
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hong Nguyen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Statistics, University of Michigan, Ann Arbor, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Bi D, Wilhelmy C, Unthan D, Keil IS, Zhao B, Kolb B, Koning RI, Graewert MA, Wouters B, Zwier R, Bussmann J, Hankemeier T, Diken M, Haas H, Langguth P, Barz M, Zhang H. On the Influence of Fabrication Methods and Materials for mRNA-LNP Production: From Size and Morphology to Internal Structure and mRNA Delivery Performance In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2401252. [PMID: 38889433 DOI: 10.1002/adhm.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Dongdong Bi
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Christoph Wilhelmy
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Dennis Unthan
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Isabell Sofia Keil
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Bonan Zhao
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Bastian Kolb
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation c/o DESY, 22607, Hamburg, Germany
| | - Bert Wouters
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Raphaël Zwier
- Leiden Institute of Physics Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Jeroen Bussmann
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, 55131, Mainz, Germany
| | - Heinrich Haas
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Heyang Zhang
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
31
|
Safford HC, Swingle KL, Geisler HC, Hamilton AG, Thatte AS, Ghalsasi AA, Billingsley MM, Alameh MG, Weissman D, Mitchell MJ. Orthogonal Design of Experiments for Engineering of Lipid Nanoparticles for mRNA Delivery to the Placenta. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303568. [PMID: 37537704 PMCID: PMC10837330 DOI: 10.1002/smll.202303568] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Indexed: 08/05/2023]
Abstract
During healthy pregnancy, the placenta develops to allow for exchange of nutrients and oxygen between the mother and the fetus. However, placental dysregulation can lead to several pregnancy disorders, such as preeclampsia and fetal growth restriction. Recently, lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) has been explored as a promising approach to treat these disorders. Here, iterative libraries of LNPs with varied excipient molar ratios are screened in vitro for enhanced mRNA delivery to placental cells with minimal cytotoxicity when compared to an LNP formulation with a standard excipient molar ratio. LNP C5, the top formulation identified by these screens, demonstrates a fourfold increase in mRNA delivery in vitro compared to the standard formulation. Intravenous administration of LNP C5 to pregnant mice achieves improved in vivo placental mRNA delivery compared to the standard formulation and mediates mRNA delivery to placental trophoblasts, endothelial cells, and immune cells. These results identify LNP C5 as a promising optimized LNP formulation for placental mRNA delivery and further validates the design of experiments strategy for LNP excipient optimization to enhance mRNA delivery to cell types and organs of interest.
Collapse
Affiliation(s)
- Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Kelsey L. Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Alex G. Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Ajay S. Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Aditi A. Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Margaret M. Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
32
|
Brown DW, Wee P, Bhandari P, Bukhari A, Grin L, Vega H, Hejazi M, Sosnowski D, Ablack J, Clancy EK, Pink D, Kumar J, Solis Ares MP, Lamb S, Quevedo R, Rawal B, Elian F, Rana N, Morales L, Govindasamy N, Todd B, Delmage A, Gupta S, McMullen N, MacKenzie D, Beatty PH, Garcia H, Parmar M, Gyoba J, McAllister C, Scholz M, Duncan R, Raturi A, Lewis JD. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 2024; 187:5357-5375.e24. [PMID: 39260374 DOI: 10.1016/j.cell.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024]
Abstract
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Collapse
Affiliation(s)
- Douglas W Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Ping Wee
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Prakash Bhandari
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Amirali Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Liliya Grin
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Hector Vega
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Maryam Hejazi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Deborah Sosnowski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jailal Ablack
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Eileen K Clancy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jitendra Kumar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | | | - Suellen Lamb
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Rodrigo Quevedo
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Bijal Rawal
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Fahed Elian
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Rana
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Luis Morales
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Govindasamy
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Brendan Todd
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Angela Delmage
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Somnath Gupta
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Duncan MacKenzie
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Perrin H Beatty
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Henry Garcia
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Manoj Parmar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Jennifer Gyoba
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Chandra McAllister
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Matthew Scholz
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Roy Duncan
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada.
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA; Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA.
| |
Collapse
|
33
|
Kong W, Wei Y, Dong Z, Liu W, Zhao J, Huang Y, Yang J, Wu W, He H, Qi J. Role of size, surface charge, and PEGylated lipids of lipid nanoparticles (LNPs) on intramuscular delivery of mRNA. J Nanobiotechnology 2024; 22:553. [PMID: 39261807 PMCID: PMC11389890 DOI: 10.1186/s12951-024-02812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024] Open
Abstract
Lipid nanoparticles (LNPs) are currently the most commonly used non-viral gene delivery system. Their physiochemical attributes, encompassing size, charge and surface modifications, significantly affect their behaviors both in vivo and in vitro. Nevertheless, the effects of these properties on the transfection and distribution of LNPs after intramuscular injection remain elusive. In this study, LNPs with varying sizes, lipid-based charges and PEGylated lipids were formulated to study their transfection and in vivo distribution. Luciferase mRNA (mLuc) was entraped in LNPs as a model nucleic acid molecule. Results indicated that smaller-sized LNPs and those with neutral potential presented superior transfection efficiency after intramuscular injection. Surprisingly, the sizes and charges did not exert a notable influence on the in vivo distribution of the LNPs. Furthermore, PEGylated lipids with shorter acyl chains contributed to enhanced transfection efficiency due to their superior cellular uptake and lysosomal escape capabilities. Notably, the mechanisms underlying cellular uptake differed among LNPs containing various types of PEGylated lipids, which was primarily attributed to the length of their acyl chain. Together, these insights underscore the pivotal role of nanoparticle characteristics and PEGylated lipids in the intramuscular route. This study not only fills crucial knowledge gaps but also provides significant directions for the effective delivery of mRNA via LNPs.
Collapse
Affiliation(s)
- Weiwen Kong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Yuning Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Zirong Dong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Wenjuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Jiaxin Zhao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Yan Huang
- Department of Oncology, Shanghai Medical College of Fudan University, 270 Dong-an Road, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
| | - Jinlong Yang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Wei Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China
| | - Haisheng He
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China.
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
34
|
Sam Lee J, Kim M, Jin H, Kwak M, Cho E, Kim KS, Kim DE. DNA aptamer-conjugated lipid nanoparticle for targeted PTEN mRNA delivery to prostate cancer cells. Int J Pharm 2024; 662:124519. [PMID: 39067551 DOI: 10.1016/j.ijpharm.2024.124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The use of messenger RNA (mRNA) as a cancer vaccine and gene therapy requires targeted vehicle delivery to the site of disease. Here, we designed a mRNA-encapsulating lipid nanoparticle (LNP) conjugated with anti-programmed death-ligand 1 (PD-L1) DNA aptamer that delivers mRNA encoding a tumor suppressor gene, namely phosphatase and tensin homolog (PTEN), to castration-resistant prostate cancer (CRPC) cells expressing PD-L1 on the cell surface. The DNA aptamer-conjugated LNP-based mRNA delivery system (Apt-LNP[PTEN mRNA]) mediated efficient mRNA delivery and transfection in CRPC cells than LNPs without targeting ligands. Cancer-targeted PTEN mRNA delivery using Apt-LNPs achieved significantly higher PTEN expression via aptamer-mediated endocytosis in target cancer cells compared with non-targeted LNP delivery, resulting in significant downregulation of AKT phosphorylation. This enhanced PI3K/AKT pathway regulation, and in turn reduced cell migration after two days along with a 70 % decrease in cell viability, leading to effective apoptotic cell death. In a CRPC xenograft model, Apt-LNP[PTEN mRNA] led to an approximate 60 % reduction in tumor growth, which was attributable to the effective PTEN restoration and PI3K/AKT signaling pathway regulation. PTEN expression was significantly enhanced in CRPC tumor tissues, which abolished cancer cell tumorigenicity. These findings demonstrated the potential of Apt-LNPs for targeted mRNA delivery to cancer cells, thus providing a promising tool for targeted mRNA delivery to a range of cancers and tissues using a conventional LNP systems.
Collapse
Affiliation(s)
- Jong Sam Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyesoo Jin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minseo Kwak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunbin Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
35
|
Chen J, Wang H, Xu J, Chen E, Meng Q, Wang J, Xiang H, Zhou W, Shan G, Ju Z, Song Z. CircZFR promotes colorectal cancer progression via stabilizing BCLAF1 and regulating the miR-3127-5p/RTKN2 axis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1881-1898. [PMID: 38805063 DOI: 10.1007/s11427-023-2514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 05/29/2024]
Abstract
Aberrant expression of circular RNAs (circRNAs) is frequently linked to colorectal cancer (CRC). Here, we identified circZFR as a promising biomarker for CRC diagnosis and prognosis. CircZFR was upregulated in CRC tissues and serum exosomes and its level was linked to cancer incidence, advanced-stages, and metastasis. In both in vitro and in vivo settings, circZFR promoted the growth and spread while suppressing apoptosis of CRC. Exosomes with circZFR overexpression promoted the proliferation and migration of cocultured CRC cells. Mechanistically, epithelial splicing regulatory protein 1 (ESRP1) in CRC cells may enhance the production of circZFR. BCL2-associated transcription factor 1 (BCLAF1) bound to circZFR, which prevented its ubiquitinated degradation. Additionally, circZFR sponged miR-3127-5p to boost rhotekin 2 (RTKN2) expression. Our TCP1-CD-QDs nanocarrier was able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues and cells, which inhibited the growth of tumors in patient-derived xenograft (PDX) models. Taken together, our results show that circZFR is an oncogenic circRNA, which promotes the development and spread of CRC in a BCLAF1 and miR-3127-5p-dependent manner. CircZFR is a possible serum biopsy marker for the diagnosis and a desirable target for further treatment of CRC.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jianbin Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Haoyi Xiang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional medical center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
36
|
Xia Q, Jing Q, Lu C, Guo X, Chen X, Tang C, Han J, Wang H, Dong Y, Fang P, Zhang D, Teng X, Ren F. Module-combinatorial design and screening of multifunctional polymers based on polyaspartic acid for DNA delivery. Int J Pharm 2024; 661:124350. [PMID: 38885780 DOI: 10.1016/j.ijpharm.2024.124350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to develop non-viral gene vectors that can efficiently and safely transfect plasmid DNA into cells. Low transfection efficiency and high cytotoxicity of cationic polymers hinder their application as gene carriers. Modification of cationic polymers has emerged as an attractive strategy for efficient and safe nucleic acids delivery. In this study, a simple and rapid method is developed to synthesize a series of multifunctional polymers by utilizing biodegradable polyaspartic acid as the backbone and modifying it with three modules. This one-component polymer possesses capabilities for nucleic acid condensation, cellular uptake, and endosomal escape. Polymers containing imidazole, triazole, or pyridine group exhibited promising transfection activity. Substituted with dodecylamine or 2-hexyldecan-1-amine enhance cellular uptake and subsequent transfection. Furthermore, the influence of ionizable amine side chains on gene delivery is investigated. Two optimal polymers, combined with the avian encephalomyelitis virus (AEV) plasmid vaccine, induced robust specific antibody responses and cellular immune responses in mice and chickens. Through module-combination design and screening of polyaspartamide polymers, this study presents a paradigm for the development of gene delivery vectors.
Collapse
Affiliation(s)
- Qianying Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qiufang Jing
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chunjie Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Guo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenglan Tang
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxin Han
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongxun Wang
- Suzhou Womei Biology Co Ltd, Suzhou 215613, China
| | - Yanpeng Dong
- Suzhou Womei Biology Co Ltd, Suzhou 215613, China
| | - Pengfei Fang
- Suzhou Womei Biology Co Ltd, Suzhou 215613, China
| | - Dahe Zhang
- Suzhou Womei Biology Co Ltd, Suzhou 215613, China
| | - Xiaonuo Teng
- Suzhou Womei Biology Co Ltd, Suzhou 215613, China
| | - Fuzheng Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
Fan CY, Wang SW, Chung C, Chen JY, Chang CY, Chen YC, Hsu TL, Cheng TJR, Wong CH. Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses. Chem Sci 2024; 15:11626-11632. [PMID: 39055027 PMCID: PMC11268467 DOI: 10.1039/d3sc06575h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response.
Collapse
Affiliation(s)
- Chen-Yo Fan
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Szu-Wen Wang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Cinya Chung
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Jia-Yan Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Chia-Yen Chang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
38
|
Sanchez AJDS, Loughrey D, Echeverri ES, Huayamares SG, Radmand A, Paunovska K, Hatit M, Tiegreen KE, Santangelo PJ, Dahlman JE. Substituting Poly(ethylene glycol) Lipids with Poly(2-ethyl-2-oxazoline) Lipids Improves Lipid Nanoparticle Repeat Dosing. Adv Healthc Mater 2024; 13:e2304033. [PMID: 38318754 DOI: 10.1002/adhm.202304033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Poly(ethylene glycol) (PEG)-lipids are used in Food-and-Drug-Administration-approved lipid nanoparticle (LNP)-RNA drugs, which are safe and effective. However, it is reported that PEG-lipids may also contribute to accelerated blood clearance and rare cases of hypersensitivity; this highlights the utility of exploring PEG-lipid alternatives. Here, it is shown that LNPs containing poly(2-ethyl-2-oxazoline) (PEOZ)-lipids can deliver messenger RNA (mRNA) to multiple cell types in mice inside and outside the liver. In addition, it is reported that LNPs formulated with PEOZ-lipids show reduced clearance from the bloodstream and lower levels of antistealth lipid immunoglobulin Ms than LNPs formulated with PEG-lipids. These data justify further exploration of PEOZ-lipids as alternatives to PEG-lipids in LNP-RNA formulations.
Collapse
Affiliation(s)
- Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marine Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
39
|
Geisler HC, Ghalsasi AA, Safford HC, Swingle KL, Thatte AS, Mukalel AJ, Gong N, Hamilton AG, Han EL, Nachod BE, Padilla MS, Mitchell MJ. EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta. J Control Release 2024; 371:455-469. [PMID: 38789090 PMCID: PMC11259947 DOI: 10.1016/j.jconrel.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a ∼twofold increase in mRNA delivery in murine placentas and a ∼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.
Collapse
Affiliation(s)
- Hannah C Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Aditi A Ghalsasi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah C Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Ajay S Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Alvin J Mukalel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Benjamin E Nachod
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
40
|
de Chateauneuf-Randon S, Bresson B, Ripoll M, Huille S, Barthel E, Monteux C. The mechanical properties of lipid nanoparticles depend on the type of biomacromolecule they are loaded with. NANOSCALE 2024; 16:10706-10714. [PMID: 38700424 DOI: 10.1039/d3nr06543j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
For drug delivery systems, the mechanical properties of drug carriers are suspected to play a crucial role in the delivery process. However, there is a lack of reliable methods available to measure the mechanical properties of drug carriers, which hampers the establishment of a link between delivery efficiency and the mechanical properties of carriers. Lipid nanoparticles (LNPs) are advanced systems for delivering nucleic acids to target cell populations for vaccination purposes (mRNA) or the development of new drugs. Hence, it is crucial to develop reliable techniques to measure the mechanical properties of LNPs. In this article, we used AFM to image and probe the mechanical properties of LNPs which are loaded with two different biopolymers either pDNA or mRNA. Imaging the LNPs before and after indentation, as well as recording the retraction curve, enables us to obtain more insight into how the AFM tip penetrates into the particle and to determine whether the deformation of the LNPs is reversible. For pDNA, the indentation by the tip leads to irreversible rupture of the LNPs, while the deformation is reversible for the mRNA-loaded LNPs. Moreover, the forces reached for pDNA are higher than for mRNA. These results pave the way toward the establishment of the link between the LNP formulation and the delivery efficiency.
Collapse
Affiliation(s)
- Sixtine de Chateauneuf-Randon
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Manon Ripoll
- Sanofi Pasteur, 1541 av Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | - Sylvain Huille
- Sanofi R & D, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France.
| | - Etienne Barthel
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Cécile Monteux
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| |
Collapse
|
41
|
Metzloff AE, Padilla MS, Gong N, Billingsley MM, Han X, Merolle M, Mai D, Figueroa-Espada CG, Thatte AS, Haley RM, Mukalel AJ, Hamilton AG, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Antigen Presenting Cell Mimetic Lipid Nanoparticles for Rapid mRNA CAR T Cell Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313226. [PMID: 38419362 PMCID: PMC11209815 DOI: 10.1002/adma.202313226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.
Collapse
Affiliation(s)
- Ann E Metzloff
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marshall S Padilla
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret M Billingsley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian G Figueroa-Espada
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ajay S Thatte
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca M Haley
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alvin J Mukalel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alex G Hamilton
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Xu H, Wang Z, Wei W, Li T, Duan X. Microfluidic confined acoustic streaming vortex for liposome synthesis. LAB ON A CHIP 2024; 24:2802-2810. [PMID: 38693825 DOI: 10.1039/d4lc00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Liposomes have garnered significant attention owing to their favorable characteristics as promising carriers. Microfluidic based hydrodynamic flow focusing, or micro-mixing approaches enable precise control of liposome size during their synthesis due to the comparable size scale. However, current microfluidic approaches still have issues such as high flow rate dependency, complex chip structures, and ease of clogging. Herein, we present a novel microfluidic platform for size-tunable liposome synthesis based on an ultra-high-frequency acoustic resonator. By designing the shape and orientation of the acoustic resonator in the three-phase laminar flow, it combined the features of both hydrodynamic flow focusing and rapid micro-mixing. The distribution of lipid precursor solution in laminar flow and the mixing conditions could be regulated by the confined acoustic streaming vortex. We successfully synthesize liposomes with adjustable sizes and narrow size distributions. Notably, this platform regulates the product size by adjusting only the input power, which is less dependent on the flow rate. Furthermore, the vortex-like fluid flow generated along the device edge effectively prevents precipitation due to excessive lipid concentration or contact with the wall.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
43
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
45
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
46
|
Tanna S, Doshi G, Godad A. siRNA as potential therapeutic strategy for hypertension. Eur J Pharmacol 2024; 969:176467. [PMID: 38431244 DOI: 10.1016/j.ejphar.2024.176467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Hypertension, a well-known cardiovascular disorder noticed by rise in blood pressure, poses a significant global health challenge. The development RNA interfering (RNAi)-based therapies offers a ground-breaking molecular tool, holds promise for addressing hypertension's intricate molecular mechanisms. Harnessing the power of small interfering RNA (siRNA), researchers aim to selectively target and modulate genes associated with hypertension. Furthermore, they aim to downregulate the levels of mRNA by activating cellular nucleases in response to sequence homology between the siRNA and the corresponding mRNA molecule. As a result, genes involved in the cause of disorders linked to a known genetic background can be silenced using siRNA strategy. In the realm of hypertension, siRNA therapy emerges as a potential therapy for prognostics, diagnostics and treatments. It plays an important role in execution of targeting suppression of genes involved in vascular tone regulation, sodium handling, and pathways contributing to high blood pressure. A clinical trial involving intervention like angiotensinogen siRNA (AGT siRNA) is currently being carried out to treat hypertension. Genetic correlations between uromodulin (UMOD) and hypertension are investigated as emerging Non AGT siRNA target. Furthermore, expression of UMOD is responsible for regulation of sodium by modulating the tumor necrosis factor-α and regulating the Na + -K + -2Cl-cotransporter (NKCC2) in the thick ascending limb, which makes it an important target for blood pressure regulation.
Collapse
Affiliation(s)
- Srushti Tanna
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India.
| |
Collapse
|
47
|
Unruh T, Götz K, Vogel C, Fröhlich E, Scheurer A, Porcar L, Steiniger F. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS NANO 2024; 18:9746-9764. [PMID: 38514237 DOI: 10.1021/acsnano.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.
Collapse
Affiliation(s)
- Tobias Unruh
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Carola Vogel
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Erik Fröhlich
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
48
|
Kim LJ, Shin D, Leite WC, O’Neill H, Ruebel O, Tritt A, Hura GL. Simple Scattering: Lipid nanoparticle structural data repository. Front Mol Biosci 2024; 11:1321364. [PMID: 38584701 PMCID: PMC10998447 DOI: 10.3389/fmolb.2024.1321364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Lipid nanoparticles (LNPs) are being intensively researched and developed to leverage their ability to safely and effectively deliver therapeutics. To achieve optimal therapeutic delivery, a comprehensive understanding of the relationship between formulation, structure, and efficacy is critical. However, the vast chemical space involved in the production of LNPs and the resulting structural complexity make the structure to function relationship challenging to assess and predict. New components and formulation procedures, which provide new opportunities for the use of LNPs, would be best identified and optimized using high-throughput characterization methods. Recently, a high-throughput workflow, consisting of automated mixing, small-angle X-ray scattering (SAXS), and cellular assays, demonstrated a link between formulation, internal structure, and efficacy for a library of LNPs. As SAXS data can be rapidly collected, the stage is set for the collection of thousands of SAXS profiles from a myriad of LNP formulations. In addition, correlated LNP small-angle neutron scattering (SANS) datasets, where components are systematically deuterated for additional contrast inside, provide complementary structural information. The centralization of SAXS and SANS datasets from LNPs, with appropriate, standardized metadata describing formulation parameters, into a data repository will provide valuable guidance for the formulation of LNPs with desired properties. To this end, we introduce Simple Scattering, an easy-to-use, open data repository for storing and sharing groups of correlated scattering profiles obtained from LNP screening experiments. Here, we discuss the current state of the repository, including limitations and upcoming changes, and our vision towards future usage in developing our collective knowledge base of LNPs.
Collapse
Affiliation(s)
- Lee Joon Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Shin
- David Shin Consulting, Berkeley, CA, United States
| | - Wellington C. Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hugh O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Oliver Ruebel
- Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andrew Tritt
- Applied Mathematics and Computational Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
49
|
Radmand A, Kim H, Beyersdorf J, Dobrowolski CN, Zenhausern R, Paunovska K, Huayamares SG, Hua X, Han K, Loughrey D, Hatit MZC, Del Cid A, Ni H, Shajii A, Li A, Muralidharan A, Peck HE, Tiegreen KE, Jia S, Santangelo PJ, Dahlman JE. Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart. Proc Natl Acad Sci U S A 2024; 121:e2307801120. [PMID: 38437539 PMCID: PMC10945827 DOI: 10.1073/pnas.2307801120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 03/06/2024] Open
Abstract
Adding a cationic helper lipid to a lipid nanoparticle (LNP) can increase lung delivery and decrease liver delivery. However, it remains unclear whether charge-dependent tropism is universal or, alternatively, whether it depends on the component that is charged. Here, we report evidence that cationic cholesterol-dependent tropism can differ from cationic helper lipid-dependent tropism. By testing how 196 LNPs delivered mRNA to 22 cell types, we found that charged cholesterols led to a different lung:liver delivery ratio than charged helper lipids. We also found that combining cationic cholesterol with a cationic helper lipid led to mRNA delivery in the heart as well as several lung cell types, including stem cell-like populations. These data highlight the utility of exploring charge-dependent LNP tropism.
Collapse
Affiliation(s)
- Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA30332
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Jared Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Curtis N. Dobrowolski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Sebastian G. Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Marine Z. C. Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Ada Del Cid
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Abinaya Muralidharan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332
| | - Hannah E. Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Karen E. Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| | - James E. Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA30332
| |
Collapse
|
50
|
An Y, Yang Z, Yang Y, Li X, Zheng X, Chen Z, Wu X, Xu B, Wang Y, He Y. Stretchable, Programmable and Magnet-Insensitive Protonic Display Based on Integrated Ionic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308875. [PMID: 37880900 DOI: 10.1002/smll.202308875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 10/27/2023]
Abstract
As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7 T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.
Collapse
Affiliation(s)
- Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yongjia Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinlei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinjia Zheng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Zhiwu Chen
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xun Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Beihang Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|