1
|
Zheng X, Zhang Z, Zhou G, Zou M, Zhang F, Hou PX, Shi C, Cheng HM, Wang M, Liu C. Efficient fabrication of single-wall carbon nanotube nanoreactors by defect-induced cutting. NANOSCALE 2023; 15:3931-3939. [PMID: 36723243 DOI: 10.1039/d2nr06696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-wall carbon nanotubes (SWCNTs) with ultra-thin channels are considered promising nanoreactors for confined catalysis, chemical reactions, and drug delivery. The fabrication of SWCNT nanoreactors by cutting usually suffers from low efficiency and poor controllability. Here we develop a defect-induced gas etching method to efficiently cut SWCNTs and to obtain nanoreactors with ultrasmall confined space. H2 plasma treatment was performed to generate defects in the walls of SWCNTs, then H2O vapor was used as a "knife" to cut SWCNTs at the defect sites, and short cut-SWCNTs with an average length of 175 nm were controllably obtained with a high yield of 75% under optimized conditions. WO3@SWCNT derivatives with different morphologies were synthesized using short cut-SWCNTs as nanoreactors. The radiation resistance of WO3@SWCNT hybrids improved obviously, thus providing a platform for the synthesis of novel SWCNT-based derivatives with fascinating properties.
Collapse
Affiliation(s)
- Xue Zheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Zichu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Gang Zhou
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mengke Zou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Mingguang Wang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
2
|
Li M, Yin B, Gao C, Guo J, Zhao C, Jia C, Guo X. Graphene: Preparation, tailoring, and modification. EXPLORATION (BEIJING, CHINA) 2023; 3:20210233. [PMID: 37323621 PMCID: PMC10190957 DOI: 10.1002/exp.20210233] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
Graphene is a 2D material with fruitful electrical properties, which can be efficiently prepared, tailored, and modified for a variety of applications, particularly in the field of optoelectronic devices thanks to its planar hexagonal lattice structure. To date, graphene has been prepared using a variety of bottom-up growth and top-down exfoliation techniques. To prepare high-quality graphene with high yield, a variety of physical exfoliation methods, such as mechanical exfoliation, anode bonding exfoliation, and metal-assisted exfoliation, have been developed. To adjust the properties of graphene, different tailoring processes have been emerged to precisely pattern graphene, such as gas etching and electron beam lithography. Due to the differences in reactivity and thermal stability of different regions, anisotropic tailoring of graphene can be achieved by using gases as the etchant. To meet practical requirements, further chemical functionalization at the edge and basal plane of graphene has been extensively utilized to modify its properties. The integration and application of graphene devices is facilitated by the combination of graphene preparation, tailoring, and modification. This review focuses on several important strategies for graphene preparation, tailoring, and modification that have recently been developed, providing a foundation for its potential applications.
Collapse
Affiliation(s)
- Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Bing Yin
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Chunyan Gao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Jie Guo
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Cong Zhao
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Center of Single‐Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
| |
Collapse
|
3
|
Jiang Q, Wang F, Li R, Li B, Wei N, Gao N, Xu H, Zhao S, Huang Y, Wang B, Zhang W, Wu X, Zhang S, Zhao Y, Shi E, Zhang R. Synthesis of Ultralong Carbon Nanotubes with Ultrahigh Yields. NANO LETTERS 2023; 23:523-532. [PMID: 36622363 DOI: 10.1021/acs.nanolett.2c03858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultralong carbon nanotubes (CNTs) are in huge demand in many cutting-edge fields due to their macroscale lengths, perfect structures, and extraordinary properties, while their practical application is limited by the difficulties in their mass production. Herein, we report the synthesis of ultralong CNTs with a dramatically increased yield by a simple but efficient substrate interception and direction strategy (SIDS), which couples the advantages of floating-catalyst chemical vapor deposition with the flying-kite-like growth mechanism of ultralong CNTs. The SIDS-assisted approach prominently improves the catalyst utilization and significantly increases the yield. The areal density of the ultralong CNT arrays with length of over 1 cm reached a record-breaking value of ∼6700 CNTs mm-1, which is 2-3 orders of magnitude higher than the previously reported values obtained by traditional methods. The SIDS provides a solution for synthesizing high-quality ultralong CNTs with high yields, laying the foundation for their mass production.
Collapse
Affiliation(s)
- Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Baini Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Nan Wei
- Research Center for Carbon-based Electronics and Department of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Ningfei Gao
- Beijing HuaTanYuanXin Electronics Technology Ltd. Co., Beijing 101399, People's Republic of China
| | - Haitao Xu
- Beijing HuaTanYuanXin Electronics Technology Ltd. Co., Beijing 101399, People's Republic of China
- Beijing Institute of Carbon-based Integrated Circuits, Beijing 100195, People's Republic of China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanlong Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Enzheng Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
4
|
Chen Y, Lyu M, Zhang Z, Yang F, Li Y. Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS CENTRAL SCIENCE 2022; 8:1490-1505. [PMID: 36439305 PMCID: PMC9686200 DOI: 10.1021/acscentsci.2c01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.
Collapse
Affiliation(s)
- Yuguang Chen
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Min Lyu
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zeyao Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Feng Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- PKU-HKUST
ShenZhen-HongKong Institution, Shenzhen 518057, People’s
Republic of China
| |
Collapse
|
5
|
Liu H, Liu F, Sun Z, Cai X, Sun H, Kai Y, Chen L, Jiang C. Single layer aligned semiconducting single-walled carbon nanotube array with high linear density. NANOTECHNOLOGY 2022; 33:375301. [PMID: 35653931 DOI: 10.1088/1361-6528/ac7574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Highly ordered semiconducting single-walled carbon nanotubes(sc-SWCNTs) array with high purity, high linear density and controllable manner is strongly desired for carbon-based integrated circuits, yet it remains a big challenge. Herein, close-packed single layered and controllably aligned sc-SWCNTs arrays were obtained through dielectrophoresis using a high purity sc-SWCNT dispersion. Under optimized condition of length and average number of interconnecting junctions across the channel full of aligned sc-SWCNTs, field effect transistors (FETs) with high performance were achieved with both a high on/off current ratio and large carrier mobility. Based on the optimized channel length, by systematically optimizing the dielectrophoresis parameters of the frequency and duration of applied AC voltage (Vpp), the highly ordered sc-SWCNTs arrays with an ultra-high linear density of 54 ± 2 tubesμm-1showed relatively high device performance of FET. The fabrication process optimized in this report can be further extended and applied in large-area, low-cost carbon-based integrated circuits.
Collapse
Affiliation(s)
- Hao Liu
- The Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Fengjing Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhaolou Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
| | - Xiaoyong Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Huijuan Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuan Kai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Li Chen
- The Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chao Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
7
|
Otsuka K, Ishimaru R, Kobayashi A, Inoue T, Xiang R, Chiashi S, Kato YK, Maruyama S. Universal Map of Gas-Dependent Kinetic Selectivity in Carbon Nanotube Growth. ACS NANO 2022; 16:5627-5635. [PMID: 35316012 DOI: 10.1021/acsnano.1c10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-walled carbon nanotubes have been a candidate for outperforming silicon in ultrascaled transistors, but the realization of nanotube-based integrated circuits requires dense arrays of purely semiconducting species. In order to directly grow such nanotube arrays on wafers, control over kinetics and thermodynamics in tube-catalyst systems plays a key role, and further progress requires a comprehensive understanding of seemingly contradictory reports on the growth kinetics. Here, we propose a universal kinetic model that decomposes the growth rates of nanotubes into the adsorption and removal of carbon atoms on the catalysts, and we provide its quantitative verification by ethanol-based isotope labeling experiments. While the removal of carbon from catalysts dominates the growth kinetics under a low supply of precursors, resulting in chirality-independent growth rates, our kinetic model and experiments demonstrate that chiral angle-dependent growth rates emerge when sufficient amounts of carbon and etching agents are cosupplied. The kinetic maps, as a product of generalizing the model, include five types of kinetic selectivity that emerge depending on the absolute quantities of gases with opposing effects. Our findings not only resolve discrepancies existing in the literature but also offer rational strategies to control the chirality, length, and density of nanotube arrays for practical applications.
Collapse
Affiliation(s)
- Keigo Otsuka
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Ryoya Ishimaru
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akari Kobayashi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Taiki Inoue
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shohei Chiashi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuichiro K Kato
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Lin D, Yu Y, Li L, Zou M, Zhang J. Growth of Semiconducting Single-Walled Carbon Nanotubes Array by Precisely Inhibiting Metallic Tubes Using ZrO 2 Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006605. [PMID: 33522113 DOI: 10.1002/smll.202006605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Synthesis of high-quality single-walled carbon nanotubes arrays with pure semiconducting type is crucial for the fabrication of integrated circuits in nanoscale. However, the naturally grown carbon nanotubes usually have diverse structures and properties. Here the bicomponent catalyst using Au and ZrO2 is designed and prepared. The Au nanoparticle serves as the catalysts for carbon feedstock cracking and facilitating the nucleation of carbon nanotubes, whereas the close-connected ZrO2 forms a localized etching zone around Au by releasing lattice oxygen and to inhibit the nucleation of metallic carbon nanotubes precisely. The obtained single-walled carbon nanotubes array show a high semiconducting content of >96%, on the basis of good performance of field-effect transistor devices. And such building of localized etching zone is compatible with other catalyst systems as a universal and efficient method for the scalable production of semiconducting carbon nanotubes.
Collapse
Affiliation(s)
- Dewu Lin
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yue Yu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Li
- China Bluestar Chengrand Chemical Co. Ltd., 4th Xinghua Road, Xinjin Industry Zone B, Chengdu, 611430, P. R. China
| | - Mingzhi Zou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
9
|
Qian L, Xie Y, Zou M, Zhang J. Building a Bridge for Carbon Nanotubes from Nanoscale Structure to Macroscopic Application. J Am Chem Soc 2021; 143:18805-18819. [PMID: 34714049 DOI: 10.1021/jacs.1c08554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Through 30 years of research, researchers have gained a deep understanding of the synthesis, characteristics, and applications of carbon nanotubes (CNTs). However, up to now, there are still few industries using CNT as the leading material. The difficulty of CNTs to be applied in industry is the gap between the properties of CNT-based aggregates and those of a single carbon nanotube. Therefore, how to maintain the intrinsic properties of CNTs when they are assembled into aggregates is of great significance. Herein, we summarize and analyze the research status of CNT materials applied in different fields from proven techniques to potential industries, including energy storage, electronics, mechanical and other applications. For each application, the intrinsic properties of CNTs and the real performances of their aggregates are compared to figure out the key problems in CNT synthesis. Finally, we give an outlook for building a bridge for CNTs from nanoscale structure to macroscopic application, giving inspiration to researchers making efforts toward the real application of carbon nanotubes.
Collapse
Affiliation(s)
- Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying Xie
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mingzhi Zou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
10
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
11
|
Du C, Ren Y, Qu Z, Gao L, Zhai Y, Han ST, Zhou Y. Synaptic transistors and neuromorphic systems based on carbon nano-materials. NANOSCALE 2021; 13:7498-7522. [PMID: 33928966 DOI: 10.1039/d1nr00148e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Carbon-based materials possessing a nanometer size and unique electrical properties perfectly address the two critical issues of transistors, the low power consumption and scalability, and are considered as a promising material in next-generation synaptic devices. In this review, carbon-based synaptic transistors were systematically summarized. In the carbon nanotube section, the synthesis of carbon nanotubes, purification of carbon nanotubes, the effect of architecture on the device performance and related carbon nanotube-based devices for neuromorphic computing were discussed. In the graphene section, the synthesis of graphene and its derivative, as well as graphene-based devices for neuromorphic computing, was systematically studied. Finally, the current challenges for carbon-based synaptic transistors were discussed.
Collapse
Affiliation(s)
- Chunyu Du
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yanyun Ren
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhiyang Qu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Lili Gao
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
12
|
He M, Zhang S, Zhang J. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chem Rev 2020; 120:12592-12684. [PMID: 33064453 DOI: 10.1021/acs.chemrev.0c00395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) emerge as a promising material to advance carbon nanoelectronics. However, synthesizing or assembling pure metallic/semiconducting SWNTs required for interconnects/integrated circuits, respectively, by a conventional chemical vapor deposition method or by an assembly technique remains challenging. Recent studies have shown significant scientific breakthroughs in controlled SWNT synthesis/assembly and applications in scaled field effect transistors, which are a critical component in functional nanodevices, thereby rendering the horizontal SWNT array an important candidate for innovating nanotechnology. This review provides a comprehensive analysis of the controlled synthesis, surface assembly, characterization techniques, and potential applications of horizontally aligned SWNT arrays. This review begins with the discussion of synthesis of horizontally aligned SWNTs with regulated direction, density, structure, and theoretical models applied to understand the growth results. Several traditional procedures applied for assembling SWNTs on target surface are also briefly discussed. It then discusses the techniques adopted to characterize SWNTs, ranging from electron/probe microscopy to various optical spectroscopy methods. Prototype applications based on the horizontally aligned SWNTs, such as interconnects, field effect transistors, integrated circuits, and even computers, are subsequently described. Finally, this review concludes with challenges and a brief outlook of the future development in this research field.
Collapse
Affiliation(s)
- Maoshuai He
- State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuchen Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Hussain A, Ding EX, Mclean B, Mustonen K, Ahmad S, Tavakkoli M, Page AJ, Zhang Q, Kotakoski J, Kauppinen EI. Scalable growth of single-walled carbon nanotubes with a highly uniform structure. NANOSCALE 2020; 12:12263-12267. [PMID: 32495811 DOI: 10.1039/d0nr01919d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, a scalable floating catalyst chemical vapor deposition (FCCVD) method is developed for the production of single-walled carbon nanotubes (SWCNTs) with a controlled structure. For the first time, water is used as the growth promoter in the FCCVD process to modulate the growth of SWCNTs. At an optimum water concentration of ca. 115 ppm, the water-assisted FCCVD process synthesizes SWCNTs with a significantly narrow chirality distribution. In particular, the proportion of (9,8) and (8,7) semiconducting tubes was dramatically enhanced to 45% with 27% of the (9,8) tube in the end product. This is attributed to the changes in both the SWCNT diameter and the chiral angle. The experiment results and accurate quantum chemical molecular dynamics simulations show that the addition of water affects the nucleation and the size distribution of nanoparticle catalysts, thus resulting in the growth of SWCNTs with a highly uniform structure. This direct and continuous water-assisted FCCVD provides the possibility for the mass production of high-quality SWCNTs with a controlled structure.
Collapse
Affiliation(s)
- Aqeel Hussain
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Er-Xiong Ding
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Ben Mclean
- School of Environmental & Life Sciences, University of Newcastle, Callaghan 2308, Australia
| | - Kimmo Mustonen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Saeed Ahmad
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Mohammad Tavakkoli
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Alister J Page
- School of Environmental & Life Sciences, University of Newcastle, Callaghan 2308, Australia
| | - Qiang Zhang
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Jani Kotakoski
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| |
Collapse
|
14
|
Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C, Zhang Z, Peng LM. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020; 368:850-856. [DOI: 10.1126/science.aba5980] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/09/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lijun Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jie Han
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Lin Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jianshuo Zhou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Chenyi Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Sujuan Ding
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huiwen Shi
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Li Ding
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Ze Ma
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Xie H, Cui K, Cui L, Liu B, Yu Y, Tan C, Zhang Y, Zhang Y, Liu Z. H 2 O-Etchant-Promoted Synthesis of High-Quality Graphene on Glass and Its Application in See-Through Thermochromic Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905485. [PMID: 31894647 DOI: 10.1002/smll.201905485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Direct growth of graphene on glass can bring an innovative revolution by coupling the complementary properties of traditional glass and modern graphene (such as transparency and conductivity), offering brand new daily-life related applications. However, preparation of high-quality graphene on nonmetallic glass is still challenging. Herein, the direct route of low sheet resistance graphene on glass is reported by using in situ-introduced water as a mild etchant and methane as a carbon precursor via chemical vapor deposition. The derived graphene features with large domain sizes and few amorphous carbon impurities. Intriguingly, the sheet resistance of graphene on glass is dramatically lowered down to ≈1170 Ω sq-1 at the optical transmittance ≈93%, ≈20% of that derived without the water etchant. Based on the highly conductive and optical transparent graphene on glass, a see-through thermochromic display is thus fabricated with transparent graphene glass as a heater. This work can motivate further investigations of the direct synthesis of high-quality graphene on functional glass and its versatile applications in transparent electronic devices or displays.
Collapse
Affiliation(s)
- Huanhuan Xie
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Kejian Cui
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
| | - Lingzhi Cui
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bingzhi Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yue Yu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Congwei Tan
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100091, P. R. China
| |
Collapse
|
17
|
Yoshikawa R, Hisama K, Ukai H, Takagi Y, Inoue T, Chiashi S, Maruyama S. Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes. ACS NANO 2019; 13:6506-6512. [PMID: 31117374 DOI: 10.1021/acsnano.8b09754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In order to achieve the chirality-specific growth of single-walled carbon nanotubes (SWCNTs), it is crucial to understand the growth mechanism. Even though many molecular dynamics (MD) simulations have been employed to analyze the SWCNT growth mechanism, it has been difficult to discuss the chirality determining kinetics because of the defects remaining on the SWCNTs grown in simulations. In this study, we demonstrate MD simulations of defect-free SWCNTs, that is, chirality definable SWCNTs, under the optimized carbon supply rate and temperature. The chiralities of the SWCNTs were assigned as (14,1), (15,2), and (9,0), indicating the preference of near-zigzag and pure-zigzag SWCNTs. The SWCNTs contained at least one complete row of defect-free walls consisting of only hexagons. The near-zigzag SWCNTs grew via a kink-running process, in which bond formation between a carbon atom at a kink and a neighboring carbon chain led to formation of a hexagon with a new kink at the SWCNT edge. Defects including pentagons and heptagons were sometimes formed but effectively healed into hexagons on metal surfaces. The pure-zigzag SWCNTs grew by the kink-running and the hexagon nucleation processes. In addition, chirality change events along SWCNTs with incorporation of pentagon-heptagon pair defects were observed in the MD simulations. Here, pentagons and heptagons were frequently observed as adjacent pairs, resulting in ( n, m) chirality changes by (±1,0), (0,±1), (1,-1), or (-1,1).
Collapse
Affiliation(s)
- Ryo Yoshikawa
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kaoru Hisama
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Hiroyuki Ukai
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Yukai Takagi
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Taiki Inoue
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Shohei Chiashi
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 , Japan
- Energy NanoEngineering Laboratory , National Institute of Advanced Industrial Science and Technology (AIST) , 1-2-1 Namiki, Tsukuba 305-8654 , Japan
| |
Collapse
|
18
|
Shi J, Chu H, Li Y, Zhang X, Pan H, Li D. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm. NANOSCALE 2019; 11:7287-7292. [PMID: 30933201 DOI: 10.1039/c8nr10174d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we synthesized and extracted pure semiconducting single-walled carbon nanotubes (s-SWCNTs). Moreover, the nonlinear optical (NLO) properties, such as saturable absorption, two-photon absorption coefficient, modulation depth and optical limitation, of s-SWCNTs were experimentally determined using a high-energy 1064 nm nanosecond (ns) laser. Compared with the common SWCNTs, the s-SWCNTs demonstrated lower saturation intensity and lower two-photon absorption (TPA) coefficient. The modulation depth of the s-SWCNTs was as high as 8.6%. Based on these parameters, the s-SWCNTs can be used as excellent saturable absorbers in pulsed laser applications.
Collapse
Affiliation(s)
- Jichao Shi
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, P. R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Hirotani J, Ohno Y. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Top Curr Chem (Cham) 2019; 377:3. [PMID: 30600416 DOI: 10.1007/s41061-018-0227-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022]
Abstract
Carbon nanotube thin films have attracted considerable attention because of their potential use in flexible/stretchable electronics applications, such as flexible displays and wearable health monitoring devices. Due to recent progress in the post-purification processes of carbon nanotubes, high-purity semiconducting carbon nanotubes can be obtained for thin-film transistor applications. One of the key challenges for the practical use of carbon nanotube thin-film transistors is the thin-film formation technology, which is required for achieving not only high performance but also uniform device characteristics. In this paper, after describing the fundamental thin-film formation techniques, we review the recent progress of thin-film formation technologies for carbon nanotube-based flexible electronics.
Collapse
Affiliation(s)
- Jun Hirotani
- Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yutaka Ohno
- Department of Electronics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
20
|
Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB, Carpena-Nuñez J, Shi W, Plata DL, Penev ES, Yakobson BI, Balbuena PB, Bichara C, Futaba DN, Noda S, Shin H, Kim KS, Simard B, Mirri F, Pasquali M, Fornasiero F, Kauppinen EI, Arnold M, Cola BA, Nikolaev P, Arepalli S, Cheng HM, Zakharov DN, Stach EA, Zhang J, Wei F, Terrones M, Geohegan DB, Maruyama B, Maruyama S, Li Y, Adams WW, Hart AJ. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS NANO 2018; 12:11756-11784. [PMID: 30516055 DOI: 10.1021/acsnano.8b06511] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.
Collapse
Affiliation(s)
- Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Cary L Pint
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37235 United States
| | - Ahmad E Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Robert S Weatherup
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
- University of Manchester at Harwell, Diamond Light Source, Didcot , Oxfordshire OX11 0DE , U.K
| | - Stephan Hofmann
- Department of Engineering , University of Cambridge , Cambridge CB3 0FA , U.K
| | - Eric R Meshot
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Fanqi Wu
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Chongwu Zhou
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Nicholas Dee
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Placidus B Amama
- Tim Taylor Department of Chemical Engineering , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Jennifer Carpena-Nuñez
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Wenbo Shi
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Evgeni S Penev
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Perla B Balbuena
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Christophe Bichara
- Aix-Marseille University and CNRS , CINaM UMR 7325 , 13288 Marseille , France
| | - Don N Futaba
- Nanotube Research Center , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Suguru Noda
- Department of Applied Chemistry and Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Homin Shin
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Keun Su Kim
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Benoit Simard
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Francesca Mirri
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Matteo Pasquali
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Francesco Fornasiero
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Esko I Kauppinen
- Department of Applied Physics , Aalto University School of Science , P.O. Box 15100 , FI-00076 Espoo , Finland
| | - Michael Arnold
- Department of Materials Science and Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Baratunde A Cola
- George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Pavel Nikolaev
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Hui-Ming Cheng
- Tsinghua-Berkeley Shenzhen Institute , Tsinghua University , Shenzhen 518055 , China
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Eric A Stach
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jin Zhang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Mauricio Terrones
- Department of Physics and Center for Two-Dimensional and Layered Materials , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Benji Maruyama
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
| | - Shigeo Maruyama
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - W Wade Adams
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - A John Hart
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
22
|
Zhao X, Yang F, Chen J, Ding L, Liu X, Yao F, Li M, Zhang D, Zhang Z, Liu X, Yang J, Liu K, Li Y. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. NANOSCALE 2018; 10:6922-6927. [PMID: 29594289 DOI: 10.1039/c7nr07855b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bimetallic catalysts play important roles in the selective growth of single-walled carbon nanotubes (SWNTs). Using the simple salts (NH4)6W7O24·6H2O and Co(CH3COO)2·4H2O as precursors, tungsten-cobalt catalysts were prepared. The catalysts were composed of W6Co7 intermetallic compounds and tungsten-dispersed cobalt. With the increase of the W/Co ratio in the precursors, the content of W6Co7 was increased. Because the W6Co7 intermetallic compound can enable the chirality specified growth of SWNTs, the selectivity of the resulting SWNTs is improved at a higher W/Co ratio. At a W/Co ratio of 6 : 4 and under optimized chemical vapor deposition conditions, we realized the direct growth of semiconducting SWNTs with the purity of ∼96%, in which ∼62% are (14, 4) tubes. Using salts as precursors to prepare tungsten-cobalt bimetallic catalysts is flexible and convenient. This offers an efficient pathway for the large-scale preparation of chirality enriched semiconducting SWNTs.
Collapse
Affiliation(s)
- Xiulan Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McLean B, Eveleens CA, Mitchell I, Webber GB, Page AJ. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory. Phys Chem Chem Phys 2018; 19:26466-26494. [PMID: 28849841 DOI: 10.1039/c7cp03835f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.
Collapse
Affiliation(s)
- Ben McLean
- School of Environmental & Life Sciences, The University of Newcastle, Callaghan NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
24
|
Cui J, Yang D, Zeng X, Zhou N, Liu H. Recent progress on the structure separation of single-wall carbon nanotubes. NANOTECHNOLOGY 2017; 28:452001. [PMID: 28877034 DOI: 10.1088/1361-6528/aa8ac9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mass production of single-structure, single-wall carbon nanotubes (SWCNTs) with identical properties is critical for their basic research and technical applications in the fields of electronics, optics and optoelectronics. Great efforts have been made to control the structures of SWCNTs since their discovery. Recently, the structure separation of SWCNTs has been making great progress. Various solution-sorting methods have been developed to achieve not only the separation of metallic and semiconducting species, but also the sorting of distinct (n, m) single-chirality species and even their enantiomers. This progress would dramatically accelerate the application of SWCNTs in the next-generation electronic devices. Here, we review the recent progress in the structure sorting of SWCNTs and outline the challenges and prospects of the structure separation of SWCNTs.
Collapse
Affiliation(s)
- Jiaming Cui
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Shi W, Li J, Polsen ES, Oliver CR, Zhao Y, Meshot ER, Barclay M, Fairbrother DH, Hart AJ, Plata DL. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. NANOSCALE 2017; 9:5222-5233. [PMID: 28397885 DOI: 10.1039/c6nr09802a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2, and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2-free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.
Collapse
Affiliation(s)
- Wenbo Shi
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li M, Liu X, Zhao X, Yang F, Wang X, Li Y. Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Top Curr Chem (Cham) 2017; 375:29. [DOI: 10.1007/s41061-017-0116-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/28/2017] [Indexed: 10/20/2022]
|
27
|
Eveleens CA, Page AJ. Effect of ammonia on chemical vapour deposition and carbon nanotube nucleation mechanisms. NANOSCALE 2017; 9:1727-1737. [PMID: 28091668 DOI: 10.1039/c6nr08222j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical vapour deposition (CVD) growth of carbon nanotubes is currently the most viable method for commercial-scale nanotube production. However, controlling the 'chirality', or helicity, of carbon nanotubes during CVD growth remains a challenge. Recent studies have shown that adding chemical 'etchants', such as ammonia and water, to the feedstock gas can alter the diameter and chirality of nanotubes produced with CVD. To date, this strategy for chirality control remains sub-optimal, since we have a poor understanding of how these etchants change the CVD and nucleation mechanisms. Here, we show how ammonia alters the mechanism of methane CVD and single-walled carbon nanotube nucleation on iron catalysts, using quantum chemical molecular dynamics simulations. Our simulations reveal that ammonia is selectively activated by the catalyst, and this enables ammonia to play a dual role during methane CVD. Following activation, ammonia nitrogen removes carbon from the catalyst surface exclusively via the production of hydrogen (iso)cyanide, thus impeding the growth of extended carbon chains. Simultaneously, ammonia hydrogen passivates carbon dangling bonds, which impedes nanotube nucleation and promotes defect healing. Combined, these effects lead to slower, more controllable nucleation and growth kinetics.
Collapse
Affiliation(s)
- Clothilde A Eveleens
- Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan, 2308 NSW, Australia.
| | - Alister J Page
- Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan, 2308 NSW, Australia.
| |
Collapse
|
28
|
Khalilov U, Bogaerts A, Xu B, Kato T, Kaneko T, Neyts EC. How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching. NANOSCALE 2017; 9:1653-1661. [PMID: 28074964 DOI: 10.1039/c6nr08005g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC-CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C-C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Collapse
Affiliation(s)
- U Khalilov
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - A Bogaerts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| | - B Xu
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kato
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - T Kaneko
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - E C Neyts
- Department of Chemistry, Research Group PLASMANT, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.
| |
Collapse
|
29
|
Liu B, Wu F, Gui H, Zheng M, Zhou C. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS NANO 2017; 11:31-53. [PMID: 28072518 DOI: 10.1021/acsnano.6b06900] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.
Collapse
Affiliation(s)
- Bilu Liu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University , Shenzhen, Guangdong 518055, P. R. China
| | | | | | - Ming Zheng
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
30
|
Yang F, Wang X, Si J, Zhao X, Qi K, Jin C, Zhang Z, Li M, Zhang D, Yang J, Zhang Z, Xu Z, Peng LM, Bai X, Li Y. Water-Assisted Preparation of High-Purity Semiconducting (14,4) Carbon Nanotubes. ACS NANO 2017; 11:186-193. [PMID: 28114760 DOI: 10.1021/acsnano.6b06890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Semiconducting single-walled carbon nanotubes (s-SWNTs) with diameters of 1.0-1.5 nm (with similar bandgap to crystalline silicon) are highly desired for nanoelectronics. Up to date, the highest reported content of s-SWNTs as-grown is ∼97%, which is still far below the daunting requirements of high-end applications. Herein, we report a feasible and green pathway to use H2O vapor to modulate the structure of the intermetallic W6Co7 nanocrystals. By using the resultant W6Co7 nanocatalysts with a high percentage of (1 0 10) planes as structural templates, we realized the direct growth of s-SWNT with the purity of ∼99%, in which ∼97% is (14,4) tubes (diameter 1.29 nm). H2O can also act as an environmentally friendly and facile etchant for eliminating metallic SWNTs, and the content of s-SWNTs was further improved to 99.8% and (14,4) tubes to 98.6%. High purity s-SWNTs with even bandgap determined by their uniform structure can be used for the exquisite applications in different fields.
Collapse
Affiliation(s)
| | | | | | | | - Kuo Qi
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | - Chuanhong Jin
- School of Materials Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | | - Zhi Xu
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | |
Collapse
|
31
|
Zhang R, Zhang Y, Wei F. Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chem Soc Rev 2017; 46:3661-3715. [DOI: 10.1039/c7cs00104e] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the growth mechanism, controlled synthesis, characterization, properties and applications of horizontally aligned carbon nanotube arrays.
Collapse
Affiliation(s)
- Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
32
|
Li P, Zhang J. Preparation of Horizontal Single-Walled Carbon Nanotubes Arrays. Top Curr Chem (Cham) 2016; 374:85. [DOI: 10.1007/s41061-016-0085-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
|
33
|
Ibrahim I, Gemming T, Weber WM, Mikolajick T, Liu Z, Rümmeli MH. Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes. ACS NANO 2016; 10:7248-7266. [PMID: 27427780 DOI: 10.1021/acsnano.6b03744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exciting electrical properties of single-walled carbon nanotubes show promise as a future class of electronic materials, yet the manufacturing challenges remain significant. The key challenges are to determine fabrication approaches for complex and flexible arrangements of nanotube devices that are reliable, rapid, and reproducible. Realizing regular array structures is an important step toward this goal. Considerable efforts have and are being made in this vein, although the progress to date is somewhat modest. However, there are reasons to be optimistic. Positive steps of being able to control not only the spatial location and diameter of the tubes but also their electronic type (chiral control) are being made. Two primary approaches are being exploited to address the challenges. Tube deposition techniques, on the one hand, and direct growth of the desired tube at the target location are being explored. While this review covers both approaches, the emphasis is on recent developments in the direct fabrication of type-selected horizontally aligned single-walled carbon nanotubes by chemical vapor deposition.
Collapse
Affiliation(s)
- Imad Ibrahim
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
| | - Thomas Gemming
- IFW Dresden , P.O. Box 270116, 01171 Dresden, Saxony, Germany
| | - Walter M Weber
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology , 01062 Dresden, Saxony, Germany
| | - Thomas Mikolajick
- NaMLab gGmbH , Nöthnitzer Strasse 64, D-01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Dresden University of Technology , 01062 Dresden, Saxony, Germany
- Chair of Nanoelectronic Materials, TU Dresden , D-01062 Dresden, Germany
| | - Zhongfan Liu
- College of Physics Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China
- Center for Nanochemistry, Beijing Science and Engineering Centre for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Mark H Rümmeli
- College of Physics Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215006, China
- IFW Dresden , P.O. Box 270116, 01171 Dresden, Saxony, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| |
Collapse
|
34
|
An H, Kumamoto A, Takezaki H, Ohyama S, Qian Y, Inoue T, Ikuhara Y, Chiashi S, Xiang R, Maruyama S. Chirality specific and spatially uniform synthesis of single-walled carbon nanotubes from a sputtered Co-W bimetallic catalyst. NANOSCALE 2016; 8:14523-14529. [PMID: 27412697 DOI: 10.1039/c6nr02749k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthesis of single-walled carbon nanotubes (SWNTs) with well-defined atomic arrangements has been widely recognized in the past few decades as the biggest challenge in the SWNT community, and has become a bottleneck for the application of SWNTs in nano-electronics. Here, we report a selective synthesis of (12, 6) SWNTs with an enrichment of 50%-70% by chemical vapor deposition (CVD) using sputtered Co-W as a catalyst. This is achieved under much milder reduction and growth conditions than those in the previous report using transition-metal molecule clusters as catalyst precursors (Nature, 2014, 510, 522). Meanwhile, in-plane transmission electron microscopy unambiguously identified an intermediate structure of Co6W6C, which is strongly associated with selective growth. However, most of the W atoms disappear after a 5 min CVD growth, which implies that anchoring W may be important in this puzzling Co-W system.
Collapse
Affiliation(s)
- Hua An
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li J, Otsuka K, Zhang X, Maruyama S, Liu J. Selective synthesis of large diameter, highly conductive and high density single-walled carbon nanotubes by a thiophene-assisted chemical vapor deposition method on transparent substrates. NANOSCALE 2016; 8:14156-14162. [PMID: 27382988 DOI: 10.1039/c6nr03642b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selective synthesis of single-walled carbon nanotubes (SWNTs) with controlled properties is an important research topic for SWNT studies. Here we report a thiophene-assisted chemical vapor deposition (CVD) method to directly grow highly conductive SWNT thin films on substrates, including transparent ones. By adding low concentration thiophene into the carbon feedstock (ethanol), the as-prepared carbon nanotubes demonstrate an obvious up-shift in the diameter distribution while the single-walled structure is still retained. In the proposed mechanism, the change in the diameter is sourced from the increase in the carbon yield induced by the sulfur-containing compound. Such SWNTs are found to possess high conductivity with 95% SWNTs demonstrating on/off ratios lower than 100 in transistors. More importantly, it is further demonstrated that this method can be used to directly synthesize dense SWNT networks on transparent substrates which can be utilized as transparent conductive films (TCFs) with very high transparency. Such TCFs can be applied to fabricate a light modulating window as a proof-of-concept. The present work provides important insights into the growth mechanism of SWNTs and great potential for the preparation of TCFs with high scalability, easy operation and low cost.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
36
|
Liu C, Cheng HM. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes. J Am Chem Soc 2016; 138:6690-8. [DOI: 10.1021/jacs.6b00838] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chang Liu
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory
for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
37
|
Sakurai S, Yamada M, Sakurai H, Sekiguchi A, Futaba DN, Hata K. A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation. NANOSCALE 2016; 8:1015-23. [PMID: 26660858 DOI: 10.1039/c5nr05673j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A method for the selective semiconducting single-walled carbon nanotube (SWCNT) growth over a continuous range from 67% to 98%, within the diameter range of 0.8-1.2 nm, by the use of a "catalyst conditioning process" prior to growth is reported. Continuous control revealed an inverse relationship between the selectivity and the yield as evidenced by a 1000-times difference in yield between the highest selectivity and non-selectivity. Further, these results show that the selectivity is highly sensitive to the presence of a precise concentration of oxidative and reductive gases (i.e. water and hydrogen), and the highest selectivity occurred along the border between the conditions suitable for high yield and no-growth. Through these results, a phenomenological model has been constructed to explain the inverse relationship between yield and selectivity based on catalyst deactivation. We believe our model to be general, as the fundamental mechanisms limiting selective semiconducting SWCNT growth are common to the previous reports of limited yield.
Collapse
Affiliation(s)
- Shunsuke Sakurai
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Maho Yamada
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Hiroko Sakurai
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Atsuko Sekiguchi
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Don N Futaba
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kenji Hata
- CNT-Application Research Center and National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
38
|
Abstract
Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
39
|
Islam AE, Rogers JA, Alam MA. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7908-7937. [PMID: 26540144 DOI: 10.1002/adma.201502918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/05/2015] [Indexed: 06/05/2023]
Abstract
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements.
Collapse
Affiliation(s)
- Ahmad E Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- National Research Council, Washington, DC, 20001, USA
| | - John A Rogers
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL, 61801, USA
| | - Muhammad A Alam
- Department of Electrical and Computer Engineering, Purdue University West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Tang L, Li T, Li C, Ling L, Zhang K, Yao Y. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. NANOSCALE 2015; 7:19699-19704. [PMID: 26553394 DOI: 10.1039/c5nr05616k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 ± 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition, electronic transport measurements also confirm that the Ion/Ioff ratio is mainly in the order of ∼10(3). This work provides an effective strategy for the facile fabrication of narrow diameter distributed s-SWNTs, which will be beneficial to fundamental research and the broad application of SWNTs for future nanoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China. and School of Sciences, Shanghai University, Shanghai 200444, China
| | - Taotao Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chaowei Li
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China. and School of Sciences, Shanghai University, Shanghai 200444, China
| | - Lin Ling
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Kai Zhang
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yagang Yao
- Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
41
|
Li J, Franklin AD, Liu J. Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks. NANO LETTERS 2015; 15:6058-6065. [PMID: 26263184 DOI: 10.1021/acs.nanolett.5b02261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays. The introduction of SWNT junctions amplifies the disparity in resistance between s- and m-pathways, leading to a complete deactivation of m-SWNTs while minimizing the degradation of the semiconducting counterparts. Unlike previous approaches that required an electrostatic gate to achieve selectivity in electrical breakdown, this junction process is gate-free and opens the way for straightforward integration of thin-film s-SWNT devices. Comparison to electrical breakdown in junction-less SWNT devices without gating shows that this junction-based breakdown method yields more than twice the average on-state current retention in the resultant s-SWNT arrays. Systematic studies show that the on/off ratio can reach as high as 1.4 × 10(6) with a correspondingly high retention of on-state current compared to the initial current value before breakdown. Overall, this method provides important insight into transport at SWNT junctions and a simple route for obtaining pure s-SWNT thin film devices for broad applications.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chemistry and ‡Department of Electrical & Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Aaron D Franklin
- Department of Chemistry and ‡Department of Electrical & Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Jie Liu
- Department of Chemistry and ‡Department of Electrical & Computer Engineering, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
42
|
Zhang S, Tong L, Hu Y, Kang L, Zhang J. Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst. J Am Chem Soc 2015; 137:8904-7. [DOI: 10.1021/jacs.5b05384] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuchen Zhang
- Center
for Nanochemistry,
Beijing Science and Engineering Center for Nanocarbons, Beijing National
Laboratory for Molecular Sciences, State Key Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lianming Tong
- Center
for Nanochemistry,
Beijing Science and Engineering Center for Nanocarbons, Beijing National
Laboratory for Molecular Sciences, State Key Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Hu
- Center
for Nanochemistry,
Beijing Science and Engineering Center for Nanocarbons, Beijing National
Laboratory for Molecular Sciences, State Key Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lixing Kang
- Center
for Nanochemistry,
Beijing Science and Engineering Center for Nanocarbons, Beijing National
Laboratory for Molecular Sciences, State Key Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Zhang
- Center
for Nanochemistry,
Beijing Science and Engineering Center for Nanocarbons, Beijing National
Laboratory for Molecular Sciences, State Key Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
43
|
Zhang S, Hu Y, Wu J, Liu D, Kang L, Zhao Q, Zhang J. Selective Scission of C–O and C–C Bonds in Ethanol Using Bimetal Catalysts for the Preferential Growth of Semiconducting SWNT Arrays. J Am Chem Soc 2015; 137:1012-5. [DOI: 10.1021/ja510845j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shuchen Zhang
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Hu
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Juanxia Wu
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Dan Liu
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lixing Kang
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qiuchen Zhao
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing National Laboratory
for Molecular Sciences, Key Laboratory for the Physics and Chemistry
of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable
and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
44
|
Liu B, Liu J, Li HB, Bhola R, Jackson EA, Scott LT, Page A, Irle S, Morokuma K, Zhou C. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. NANO LETTERS 2015; 15:586-95. [PMID: 25521257 DOI: 10.1021/nl504066f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The inability to synthesize single-wall carbon nanotubes (SWCNTs) possessing uniform electronic properties and chirality represents the major impediment to their widespread applications. Recently, there is growing interest to explore and synthesize well-defined carbon nanostructures, including fullerenes, short nanotubes, and sidewalls of nanotubes, aiming for controlled synthesis of SWCNTs. One noticeable advantage of such processes is that no metal catalysts are used, and the produced nanotubes will be free of metal contamination. Many of these methods, however, suffer shortcomings of either low yield or poor controllability of nanotube uniformity. Here, we report a brand new approach to achieve high-efficiency metal-free growth of nearly pure SWCNT semiconductors, as supported by extensive spectroscopic characterization, electrical transport measurements, and density functional theory calculations. Our strategy combines bottom-up organic chemistry synthesis with vapor phase epitaxy elongation. We identify a strong correlation between the electronic properties of SWCNTs and their diameters in nanotube growth. This study not only provides material platforms for electronic applications of semiconducting SWCNTs but also contributes to fundamental understanding of the growth mechanism and controlled synthesis of SWCNTs.
Collapse
Affiliation(s)
- Bilu Liu
- Department of Electrical Engineering and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kang L, Hu Y, Liu L, Wu J, Zhang S, Zhao Q, Ding F, Li Q, Zhang J. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. NANO LETTERS 2015; 15:403-409. [PMID: 25539021 DOI: 10.1021/nl5037325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, techniques to obtain horizontally aligned semiconducting SWNTs (s-SWNTs) with higher densities are still in their infancy. We reported herein a rational approach for the preferential growth of densely packed and well-aligned s-SWNTs arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Using this approach, a suitable concentration of oxygen vacancies in TiO2 nanoparticles could form by optimizing the flow rate of hydrogen and carbon sources during the process of SWNT growth, and then horizontally aligned SWNTs with the density of ∼ 10 tubes/μm and the s-SWNT percentage above 95% were successfully obtained on ST-cut quartz substrates. Theoretical calculations indicated that TiO2 nanoparticles with a certain concentration of oxygen vacancies have a lower formation energy between s-SWNT than metallic SWNT (m-SWNT), thus realizing the preferential growth of s-SWNT arrays. Furthermore, this method can also be extended to other semiconductor oxide nanoparticles (i.e., ZnO, ZrO2 and Cr2O3) for the selective growth of s-SWNTs, showing clear potential to the future applications in nanoelectronics.
Collapse
Affiliation(s)
- Lixing Kang
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Zhang Y, Hu Y, Kang L, Zhang S, Xie H, Liu D, Zhao Q, Li Q, Zhang J. State of the art of single-walled carbon nanotube synthesis on surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5898-5922. [PMID: 25042346 DOI: 10.1002/adma.201400431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) directly synthesized on surfaces are promising building blocks for nanoelectronics. The structures and the arrangement of the SWNTs on surfaces determine the quality and density of the fabricated nanoelectronics, implying the importance of structure controlled growth of SWNTs on surfaces. This review summarizes the recent research status in controlling the orientation, length, density, diameter, metallicity, and chirality of SWNTs directly synthesized on surfaces by chemical vapor deposition, together with a session presenting the characterization method of the chirality of SWNTs. Finally, the remaining major challenges are discussed and future research directions are proposed.
Collapse
Affiliation(s)
- Yabin Chen
- Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li J, Ke CT, Liu K, Li P, Liang S, Finkelstein G, Wang F, Liu J. Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS NANO 2014; 8:8564-72. [PMID: 25111952 DOI: 10.1021/nn503265g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The coexistence of semiconducting and metallic single-walled carbon nanotubes (SWNTs) during synthesis is one of the major bottlenecks that prevent their broad application for the next-generation nanoelectronics. Herein, we present more understanding and demonstration of the growth of highly enriched semiconducting SWNTs (s-SWNTs) with a narrow diameter distribution. An important fact discovered in our experiments is that the selective elimination of metallic SWNTs (m-SWNTs) from the mixed arrays grown on quartz is diameter-dependent. Our method emphasizes controlling the diameter distribution of SWNTs in a narrow range where m-SWNTs can be effectively and selectively etched during growth. In order to achieve narrow diameter distribution, uniform and stable Fe-W nanoclusters were used as the catalyst precursors. About 90% of as-prepared SWNTs fall into the diameter range 2.0-3.2 nm. Electrical measurement results on individual SWNTs confirm that the selectivity of s-SWNTs is ∼95%. The present study provides an effective strategy for increasing the purity of s-SWNTs via controlling the diameter distribution of SWNTs and adjusting the etchant concentration. Furthermore, by carefully comparing the chirality distributions of Fe-W-catalyzed and Fe-catalyzed SWNTs under different water vapor concentrations, the relationship between the diameter-dependent and electronic-type-dependent etching mechanisms was investigated.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chemistry and ‡Department of Physics, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Otsuka K, Inoue T, Chiashi S, Maruyama S. Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown. NANOSCALE 2014; 6:8831-8835. [PMID: 24956406 DOI: 10.1039/c4nr01690d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An organic film-assisted electrical breakdown technique is proposed to selectively remove metallic (m-) single-walled carbon nanotubes (SWNTs) in full length towards creation of pure semiconducting SWNT arrays which are available for the large-scale fabrication of field effect transistors (FETs). The electrical breakdown of horizontally aligned SWNT arrays embedded in organic films resulted in a maximum removal length of 16.4 μm. The removal of SWNTs was confirmed using scanning electron microscopy and Raman mapping measurements. The on/off ratios of FETs were improved up to ca. 10,000, similar to that achieved for in-air breakdown. The experimental results suggest that exothermic oxidation of organic films induces propagation of oxidation reaction, hence the long-length removal of m-SWNTs.
Collapse
Affiliation(s)
- Keigo Otsuka
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|
49
|
Luo D, Yang F, Wang X, Sun H, Gao D, Li R, Yang J, Li Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2809-2742. [PMID: 24678038 DOI: 10.1002/smll.201400007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/27/2014] [Indexed: 06/03/2023]
Abstract
A one-step anisotropic etching method is developed to specifically obtain armchair-edged graphene directly from graphite flakes on various substrates. The armchair edge structure of the produced graphene is verified by the atomic resolution images obtained from the fluid mode peakforce tapping AFM and the relatively high intensity of D band in the Raman spectra.
Collapse
Affiliation(s)
- Da Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ding J, Li Z, Lefebvre J, Cheng F, Dubey G, Zou S, Finnie P, Hrdina A, Scoles L, Lopinski GP, Kingston CT, Simard B, Malenfant PRL. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. NANOSCALE 2014; 6:2328-39. [PMID: 24418869 DOI: 10.1039/c3nr05511f] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A systematic study on the use of 9,9-dialkylfluorene homopolymers (PFs) for large-diameter semiconducting (sc-) single-walled carbon nanotube (SWCNT) enrichment is the focus of this report. The enrichment is based on a simple three-step extraction process: (1) dispersion of as-produced SWCNTs in a PF solution; (2) centrifugation at a low speed to separate the enriched sc-tubes; (3) filtration to collect the enriched sc-SWCNTs and remove excess polymer. The effect of the extraction conditions on the purity and yield including molecular weight and alkyl side-chain length of the polymers, SWCNT concentration, and polymer/SWCNT ratio have been examined. It was observed that PFs with alkyl chain lengths of C10, C12, C14, and C18, all have an excellent capability to enrich laser-ablation sc-SWCNTs when their molecular weight is larger than ∼10 000 Da. More detailed studies were therefore carried out with the C12 polymer, poly(9,9-di-n-dodecylfluorene), PFDD. It was found that a high polymer/SWCNT ratio leads to an enhanced yield but a reduced sc-purity. A ratio of 0.5-1.0 gives an excellent sc-purity and a yield of 5-10% in a single extraction as assessed by UV-vis-NIR absorption spectra. The yield can also be promoted by multiple extractions while maintaining high sc-purity. Mechanistic experiments involving time-lapse dispersion studies reveal that m-SWCNTs have a lower propensity to be dispersed, yielding a sc-SWCNT enriched material in the supernatant. Dispersion stability studies with partially enriched sc-SWCNT material further reveal that m-SWCNTs : PFDD complexes will re-aggregate faster than sc-SWCNTs : PFDD complexes, providing further sc-SWCNT enrichment. This result confirms that the enrichment was due to the much tighter bundles in raw materials and the more rapid bundling in dispersion of the m-SWCNTs. The sc-purity is also confirmed by Raman spectroscopy and photoluminescence excitation (PLE) mapping. The latter shows that the enriched sc-SWCNT sample has a narrow chirality and diameter distribution dominated by the (10,9) species with d = 1.29 nm. The enriched sc-SWCNTs allow a simple drop-casting method to form a dense nanotube network on SiO2/Si substrates, leading to thin film transistors (TFTs) with an average mobility of 27 cm(2) V(-1) s(-1) and an average on/off current ratio of 1.8 × 10(6) when considering all 25 devices having 25 μm channel length prepared on a single chip. The results presented herein demonstrate how an easily scalable technique provides large-diameter sc-SWCNTs with high purity, further enabling the best TFT performance reported to date for conjugated polymer enriched sc-SWCNTs.
Collapse
Affiliation(s)
- Jianfu Ding
- Security and Disruptive Technologies Portfolio, National Research Council Canada, M-12, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|