1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Nieto-Fabregat F, Marseglia A, Thépaut M, Kleman JP, Abbas M, Le Roy A, Ebel C, Maalej M, Simorre JP, Laguri C, Molinaro A, Silipo A, Fieschi F, Marchetti R. Molecular recognition of Escherichia coli R1-type core lipooligosaccharide by DC-SIGN. iScience 2024; 27:108792. [PMID: 38299112 PMCID: PMC10828809 DOI: 10.1016/j.isci.2024.108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of Escherichia coli and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN). Specifically, a combination of different techniques, including fluorescence microscopy, surface plasmon resonance, NMR spectroscopy, and computational studies, demonstrated that DC-SIGN binds to the purified deacylated R1 lipooligosaccharide mainly through the recognition of its outer core pentasaccharide, which acts as a crosslinker between two different tetrameric units of DC-SIGN. Our results contribute to a better understanding of DC-SIGN-LPS interaction and may support the development of pharmacological and immunostimulatory strategies for bacterial infections, prevention, and therapy.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Angela Marseglia
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Michel Thépaut
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Philippe Kleman
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Massilia Abbas
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Aline Le Roy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Christine Ebel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Meriem Maalej
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Pierre Simorre
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Laguri
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
| | - Antonio Molinaro
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Franck Fieschi
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 41 Avenue des Martyrs, 38000 Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Roberta Marchetti
- Department of Chemical Science, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| |
Collapse
|
4
|
Herrera-González I, González-Cuesta M, Thépaut M, Laigre E, Goyard D, Rojo J, García Fernández JM, Fieschi F, Renaudet O, Nieto PM, Ortiz Mellet C. High-Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC-SIGN and Langerin. Chemistry 2024; 30:e202303041. [PMID: 37828571 DOI: 10.1002/chem.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
- Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Eugénie Laigre
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - David Goyard
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Renaudet
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Pedro M Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
5
|
Krylov VB, Gómez-Redondo M, Solovev AS, Yashunsky DV, Brown AJ, Stappers MH, Gow NA, Ardá A, Jiménez-Barbero J, Nifantiev NE. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf 2023; 10:100109. [PMID: 37520856 PMCID: PMC10382935 DOI: 10.1016/j.tcsw.2023.100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune C-type lectin receptor that recognizes carbohydrate-based pathogen associated with molecular patterns of various bacteria, fungi, viruses and protozoa. Although a range of highly mannosylated glycoproteins have been shown to induce signaling via DC-SIGN, precise structure of the recognized oligosaccharide epitope is still unclear. Using the array of oligosaccharides related to selected fragments of main fungal antigenic polysaccharides we revealed a highly specific pentamannoside ligand of DC-SIGN, consisting of α-(1 → 2)-linked mannose chains with one inner α-(1 → 3)-linked unit. This structural motif is present in Candida albicans cell wall mannan and corresponds to its antigenic factors 4 and 13b. This epitope is not ubiquitous in other yeast species and may account for the species-specific nature of fungal recognition via DC-SIGN. The discovered highly specific oligosaccharide ligands of DC-SIGN are tractable tools for interdisciplinary investigations of mechanisms of fungal innate immunity and anti-Candida defense. Ligand- and receptor-based NMR data demonstrated the pentasaccharide-to-DC-SIGN interaction in solution and enabled the deciphering of the interaction topology.
Collapse
Affiliation(s)
- Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Arsenii S. Solovev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alistair J.P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Silva-Díaz A, Ramírez-Cárdenas J, Muñoz-García JC, de la Fuente MC, Thépaut M, Fieschi F, Ramos-Soriano J, Angulo J, Rojo J. Fluorinated Man 9 as a High Mannose Mimetic to Unravel Its Recognition by DC-SIGN Using NMR. J Am Chem Soc 2023; 145:26009-26015. [PMID: 37979136 PMCID: PMC10852354 DOI: 10.1021/jacs.3c06204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction. The introduction of tags into these complex oligosaccharides could overcome these problems and facilitate NMR studies. Here, we show the preparation of the Man9 of high mannose with some fluorine tags and the study of the interaction with its receptor, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). This fluorinated ligand has allowed us to apply heteronuclear two-dimensional (2D) 1H,19F STD-TOCSYreF NMR experiments, using the initial slope approach, which has facilitated the analysis of the Man9/DC-SIGN interaction, unequivocally providing the binding epitope.
Collapse
Affiliation(s)
- Adrián Silva-Díaz
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Jonathan Ramírez-Cárdenas
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Juan C. Muñoz-García
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - M. Carmen de la Fuente
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Michel Thépaut
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Franck Fieschi
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
- Institut
Universitaire de France (IUF), Paris 75231, France
| | - Javier Ramos-Soriano
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Jesús Angulo
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Javier Rojo
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| |
Collapse
|
7
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
8
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
9
|
Shanina E, Kuhaudomlarp S, Siebs E, Fuchsberger FF, Denis M, da Silva Figueiredo Celestino Gomes P, Clausen MH, Seeberger PH, Rognan D, Titz A, Imberty A, Rademacher C. Targeting undruggable carbohydrate recognition sites through focused fragment library design. Commun Chem 2022; 5:64. [PMID: 36697615 PMCID: PMC9814205 DOI: 10.1038/s42004-022-00679-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023] Open
Abstract
Carbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca2+-dependent carbohydrate-protein interactions. Here, we show the effect of MBPs on the clinically relevant lectins DC-SIGN, Langerin, LecA and LecB. Detailed structural and biochemical investigations revealed the specificity of MBPs for different Ca2+-dependent lectins. Exploring the structure-activity relationships of several fragments uncovered the functional groups in the MBPs suitable for modification to further improve lectin binding and selectivity. Selected inhibitors bound efficiently to DC-SIGN-expressing cells. Altogether, the discovery of MBPs as a promising class of Ca2+-dependent lectin inhibitors creates a foundation for fragment-based ligand design for future drug discovery campaigns.
Collapse
Affiliation(s)
- Elena Shanina
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- grid.450307.50000 0001 0944 2786University Grenoble Alpes, CNRS, CERMAV, Grenoble, France ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Eike Siebs
- grid.461899.bChemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany ,grid.11749.3a0000 0001 2167 7588Saarland University, Department of Chemistry, 66123 Saarbrücken, Germany ,grid.452463.2German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Felix F. Fuchsberger
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| | - Maxime Denis
- grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| | - Priscila da Silva Figueiredo Celestino Gomes
- grid.503326.10000 0004 0367 4780Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France ,grid.252546.20000 0001 2297 8753Department of Physics, College of Sciences and Mathematics, Auburn University, 36849 Auburn, AL USA
| | - Mads H. Clausen
- grid.5170.30000 0001 2181 8870Technical University of Denmark, Center for Nanomedicine and Theranostics, Department of Chemistry, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Peter H. Seeberger
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Didier Rognan
- grid.503326.10000 0004 0367 4780Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Alexander Titz
- grid.461899.bChemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany ,grid.11749.3a0000 0001 2167 7588Saarland University, Department of Chemistry, 66123 Saarbrücken, Germany ,grid.452463.2German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Anne Imberty
- grid.450307.50000 0001 0944 2786University Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Christoph Rademacher
- grid.419564.b0000 0004 0491 9719Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14424 Potsdam, Germany ,grid.14095.390000 0000 9116 4836Freie Universität Berlin, Department of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Berutz Labs, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
10
|
Herrera-González I, Thépaut M, Sánchez-Fernández EM, di Maio A, Vivès C, Rojo J, García Fernández JM, Fieschi F, Nieto PM, Ortiz Mellet C. Mannobioside biomimetics that trigger DC-SIGN binding selectivity. Chem Commun (Camb) 2022; 58:12086-12089. [DOI: 10.1039/d2cc04478a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligosaccharide biomimetics featuring sp2-iminosugar motifs enable selective C-type lectin recognition, as exemplified here for DC-SIGN vs langerin, offering new opportunities for immunomodulation.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Elena M. Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Antonio di Maio
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Corinne Vivès
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| |
Collapse
|
11
|
Cramer J. Medicinal chemistry of the myeloid C-type lectin receptors Mincle, Langerin, and DC-SIGN. RSC Med Chem 2021; 12:1985-2000. [PMID: 35024612 PMCID: PMC8672822 DOI: 10.1039/d1md00238d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In their role as pattern-recognition receptors on cells of the innate immune system, myeloid C-type lectin receptors (CLRs) assume important biological functions related to immunity, homeostasis, and cancer. As such, this family of receptors represents an appealing target for therapeutic interventions for modulating the outcome of many pathological processes, in particular related to infectious diseases. This review summarizes the current state of research into glycomimetic or drug-like small molecule ligands for the CLRs Mincle, Langerin, and DC-SIGN, which have potential therapeutic applications in vaccine research and anti-infective therapy.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
12
|
Wawrzinek R, Wamhoff EC, Lefebre J, Rentzsch M, Bachem G, Domeniconi G, Schulze J, Fuchsberger FF, Zhang H, Modenutti C, Schnirch L, Marti MA, Schwardt O, Bräutigam M, Guberman M, Hauck D, Seeberger PH, Seitz O, Titz A, Ernst B, Rademacher C. A Remote Secondary Binding Pocket Promotes Heteromultivalent Targeting of DC-SIGN. J Am Chem Soc 2021; 143:18977-18988. [PMID: 34748320 PMCID: PMC8603350 DOI: 10.1021/jacs.1c07235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Dendritic cells (DC)
are antigen-presenting cells coordinating
the interplay of the innate and the adaptive immune response. The
endocytic C-type lectin receptors DC-SIGN and Langerin display expression
profiles restricted to distinct DC subtypes and have emerged as prime
targets for next-generation immunotherapies and anti-infectives. Using
heteromultivalent liposomes copresenting mannosides bearing aromatic
aglycones with natural glycan ligands, we serendipitously discovered
striking cooperativity effects for DC-SIGN+ but not for
Langerin+ cell lines. Mechanistic investigations combining
NMR spectroscopy with molecular docking and molecular dynamics simulations
led to the identification of a secondary binding pocket for the glycomimetics.
This pocket, located remotely of DC-SIGN’s carbohydrate bindings
site, can be leveraged by heteromultivalent avidity enhancement. We
further present preliminary evidence that the aglycone allosterically
activates glycan recognition and thereby contributes to DC-SIGN-specific
cell targeting. Our findings have important implications for both
translational and basic glycoscience, showcasing heteromultivalent
targeting of DCs to improve specificity and supporting potential allosteric
regulation of DC-SIGN and CLRs in general.
Collapse
Affiliation(s)
- Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Jonathan Lefebre
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Mareike Rentzsch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Gunnar Bachem
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Gary Domeniconi
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Felix F Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Hengxi Zhang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Carlos Modenutti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Lennart Schnirch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Universidad de Buenos Aires, C1428EHA Ciudad de Buenos Aires, Argentina
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Maria Bräutigam
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mónica Guberman
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,German Centre for Infection Research, Campus Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.,German Centre for Infection Research, Campus Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie University of Berlin, 14195 Berlin, Germany.,University of Vienna, Department of Pharmaceutical Sciences, Althanstrasse 14, 1090 Vienna, Austria.,University of Vienna, Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
13
|
Chakroun K, Taouai M, Porkolab V, Luczkowiak J, Sommer R, Cheneau C, Mathiron D, Ben Maaouia MA, Pilard S, Abidi R, Mullié C, Fieschi F, Cragg PJ, Halary F, Delgado R, Benazza M. Low-Valent Calix[4]arene Glycoconjugates Based on Hydroxamic Acid Bearing Linkers as Potent Inhibitors in a Model of Ebola Virus Cis-Infection and HCMV-gB-Recombinant Glycoprotein Interaction with MDDC Cells by Blocking DC-SIGN. J Med Chem 2021; 64:14332-14343. [PMID: 34524803 DOI: 10.1021/acs.jmedchem.1c00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.
Collapse
Affiliation(s)
- Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Roman Sommer
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken66123, Germany
| | - Coraline Cheneau
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - David Mathiron
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France.,Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Serge Pilard
- UFR des Sciences Bâtiment Serres-Transfert Rue Dallery, Passage du sourire d'Avril, Amiens 80039 Cedex 1, France
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d'Application de la Chimie aux Ressources et Substances Naturelles et à l'Environnement (LACReSNE) Unité ≪Interactions Moléculaires Spécifiques≫, Université de Carthage Zarzouna-Bizerte, Zarzouna-Bizerte, Tennessee 7021, Tunisia
| | - Catherine Mullié
- Laboratoire AGIR-UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens80037, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, GrenobleF-38044, France
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, U.K
| | - Franck Halary
- Nantes Université, Inserm, CHU Nantes, Center for Research in Transplantation and Immunology UMR1064, ITUN, Nantes44093, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, Amiens, 80039 Cédex, France
| |
Collapse
|
14
|
Lassfolk R, Bertuzzi S, Ardá A, Wärnå J, Jiménez‐Barbero J, Leino R. Kinetic Studies of Acetyl Group Migration between the Saccharide Units in an Oligomannoside Trisaccharide Model Compound and a Native Galactoglucomannan Polysaccharide. Chembiochem 2021; 22:2986-2995. [PMID: 34405515 PMCID: PMC8597014 DOI: 10.1002/cbic.202100374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Acyl group migration is a fundamental phenomenon in carbohydrate chemistry, recently shown to take place also between two non-adjacent hydroxyl groups, across the glycosidic bond, in a β-(1→4)-linked mannan trisaccharide model compound. With the central mannoside unit containing acetyl groups at the O2 and O3 positions, the O2-acetyl was in the earlier study shown to migrate to O6 of the reducing end. Potential implications of the general acyl migration process on cell signaling events and plant growth in nature are intriguing open questions. In the present work, migration kinetics in this original trisaccharide model system were studied in more detail together with potential interactions of the model compound and the migration products with DC-SIGN lectin. Furthermore, we demonstrate here for the first time that similar migration may also take place in native polysaccharides, here represented by galactoglucomannan from Norway spruce.
Collapse
Affiliation(s)
- Robert Lassfolk
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| | - Sara Bertuzzi
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Ana Ardá
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi University20500TurkuFinland
| | - Jesús Jiménez‐Barbero
- Chemical Glycobiology LaboratoryCIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Ikerbasque, Basque Foundation for SciencePlaza Euskadi 548009BilbaoSpain
- Department of Organic & Inorganic ChemistryUniversity of the Basque Country, UPV/EHU48940LeioaBizkaiaSpain
| | - Reko Leino
- Laboratory of Molecular Science and EngineeringÅbo Akademi University20500TurkuFinland
| |
Collapse
|
15
|
Civera M, Moroni E, Sorrentino L, Vasile F, Sattin S. Chemical and Biophysical Approaches to Allosteric Modulation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Civera
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche Giulio Natta, SCITEC Via Mario Bianco 9 20131 Milan Italy
| | - Luca Sorrentino
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Francesca Vasile
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
16
|
Pappalardo JS, Salmaso S, Levchenko TS, Mastrotto F, Bersani S, Langellotti CA, Vermeulen M, Ghersa F, Quattrocchi V, Zamorano PI, Hartner WC, Toniutti M, Musacchio T, Torchilin VP. Characterization of a Nanovaccine Platform Based on an α1,2-Mannobiose Derivative Shows Species-non-specific Targeting to Human, Bovine, Mouse, and Teleost Fish Dendritic Cells. Mol Pharm 2021; 18:2540-2555. [PMID: 34106726 DOI: 10.1021/acs.molpharmaceut.1c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.
Collapse
Affiliation(s)
- Juan Sebastian Pappalardo
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Tatyana S Levchenko
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Sara Bersani
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo, 5, Padova 35121, Padova, Italy
| | - Cecilia A Langellotti
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - Monica Vermeulen
- National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina.,Institute of Experimental Medicine (IMEX, ANM-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, Ciudad de Buenos Aires C1425AUM, Argentina
| | - Federica Ghersa
- Veterinary Nanomedicine Group, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), EEA Bariloche, Instituto Nacional de Tecnología Agropecuaria, Bote Modesta Victoria 4450, San Carlos de Bariloche, Río Negro R8403DVZ, Argentina.,Parasitology Laboratory, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNCo-CONICET) Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro R8400FRF, Argentina
| | - Valeria Quattrocchi
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina
| | - Patricia I Zamorano
- Immunology and Immunomodulators Group, Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), IV, Instituto Nacional de Tecnología Agropecuaria, Nicolás Repetto 2799, William Morris, Buenos Aires B1681FUU, Argentina.,National Council of Scientific and Technical Research (CONICET), Avenida Rivadavia 1917, Ciudad de Buenos Aires C1033AAJ, Argentina
| | - William C Hartner
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Micaela Toniutti
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Tiziana Musacchio
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb) 2021; 57:5111-5126. [PMID: 33977972 DOI: 10.1039/d1cc01281a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DC-SIGN, a lectin discovered two decades ago, plays a relevant role in innate immunity. Since its discovery, it has turned out to be a target for developing antiviral drugs based on carbohydrates due to its participation in the infection process of several pathogens. A plethora of carbohydrate multivalent systems using different scaffolds have been described to achieve this goal. Our group has made significant contributions to this field, which are revised herein.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
18
|
Di Pietro S, Bordoni V, Iacopini D, Achilli S, Pineschi M, Thépaut M, Fieschi F, Crotti P, Di Bussolo V. New lipophilic glycomimetic DC-SIGN ligands: Stereoselective synthesis and SPR-based binding inhibition assays. Bioorg Chem 2020; 107:104566. [PMID: 33387733 DOI: 10.1016/j.bioorg.2020.104566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
The design and synthesis of efficient ligands for DC-SIGN is a topic of high interest, because this C-type lectin has been implicated in the early stages of many infection processes. DC-SIGN membrane-protein presents four carbohydrate-binding domains (CRD) that specifically recognize mannose and fucose. Therefore, antagonists of minimal disaccharide epitope Manα(1,2)Man, represent potentially interesting antibacterial and antiviral agents. In the recent past, we were able to develop efficient antagonists, mimics of the natural moiety, characterized by the presence of a real d-carbamannose unit which confers greater stability to enzymatic breakdown than the corresponding natural disaccharide ligand. Herein, we present the challenging stereoselective synthesis of four new amino or azide glycomimetic DC-SIGN antagonists with attractive orthogonal lipophilic substituents in C(3), C(4) or C(6) positions of the real carba unit, which were expected to establish crucial interactions with lipophilic areas of DC-SIGN CRD. The activity of the new ligands was evaluated by SPR binding inhibition assays. The interesting results obtained, allow to acquire important information about the influence of the lipophilic substituents present in specific positions of the carba scaffold. Furthermore, C(6) benzyl C(4) tosylamide pseudodisaccharide displayed a good affinity for DC-SIGN with a more favorable IC50 value than those of the previously described real carba-analogues. This study provides valuable knowledge for the implementation of further structural modifications towards improved inhibitors.
Collapse
Affiliation(s)
- Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy.
| | - Vittorio Bordoni
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Dalila Iacopini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56125 Pisa, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Mauro Pineschi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Paolo Crotti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56125 Pisa, Italy.
| |
Collapse
|
19
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
20
|
Pham J, Hernandez A, Cioce A, Achilli S, Goti G, Vivès C, Thepaut M, Bernardi A, Fieschi F, Reichardt NC. Chemo-Enzymatic Synthesis of S. mansoni O-Glycans and Their Evaluation as Ligands for C-Type Lectin Receptors MGL, DC-SIGN, and DC-SIGNR. Chemistry 2020; 26:12818-12830. [PMID: 32939912 DOI: 10.1002/chem.202000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.
Collapse
Affiliation(s)
- Julie Pham
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Alvaro Hernandez
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,Asparia Glycomics S.L., Mikeletegi 83, 20009, San Sebastian, Spain
| | - Anna Cioce
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain
| | - Silvia Achilli
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France.,Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 38000, Grenoble, France
| | - Giulio Goti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Michel Thepaut
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Université Grenoble Alpes, 38100, Grenoble, France
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Group, Paseo Miramón 182, 20014, San Sebastian, Spain.,CIBER-BBN, Paseo Miramón 182, 20014, San Sebastian, Spain.,Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, San Sebastian, Spain
| |
Collapse
|
21
|
The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals (Basel) 2020; 13:ph13080179. [PMID: 32759765 PMCID: PMC7463913 DOI: 10.3390/ph13080179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022] Open
Abstract
Fluorinated glycomimetics are frequently employed to study and eventually modulate protein–glycan interactions. However, complex glycans and their glycomimetics may display multiple binding epitopes that enormously complicate the access to a complete picture of the protein–ligand complexes. We herein present a new methodology based on the synergic combination of experimental 19F-based saturation transfer difference (STD) NMR data with computational protocols, applied to analyze the interaction between DC-SIGN, a key lectin involved in inflammation and infection events with the trifluorinated glycomimetic of the trimannoside core, ubiquitous in human glycoproteins. A novel 2D-STD-TOCSYreF NMR experiment was employed to obtain the experimental STD NMR intensities, while the Complete Relaxation Matrix Analysis (CORCEMA-ST) was used to predict that expected for an ensemble of geometries extracted from extensive MD simulations. Then, an in-house built computer program was devised to find the ensemble of structures that provide the best fit between the theoretical and the observed STD data. Remarkably, the experimental STD profiles obtained for the ligand/DC-SIGN complex could not be satisfactorily explained by a single binding mode, but rather with a combination of different modes coexisting in solution. Therefore, the method provides a precise view of those ligand–receptor complexes present in solution.
Collapse
|
22
|
Affiliation(s)
- Anna Bernardi
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
23
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
24
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
25
|
Lectin antagonists in infection, immunity, and inflammation. Curr Opin Chem Biol 2019; 53:51-67. [DOI: 10.1016/j.cbpa.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
|
26
|
Medve L, Achilli S, Guzman‐Caldentey J, Thépaut M, Senaldi L, Le Roy A, Sattin S, Ebel C, Vivès C, Martin‐Santamaria S, Bernardi A, Fieschi F. Enhancing Potency and Selectivity of a DC-SIGN Glycomimetic Ligand by Fragment-Based Design: Structural Basis. Chemistry 2019; 25:14659-14668. [PMID: 31469191 PMCID: PMC6899773 DOI: 10.1002/chem.201903391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Silvia Achilli
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Joan Guzman‐Caldentey
- Department of Structural and Chemical Biology, Centro de Investigaciones BiologicasCIB-CSICC/Ramiro de Maeztu, 928040MadridSpain
| | - Michel Thépaut
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Luca Senaldi
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Aline Le Roy
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Sara Sattin
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Christine Ebel
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Corinne Vivès
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Sonsoles Martin‐Santamaria
- Department of Structural and Chemical Biology, Centro de Investigaciones BiologicasCIB-CSICC/Ramiro de Maeztu, 928040MadridSpain
| | - Anna Bernardi
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Franck Fieschi
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
27
|
Ramos-Soriano J, Reina JJ, Illescas BM, de la Cruz N, Rodríguez-Pérez L, Lasala F, Rojo J, Delgado R, Martín N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J Am Chem Soc 2019; 141:15403-15412. [DOI: 10.1021/jacs.9b08003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Javier Ramos-Soriano
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - José J. Reina
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Beatriz M. Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Noelia de la Cruz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Laura Rodríguez-Pérez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Fátima Lasala
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital, 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanoscience, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
28
|
Wamhoff EC, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger FF, Rademacher J, Hermann M, Del Frari B, van Dalen R, Hartmann D, van Sorge NM, Seitz O, Stoitzner P, Rademacher C. A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS CENTRAL SCIENCE 2019; 5:808-820. [PMID: 31139717 PMCID: PMC6535779 DOI: 10.1021/acscentsci.9b00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 05/30/2023]
Abstract
Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Jessica Schulze
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Lydia Bellmann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Mareike Rentzsch
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gunnar Bachem
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Juliane Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Martin Hermann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Del Frari
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Rob van Dalen
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - David Hartmann
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nina M. van Sorge
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Oliver Seitz
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
29
|
Taouai M, Porkolab V, Chakroun K, Cheneau C, Luczkowiak J, Abidi R, Lesur D, Cragg PJ, Halary F, Delgado R, Fieschi F, Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola cis-Cell Infection and HCMV-gB Glycoprotein/DC-SIGN C-type Lectin Interaction. Bioconjug Chem 2019; 30:1114-1126. [DOI: 10.1021/acs.bioconjchem.9b00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Coraline Cheneau
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - David Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Franck Halary
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| |
Collapse
|
30
|
Wen HC, Lin CH, Huang JS, Tsai CL, Chen TF, Wang SK. Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem Commun (Camb) 2019; 55:9124-9127. [PMID: 31298664 DOI: 10.1039/c9cc03124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DC-SIGN and langerin receptors both bind to oligomannose but lead to opposite effects upon encountering HIV. Because selective targeting of DC-SIGN can lead to anti-viral effects, we developed a glycoconjugate, which provides over 4800-fold selectivity for DC-SIGN over langerin, by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold.
Collapse
Affiliation(s)
- Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Schulze J, Baukmann H, Wawrzinek R, Fuchsberger FF, Specker E, Aretz J, Nazaré M, Rademacher C. CellFy: A Cell-Based Fragment Screen against C-Type Lectins. ACS Chem Biol 2018; 13:3229-3235. [PMID: 30480432 DOI: 10.1021/acschembio.8b00875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fragment-based drug discovery is a powerful complement to conventional high-throughput screening, especially for difficult targets. Screening low-molecular-weight fragments usually requires highly sensitive biophysical methods, because of the generally low affinity of the identified ligands. Here, we developed a cell-based fragment screening assay (cellFy) that allows sensitive identification of fragment hits in a physiologically more relevant environment, in contrast to isolated target screenings in solution. For this, a fluorescently labeled multivalent reporter was employed, enabling direct measurement of displacement by low-molecular-weight fragments without requiring enzymatic reactions or receptor activation. We applied this technique to identify hits against two challenging targets of the C-type lectin receptor (CLR) family: Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN) and Langerin. Both receptors are involved in pathogen recognition and initiation of an immune response, which renders them attractive targets for immune modulation. Because of their shallow and hydrophilic primary binding site, hit identification for CLRs is challenging and druglike ligands for CLRs are sparse. Screening of a fragment library followed by hit validation identified several promising candidates for further fragment evolution for DC-SIGN. In addition, a multiplexed assay format was developed for simultaneous screening against multiple CLRs, allowing a selectivity counterscreening. Overall, this sensitive cell-based fragment screening assay provides a powerful tool for rapid identification of bioactive fragments, even for difficult targets.
Collapse
Affiliation(s)
- Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Felix F. Fuchsberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Medve L, Achilli S, Serna S, Zuccotto F, Varga N, Thépaut M, Civera M, Vivès C, Fieschi F, Reichardt N, Bernardi A. On-Chip Screening of a Glycomimetic Library with C-Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectin-2 over DC-SIGN/R and Langerin. Chemistry 2018; 24:14448-14460. [PMID: 29975429 PMCID: PMC6220942 DOI: 10.1002/chem.201802577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/03/2018] [Indexed: 12/11/2022]
Abstract
A library of mannose‐ and fucose‐based glycomimetics was synthesized and screened in a microarray format against a set of C‐type lectin receptors (CLRs) that included DC‐SIGN, DC‐SIGNR, langerin, and dectin‐2. Glycomimetic ligands able to interact with dectin‐2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Sonia Serna
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | | | - Norbert Varga
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Niels Reichardt
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain.,CIBER-BBN, 20014, Donostia-San Sebastián, Spain
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
33
|
Calloni I, Unione L, Jiménez-Osés G, Corzana F, Del Bino L, Corrado A, Pitirollo O, Colombo C, Lay L, Adamo R, Jiménez-Barbero J. The Conformation of the Mannopyranosyl Phosphate Repeating Unit of the Capsular Polysaccharide of Neisseria meningitidis Serogroup A and Its Carba-Mimetic. European J Org Chem 2018; 2018:4548-4555. [PMID: 30443159 PMCID: PMC6220853 DOI: 10.1002/ejoc.201801003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/07/2022]
Abstract
Neisseria meningitidis serogroup A (MenA) is an aerobic diplococcal Gram-negative bacterium responsible for epidemic meningitis disease. Its capsular polysaccharide (CPS) has been identified as the primary virulence factor of MenA. This polysaccharide suffers from chemical lability in water. Thus, the design and synthesis of novel and hydrolytically stable structural analogues of MenA CPS may provide additional tools for the development of therapies against this disease. In this context, the structural features of the natural phosphorylated monomer have been analyzed and compared to those of its carba-analogue, where the endocyclic oxygen has been replaced by a methylene moiety. The lowest energy geometries of the different molecules have been calculated using a combination of quantum mechanical techniques and molecular dynamics simulations. The predicted results have been compared and validated using NMR experiments. The results indicate that the more stable designed glycomimetics may adopt the conformation adopted by the natural monomer, although they display a wider flexibility around the torsional degrees of freedom.
Collapse
Affiliation(s)
- Ilaria Calloni
- Chemical Glycobiology Lab CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Spain.,Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV Leioa Spain
| | - Luca Unione
- Atlas Molecular Pharma Bizkaia Technology Park, Building 800 48160 Derio Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Quimica Universidad de la Rioja Centro Científico Tecnológico Spain
| | - Francisco Corzana
- Departamento de Quimica Universidad de la Rioja Centro Científico Tecnológico Spain
| | | | - Alessio Corrado
- Glycobiology Lab GSK Via Fiorentina 10 Siena Italy.,Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Olimpia Pitirollo
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Cinzia Colombo
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | - Luigi Lay
- Department of Chemistry and ISTM_CNR University of Milan Via Golgi 19 20133 Milan Italy
| | | | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab CIC bioGUNE Bizkaia Technology Park, Building 800 48160 Derio Spain.,Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV Leioa Spain.,Basque Foundation for Science (IKERBASQUE) 48009 Bilbao Spain
| |
Collapse
|
34
|
Nieto PM. The Use of NMR to Study Transient Carbohydrate-Protein Interactions. Front Mol Biosci 2018; 5:33. [PMID: 29696146 PMCID: PMC5904382 DOI: 10.3389/fmolb.2018.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Carbohydrates are biologically ubiquitous and are essential to the existence of all known living organisms. Although they are better known for their role as energy sources (glucose/glycogen or starch) or structural elements (chitin or cellulose), carbohydrates also participate in the recognition events of molecular recognition processes. Such interactions with other biomolecules (nucleic acids, proteins, and lipids) are fundamental to life and disease. This review focuses on the application of NMR methods to understand at the atomic level the mechanisms by which sugar molecules can be recognized by proteins to form complexes, creating new entities with different properties to those of the individual component molecules. These processes have recently gained attention as new techniques have been developed, while at the same time old techniques have been reinvented and adapted to address newer emerging problems.
Collapse
Affiliation(s)
- Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Científicas, cicCartuja, CSIC/USE, Seville, Spain
| |
Collapse
|
35
|
Porkolab V, Chabrol E, Varga N, Ordanini S, Sutkevičiu̅tė I, Thépaut M, García-Jiménez MJ, Girard E, Nieto PM, Bernardi A, Fieschi F. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem Biol 2018; 13:600-608. [PMID: 29272097 DOI: 10.1021/acschembio.7b00958] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At the surface of dendritic cells, C-type lectin receptors (CLRs) allow the recognition of carbohydrate-based PAMPS or DAMPS (pathogen- or danger-associated molecular patterns, respectively) and promote immune response regulation. However, some CLRs are hijacked by viral and bacterial pathogens. Thus, the design of ligands able to target specifically one CLR, to either modulate an immune response or to inhibit a given infection mechanism, has great potential value in therapeutic design. A case study is the selective blocking of DC-SIGN, involved notably in HIV trans-infection of T lymphocytes, without interfering with langerin-mediated HIV clearance. This is a challenging task due to their overlapping carbohydrate specificity. Toward the rational design of DC-SIGN selective ligands, we performed a comparative affinity study between DC-SIGN and langerin with natural ligands. We found that GlcNAc is recognized by both CLRs; however, selective sulfation are shown to increase the selectivity in favor of langerin. With the combination of site-directed mutagenesis and X-ray structural analysis of the langerin/GlcNS6S complex, we highlighted that 6-sulfation of the carbohydrate ligand induced langerin specificity. Additionally, the K313 residue from langerin was identified as a critical feature of its binding site. Using a rational and a differential approach in the study of CLR binding sites, we designed, synthesized, and characterized a new glycomimetic, which is highly specific for DC-SIGN vs langerin. STD NMR, SPR, and ITC characterizations show that compound 7 conserved the overall binding mode of the natural disaccharide while possessing an improved affinity and a strict specificity for DC-SIGN.
Collapse
Affiliation(s)
- Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Chabrol
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Norbert Varga
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Stefania Ordanini
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ieva Sutkevičiu̅tė
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Maria José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pedro M. Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Anna Bernardi
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
36
|
Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist. Bioorg Med Chem 2017; 25:5142-5147. [DOI: 10.1016/j.bmc.2017.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023]
|
37
|
Ordanini S, Goti G, Bernardi A. From optimized monovalent ligands to size-controlled dendrimers: an efficient strategy towards high-activity DC-SIGN antagonists. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This short review describes our work on the development of dendrimeric antagonists of DC-SIGN, a dendritic cells (DCs) receptor recognizing highly mannosylated structures and primarily involved in the recognition of viruses such as HIV. The structure of pseudo-di-mannoside and pseudo-tri-mannoside compounds was first finely modified to obtain DC-SIGN ligands that were more stable and selective than mannose. Their DC-SIGN affinity differences were amplified once presented on multivalent dendrimer-like scaffolds, including poly-alkyne terminated and phenylene-ethynylene rod-like ones. Libraries of mannosylated dendrimers were synthesized, improving their stability and maximizing their monodispersity. The effect of the dendrimers valency, structure, and size on DC-SIGN affinity and antiviral potency was investigated. Both the valency and the topology of the architectures were revealed as key parameters for activity optimization, together with the intrinsic affinity of the monovalent ligand. The stability, rigidity, and length of the scaffolds were also tuned. The design of geometrically adapted scaffolds afforded one of the most potent inhibitors of DC-SIGN mediated HIV infections to date. This monodispersed, not cytotoxic, and highly active compound was also tested with DCs; its internalization into endolysosomal compartments and its ability to induce the overexpression of signaling molecules makes it a good precursor to produce pathogen-entry inhibitors with immunomodulant properties.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Giulio Goti
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
- Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|
38
|
Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol'skii VA, Seeberger PH, Kaufmann DE, Rademacher C. Identifikation sekundärer Bindestellen auf DC-SIGN mithilfe eines Fragment-Screenings. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas Aretz
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Hannes Baukmann
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Elena Shanina
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Jonas Hanske
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Robert Wawrzinek
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Viktor A. Zapol'skii
- Institut für Organische Chemie; Technische Universität Clausthal; Leibnizstraße 6 38678 Clausthal-Zellerfeld Deutschland
| | - Peter H. Seeberger
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| | - Dieter E. Kaufmann
- Institut für Organische Chemie; Technische Universität Clausthal; Leibnizstraße 6 38678 Clausthal-Zellerfeld Deutschland
| | - Christoph Rademacher
- Abteilung für Biomolekulare Systeme; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; Am Mühlenberg 1 14476 Potsdam Deutschland
- Fachbereich für Biologie, Chemie und Pharmazie; Freie Universität Berlin; Takustraße 3 14195 Berlin Deutschland
| |
Collapse
|
39
|
Aretz J, Baukmann H, Shanina E, Hanske J, Wawrzinek R, Zapol'skii VA, Seeberger PH, Kaufmann DE, Rademacher C. Identification of Multiple Druggable Secondary Sites by Fragment Screening against DC-SIGN. Angew Chem Int Ed Engl 2017; 56:7292-7296. [PMID: 28523851 DOI: 10.1002/anie.201701943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/28/2017] [Indexed: 01/08/2023]
Abstract
DC-SIGN is a cell-surface receptor for several pathogenic threats, such as HIV, Ebola virus, or Mycobacterium tuberculosis. Multiple attempts to develop inhibitors of the underlying carbohydrate-protein interactions have been undertaken in the past fifteen years. Still, drug-like DC-SIGN ligands are sparse, which is most likely due to its hydrophilic, solvent-exposed carbohydrate-binding site. Herein, we report on a parallel fragment screening against DC-SIGN applying SPR and a reporter displacement assay, which complements previous screenings using 19 F NMR spectroscopy and chemical fragment microarrays. Hit validation by SPR and 1 H-15 N HSQC NMR spectroscopy revealed that although no fragment bound in the primary carbohydrate site, five secondary sites are available to harbor drug-like molecules. Building on key interactions of the reported fragment hits, these pockets will be targeted in future approaches to accelerate the development of DC-SIGN inhibitors.
Collapse
Affiliation(s)
- Jonas Aretz
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Hannes Baukmann
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Elena Shanina
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Jonas Hanske
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Robert Wawrzinek
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Viktor A Zapol'skii
- Institut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, 38678, Clausthal-Zellerfeld, Germany
| | - Peter H Seeberger
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Dieter E Kaufmann
- Institut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, 38678, Clausthal-Zellerfeld, Germany
| | - Christoph Rademacher
- Abteilung für Biomolekulare Systeme, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany.,Fachbereich für Biologie, Chemie und Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
40
|
Bertolotti B, Oroszová B, Sutkeviciute I, Kniežo L, Fieschi F, Parkan K, Lovyová Z, Kašáková M, Moravcová J. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr Res 2016; 435:7-18. [DOI: 10.1016/j.carres.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
|
41
|
Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, Pinkner JS, Klein R, Kalas V, Crowley J, Rath NP, Hultgren SJ, Janetka JW. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. J Med Chem 2016; 59:9390-9408. [PMID: 27689912 PMCID: PMC5087331 DOI: 10.1021/acs.jmedchem.6b00948] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Gram-negative
uropathogenic Escherichia coli (UPEC)
bacteria are a causative pathogen of urinary tract infections
(UTIs). Previously developed antivirulence inhibitors of the type
1 pilus adhesin, FimH, demonstrated oral activity in animal models
of UTI but were found to have limited compound exposure due to the
metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having
the O-glycosidic bond replaced with carbon linkages
had improved stability and inhibitory activity against FimH. We report
on the design, synthesis, and in vivo evaluation of this promising
new class of carbon-linked C-mannosides that show
improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically
modulated by hydroxyl substitution on the methylene linker, where
the R-hydroxy isomer has a 60-fold increase in potency.
This new class of C-mannoside antagonists have significantly
increased compound exposure and, as a result, enhanced efficacy in
mouse models of acute and chronic UTI.
Collapse
Affiliation(s)
| | - Zachary Cusumano
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | - Thomas Hannan
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | | | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri , Saint Louis, Missouri 63121 United States
| | - Scott J Hultgren
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | - James W Janetka
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| |
Collapse
|
42
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
43
|
Sattin S, Bernardi A. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends Biotechnol 2016; 34:483-495. [DOI: 10.1016/j.tibtech.2016.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/31/2022]
|
44
|
Bordoni V, Porkolab V, Sattin S, Thépaut M, Frau I, Favero L, Crotti P, Bernardi A, Fieschi F, Di Bussolo V. Stereoselective innovative synthesis and biological evaluation of new real carba analogues of minimal epitope Manα(1,2)Man as DC-SIGN inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra20401e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stereoselectively synthesized real 1,2 pseudomannobiosides exhibit activities as DC-SIGN inhibitors by means of an SPR technique with potential applications as antiviral agents.
Collapse
Affiliation(s)
| | - Vanessa Porkolab
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- F-38044 Grenoble
| | - Sara Sattin
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- F-38044 Grenoble
| | - Ileana Frau
- Dipartimento di Farmacia
- Università di Pisa
- 56126 Pisa
- Italy
| | - Lucilla Favero
- Dipartimento di Farmacia
- Università di Pisa
- 56126 Pisa
- Italy
| | - Paolo Crotti
- Dipartimento di Farmacia
- Università di Pisa
- 56126 Pisa
- Italy
| | - Anna Bernardi
- Dipartimento di Chimica
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Franck Fieschi
- Univ. Grenoble Alpes
- CNRS
- CEA
- Institut de Biologie Structurale
- F-38044 Grenoble
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56125 Pisa
- Italy
| |
Collapse
|
45
|
Pustylnikov S, Dave RS, Khan ZK, Porkolab V, Rashad AA, Hutchinson M, Fieschi F, Chaiken I, Jain P. Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators. AIDS Res Hum Retroviruses 2016; 32:93-100. [PMID: 26383762 DOI: 10.1089/aid.2015.0184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rajnish S. Dave
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vanessa Porkolab
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Matthew Hutchinson
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Frank Fieschi
- University Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Kotar A, Tomašič T, Lenarčič Živković M, Jug G, Plavec J, Anderluh M. STD NMR and molecular modelling insights into interaction of novel mannose-based ligands with DC-SIGN. Org Biomol Chem 2016; 14:862-75. [DOI: 10.1039/c5ob01916h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
STD-NMR and molecular modelling study of four α-d-mannosides show new contacts in DC-SIGN binding site to help develop potent DC-SIGN antagonists.
Collapse
Affiliation(s)
- Anita Kotar
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | | | - Gregor Jug
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Janez Plavec
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
- EN-FIST Centre of Excellence
| | - Marko Anderluh
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
47
|
Guzzi C, Alfarano P, Sutkeviciute I, Sattin S, Ribeiro-Viana R, Fieschi F, Bernardi A, Weiser J, Rojo J, Angulo J, Nieto PM. Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering. Org Biomol Chem 2016; 14:335-44. [DOI: 10.1039/c5ob02025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple binding modes at the same binding site can explain the higher binding affinity of a pseudotrimannotrioside compared to a pseudomannobioside.
Collapse
Affiliation(s)
- C. Guzzi
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- Dept. of Biotechnology and Biosciences University of Millano-Bicocca Piazza della Scienza 2 20126
- Milan
| | - P. Alfarano
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - I. Sutkeviciute
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - S. Sattin
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - R. Ribeiro-Viana
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - F. Fieschi
- Univ. Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- F-38044 Grenoble
- France
- CNRS
| | - A. Bernardi
- Dipartimento di Chimica
- Universita’ degli Studi di Milano
- 20133 Milano
- Italy
| | - J. Weiser
- Anterio Consult & Research GmbH
- Augustaanlage 23 68165 Mannheim
- Germany
| | - J. Rojo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| | - J. Angulo
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
- School of Pharmacy
- University of East Anglia
| | - P. M. Nieto
- Glycosystems Laboratory. Instituto de Investigaciones Químicas (IIQ)/cicCartuja. CSIC/US
- 41092 Sevilla
- Spain
| |
Collapse
|
48
|
Arsov Z, Švajger U, Mravljak J, Pajk S, Kotar A, Urbančič I, Štrancar J, Anderluh M. Internalization and Accumulation in Dendritic Cells of a Small pH-Activatable Glycomimetic Fluorescent Probe as Revealed by Spectral Detection. Chembiochem 2015; 16:2660-7. [DOI: 10.1002/cbic.201500376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia; Šlajmerjeva 6 1000 Ljubljana Slovenia
| | - Janez Mravljak
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| | - Stane Pajk
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Anita Kotar
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Slovenian NMR Centre; National Institute of Chemistry; Hajdrihova 19 1000 Ljubljana Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
49
|
Sturlese M, Bellanda M, Moro S. NMR-Assisted Molecular Docking Methodologies. Mol Inform 2015; 34:513-25. [DOI: 10.1002/minf.201500012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/24/2015] [Indexed: 11/11/2022]
|
50
|
Jug G, Anderluh M, Tomašič T. Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN. J Mol Model 2015; 21:164. [PMID: 26040678 DOI: 10.1007/s00894-015-2713-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Five docking tools, namely AutoDock, FRED, CDOCKER, FlexX and GOLD, have been critically examined, with the aim of selecting those most appropriate for use as docking tools for docking molecules to the lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This lectin has been selected for its rather non-druggable binding site, which enables complex interactions that guide the binding of the core monosaccharide. Since optimal orientation is crucial for forming coordination bonds, it was important to assess whether the selected docking tools could reproduce the optimal binding conformation for several oligosaccharides that are known to bind DC-SIGN. Our results show that even widely used docking programs have certain limitations when faced with a rather shallow and featureless binding site, as is the case of DC-SIGN. The FRED docking software (OpenEye Scientific Software, Inc.) was found to score as the best tool for docking ligands to DC-SIGN. The performance of FRED was further assessed on another lectin, Langerin. We have demonstrated that this validated docking protocol could be used for docking to other lectins similar to DC-SIGN.
Collapse
Affiliation(s)
- Gregor Jug
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|