1
|
Patra K, Brennessel WW, Matson EM. Molecular Models of Atomically Dispersed Uranium at MoS 2 Surfaces Reveal Cooperative Mechanism of Water Reduction. J Am Chem Soc 2024; 146:20147-20157. [PMID: 38984489 PMCID: PMC11273346 DOI: 10.1021/jacs.4c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Single atoms of uranium supported on molybdenum sulfide surfaces (U@MoS2) have been recently demonstrated to facilitate the hydrogen evolution reaction (HER) through electrocatalysis. Theoretical calculations have predicted uranium hydroxide moieties bound to edge-sulfur atoms of MoS2 as a proposed transition state involved in the HER process. However, the isolation of relevant intermediates involved in this process remains a challenge, rendering mechanistic hypotheses unverified. The present work describes the isolation and characterization of a uranium-hydroxide intermediate on molybdenum sulfide surfaces using [(Cp*3Mo3S4)UCp*], a molecular model of a reduced uranium center supported at MoS2. Mechanistic investigations highlight the metalloligand cooperativity with uranium involved in the water activation pathway. The corresponding uranium-oxo analogue, [(Cp*3Mo3S4)Cp*U(═O)], was also accessed from the hydroxide cluster via hydrogen atom transfer and from [(Cp*3Mo3S4)UCp*] through an alternative direct oxygen atom transfer. These results provide an atomistic perspective on the reactivity of low-valent uranium at molybdenum sulfide surfaces toward water, modeling key intermediates associated with the HER of U@MoS2 catalysts.
Collapse
Affiliation(s)
- Kamaless Patra
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Du J, Dollberg K, Seed JA, Wooles AJ, von Hänisch C, Liddle ST. Thorium(IV)-antimony complexes exhibiting single, double, and triple polar covalent metal-metal bonds. Nat Chem 2024; 16:780-790. [PMID: 38378948 DOI: 10.1038/s41557-024-01448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
There is continued burgeoning interest in metal-metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal-metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal-metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium-antimony bonds, thus introducing polar covalent actinide-metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Marburg, Germany.
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Yao YR, Zhao J, Meng Q, Hu HS, Guo M, Yan Y, Zhuang J, Yang S, Fortier S, Echegoyen L, Schwarz WHE, Li J, Chen N. Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. J Am Chem Soc 2023; 145:25440-25449. [PMID: 37955678 DOI: 10.1021/jacs.3c10042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.
Collapse
Affiliation(s)
- Yang-Rong Yao
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Qingyu Meng
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Min Guo
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yingjing Yan
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiaxin Zhuang
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shangfeng Yang
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis Echegoyen
- Institut Catalá d'Investigació Química, Ave. Països Catalans 16, 43007 Tarragona, Spain
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - W H Eugen Schwarz
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, Siegen 57068, Germany
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of the Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science & State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Deng C, Liang J, Sun R, Wang Y, Fu PX, Wang BW, Gao S, Huang W. Accessing five oxidation states of uranium in a retained ligand framework. Nat Commun 2023; 14:4657. [PMID: 37537160 PMCID: PMC10400547 DOI: 10.1038/s41467-023-40403-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Understanding and exploiting the redox properties of uranium is of great importance because uranium has a wide range of possible oxidation states and holds great potential for small molecule activation and catalysis. However, it remains challenging to stabilise both low and high-valent uranium ions in a preserved ligand environment. Herein we report the synthesis and characterisation of a series of uranium(II-VI) complexes supported by a tripodal tris(amido)arene ligand. In addition, one- or two-electron redox transformations could be achieved with these compounds. Moreover, combined experimental and theoretical studies unveiled that the ambiphilic uranium-arene interactions are the key to balance the stabilisation of low and high-valent uranium, with the anchoring arene acting as a δ acceptor or a π donor. Our results reinforce the design strategy to incorporate metal-arene interactions in stabilising multiple oxidation states, and open up new avenues to explore the redox chemistry of uranium.
Collapse
Affiliation(s)
- Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peng-Xiang Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
5
|
Li T, Wang D, Heng Y, Hou G, Zi G, Ding W, Walter MD. A Comprehensive Study Concerning the Synthesis, Structure, and Reactivity of Terminal Uranium Oxido, Sulfido, and Selenido Metallocenes. J Am Chem Soc 2023. [PMID: 37376858 DOI: 10.1021/jacs.3c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Terminal uranium oxido, sulfido, and selenido metallocenes were synthesized, and their reactivity was comprehensively studied. Heating of an equimolar mixture of [η5-1,2,4-(Me3Si)3C5H2]2UMe2 (2) and [η5-1,2,4-(Me3Si)3C5H2]2U(NH-p-tolyl)2 (3) in the presence of 4-dimethylaminopyridine (dmap) in refluxing toluene forms [η5-1,2,4-(Me3Si)3C5H2]2U═N(p-tolyl)(dmap) (4), which is a useful precursor for the preparation of the terminal uranium oxido, sulfido, and selenido metallocenes [η5-1,2,4-(Me3Si)3C5H2]2U═E(dmap) (E = O (5), S (6), Se (7)) employing a cycloaddition-elimination methodology with Ph2C═E (E = O, S) or (p-MeOPh)2CSe, respectively. Metallocenes 5-7 are inert toward alkynes, but they act as nucleophiles in the presence of alkylsilyl halides. The oxido and sulfido metallocenes 5 and 6 undergo [2 + 2] cycloadditions with isothiocyanate PhNCS or CS2, while the selenido derivative 7 does not. The experimental studies are complemented by density functional theory (DFT) computations.
Collapse
Affiliation(s)
- Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universitüt Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Löffler ST, Hümmer J, Scheurer A, Heinemann FW, Meyer K. Unprecedented pairs of uranium (iv/v) hydroxido and (iv/v/vi) oxido complexes supported by a seven-coordinate cyclen-anchored tris-aryloxide ligand. Chem Sci 2022; 13:11341-11351. [PMID: 36320575 PMCID: PMC9533418 DOI: 10.1039/d2sc02736d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/30/2022] [Indexed: 08/05/2023] Open
Abstract
We present the synthesis and reactivity of a newly developed, cyclen-based tris-aryloxide ligand precursor, namely cyclen(Me)( t-Bu,t-BuArOH)3, and its coordination chemistry to uranium. The corresponding uranium(iii) complex [UIII((OAr t-Bu,t-Bu)3(Me)cyclen)] (1) was characterized by 1H NMR analysis, CHN elemental analysis and UV/vis/NIR electronic absorption spectroscopy. Since no single-crystals suitable for X-ray diffraction analysis could be obtained from this precursor, 1 was oxidized with methylene chloride or silver fluoride to yield [(cyclen(Me)( t-Bu,t-BuArO)3)UIV(X)] (X = Cl (2), F (3)), which were unambiguously characterized and successfully crystallized to gain insight into the molecular structure by single-crystal X-ray diffraction analysis (SC-XRD). Further, the activation of H2O and N2O by 1 is presented, resulting in the U(iv) complex [(cyclen(Me)( t-Bu,t-BuArO)3)UIV(OH)] (4) and the U(v) complex [(cyclen(Me)( t-Bu,t-BuArO)3)UV(O)] (6). Complexes 2, 3, 4, and 6 were characterized by 1H NMR analysis, CHN elemental analysis, UV/vis/NIR electronic absorption spectroscopy, IR vibrational spectroscopy, and SQUID magnetization measurements as well as cyclic voltammetry. Furthermore, chemical oxidation of 3, 4, and 6 with AgF or AgSbF6 was achieved leading to complexes [(cyclen(Me)( t-Bu,t-BuArO)3)UV(F)2] (5), [(cyclen(Me)( t-Bu,t-BuArO)3)UV(OH)][SbF6] (7), and [(cyclen(Me)( t-Bu,t-BuArO)3)UVI(O)][SbF6] (8). Finally, reduction of 7 with KC8 yielded a U(iv) complex, spectroscopically and magnetochemically identified as K[(cyclen(Me)( t-Bu,t-BuArO)3)UIV(O)].
Collapse
Affiliation(s)
- Sascha T Löffler
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| | - Julian Hümmer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy Inorganic Chemistry Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
7
|
Rupasinghe DMRYP, Baxter MR, Gupta H, Poore AT, Higgins RF, Zeller M, Tian S, Schelter EJ, Bart SC. Actinide-Oxygen Multiple Bonds from Air: Synthesis and Characterization of a Thorium Oxo Supported by Redox-Active Ligands. J Am Chem Soc 2022; 144:17423-17431. [PMID: 36122408 DOI: 10.1021/jacs.2c04947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first non-uranyl, f-element oxo complex synthesized from dioxygen in dry air is presented in this work. The synthesis was accomplished by treating the redox-active thorium amidophenolate complex, [Th(dippap)3][K(15-c-5)2]2 (1-ap crown), with dioxygen in dry air, forming a rare terminal thorium oxo, [O═Th(dippisq)2(dippap)][K(15-c-5)2]2 (2-oxo). Compound 1-ap crown was regenerated by treating 2-oxo with potassium graphite. X-ray crystallography of 2-oxo revealed a comparatively longer bond length for the thorium-oxygen double bond when compared to other thorium oxos. As such, several thorium-oxygen single bonds were synthesized for comparison, including Th(dippisq)2(OSiMe3)2(THF) (4-OSiMe3), Th(OSiMe3)4(bipy)2 (5-OSiMe3), and [Th(OH)2 (dippHap)4][K(15-c-5)2]2 (6-OH). Full spectroscopic and structural characterization of the complexes was performed via 1H NMR spectroscopy, X-ray crystallography, EPR spectroscopy, and electronic absorption spectroscopy as well as SQUID magnetometry, which all confirmed the electronic structure of these complexes.
Collapse
Affiliation(s)
- D M Ramitha Y P Rupasinghe
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Makayla R Baxter
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Himanshu Gupta
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Andrew T Poore
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert F Higgins
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shiliang Tian
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Zatsepin P, Kim JH, Gau MR, Carroll PJ, Pudasaini B, Baik MH, Mindiola DJ. Ditelluride, Terminal Tellurido, and Bis(tellurido) Motifs of Titanium. J Am Chem Soc 2022; 144:13066-13070. [PMID: 35833652 DOI: 10.1021/jacs.2c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly modular and rational syntheses of titanium compounds containing ditelluride, terminal telluride, and bis(telluride) structural motifs are disclosed in this study. Titanate anions bearing two cis and terminal telluride functionalities bound to the same metal center represent a unique example of a group 4 transition metal bis(chalcogenide) ion and are accessed in a simple, single-step procedure from Ti(III) bis(alkyl) complexes in the presence of an outer-sphere reductant and at least 3 equiv of Te0 powder. These compounds have been characterized crystallographically and spectroscopically with some preliminary reactivity reported for the anionic Ti(═Te)2 motif. We also report solution 125Te NMR spectral data in addition to theoretical studies addressing the bonding and structure for these titanate bis(tellurido) systems.
Collapse
Affiliation(s)
- Pavel Zatsepin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Evidence for ligand- and solvent-induced disproportionation of uranium(IV). Nat Commun 2021; 12:4832. [PMID: 34376682 PMCID: PMC8355312 DOI: 10.1038/s41467-021-25151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Disproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.
Collapse
|
10
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
11
|
Yu J, Liu K, Wu Q, Li B, Kong X, Hu K, Mei L, Yuan L, Chai Z, Shi W. Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jipan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Qunyan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Bin Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Xianghe Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Kongqiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhifang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Institute of Industrial Technology Chinese Academy of Sciences, Ningbo Zhejiang 315201 China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Anomalous magnetism of uranium(IV)-oxo and -imido complexes reveals unusual doubly degenerate electronic ground states. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Boronski JT, Seed JA, Wooles AJ, Liddle ST. Fragmentation, catenation, and direct functionalisation of white phosphorus by a uranium(IV)-silyl-phosphino-carbene complex. Chem Commun (Camb) 2021; 57:5090-5093. [PMID: 33899851 DOI: 10.1039/d1cc01741a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Room temperature reaction of the uranium(iv)-carbene [U{C(SiMe3)(PPh2)}(BIPMTMS)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5]2 (1, BIPMTMS = C(PPh2NSiMe3)2) with white phosphorus (P4) produces the organo-P5 compound [P5{C(SiMe3)(PPh2)}2][Li(TMEDA)2] (2) and the uranium(iv)-methanediide [U{BIPMTMS}{Cl}{μ-Cl}2{Li(TMEDA)}] (3). This is an unprecedented example of cooperative metal-carbene P4 activation/insertion into a metal-carbon double bond and also an actinide complex reacting with P4 to directly form an organophosphorus species. Conducting the reaction at low temperature permits the isolation of the diuranium(iv) complex [{U(BIPMTMS)([μ-η2:η2-P2]C[SiMe3][PPh2])}2] (4), which then converts to 2 and 3. Thus, surprisingly, in contrast to all other actinide P4 reactivity, although this reaction produces catenation overall it proceeds via P4 cleavage to functionalised P2 units. Hence, this work establishes a proof of concept synthetic cycle for direct fragmentation, catenation, and functionalisation of P4.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
14
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium‐Ylide Ph
3
As=CH
2
and a Uranium(IV) Arsonium–Carbene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John A. Seed
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Helen R. Sharpe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Harry J. Futcher
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
15
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium-Ylide Ph 3 As=CH 2 and a Uranium(IV) Arsonium-Carbene Complex. Angew Chem Int Ed Engl 2020; 59:15870-15874. [PMID: 32484980 DOI: 10.1002/anie.202004983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Indexed: 11/11/2022]
Abstract
Treatment of [Ph3 EMe][I] with [Na{N(SiMe3 )2 }] affords the ylides [Ph3 E=CH2 ] (E=As, 1As; P, 1P). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P, confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+ -C- dipolar resonance form (sp3 -C) over the E=C ene π-bonded form (sp2 -C), as group 15 is descended. The uranium(IV)-cyclometallate complex [U{N(CH2 CH2 NSiPri 3 )2 (CH2 CH2 SiPri 2 CH(Me)CH2 )}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS )(CHEPh3 )] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ; E=As, 2As; P, 2P), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U-C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U-C distance is found for 2As than 2P, consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.
Collapse
Affiliation(s)
- John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Helen R Sharpe
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Harry J Futcher
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
16
|
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry; The University of Manchester; Oxford Road M13 9PL Manchester UK
| | - Stephen T. Liddle
- Department of Chemistry; The University of Manchester; Oxford Road M13 9PL Manchester UK
| |
Collapse
|
17
|
Waldschmidt P, Hoerger CJ, Riedhammer J, Heinemann FW, Hauser CT, Meyer K. CO 2 Activation with Formation of Uranium Carbonate Complexes in a Closed Synthetic Cycle. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Waldschmidt
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Christopher J. Hoerger
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Judith Riedhammer
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Christina T. Hauser
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Feng G, McCabe KN, Wang S, Maron L, Zhu C. Construction of heterometallic clusters with multiple uranium-metal bonds by using dianionic nitrogen-phosphorus ligands. Chem Sci 2020; 11:7585-7592. [PMID: 34094135 PMCID: PMC8152682 DOI: 10.1039/d0sc00389a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Compared with the prevalent metal–metal bond in transition metals, examples of the actinide–metal bond in heterometallic clusters are rare. Herein, a series of heterometallic clusters with multiple uranium–metal bonds has been prepared based on two newly synthesized nitrogen–phosphorus ligands L1 {O[(CH2)2NHP(iPr)2]2} and L2 {[CH2O(CH2)2NHP(iPr)2]2}. Different P–P distances, 6.069 and 4.464 Å, are observed in the corresponding uranium complexes 1 {O[(CH2)2NP(iPr)2]2UCl2} and 2 {[CH2O(CH2)2NP(iPr)2]2UCl2}, respectively, and lead to the different coordination modes with transition metals. The reactions of zero-valent group 10 metal compounds with complex 1 generate heterometallic clusters (3-U2Ni2 and 4-U2Pd2) featuring four uranium–metal bonds; whereas reactions with 2 afford one-dimensional metal-chain 5-(UNi)n, bimetallic species 6-UPd, and a tri-platinum bridged diuranium molecular cluster 7-U2Pt3. Complex 5-(UNi)n represents the first infinite chain containing the U–M bond and 7-U2Pt3 is the first species with multiple U–Pt bonds. This study further highlights the important role of ligands in the construction of multiple uranium–metal bonds and may allow the synthesis of novel d–f heterometallic clusters and the investigation of their applications in catalysis and small-molecule activation. Compared with the prevalent metal–metal bond in transition metals, examples of the actinide–metal bond in heterometallic clusters are rare.![]()
Collapse
Affiliation(s)
- Genfeng Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing China
| | - Karl N McCabe
- LPCNO, CNRS & INSA, Université Paul Sabatier 135 Avenue de Rangueil Toulouse France
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University Suzhou China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier 135 Avenue de Rangueil Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing China
| |
Collapse
|
19
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
20
|
Boronski JT, Doyle LR, Seed JA, Wooles AJ, Liddle ST. f-Element Half-Sandwich Complexes: A Tetrasilylcyclobutadienyl-Uranium(IV)-Tris(tetrahydroborate) Anion Pianostool Complex. Angew Chem Int Ed Engl 2019; 59:295-299. [PMID: 31724808 DOI: 10.1002/anie.201913640] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Despite there being numerous examples of f-element compounds supported by cyclopentadienyl, arene, cycloheptatrienyl, and cyclooctatetraenyl ligands (C5-8 ), cyclobutadienyl (C4 ) complexes remain exceedingly rare. Here, we report that reaction of [Li2 {C4 (SiMe3 )4 }(THF)2 ] (1) with [U(BH4 )3 (THF)2 ] (2) gives the pianostool complex [U{C4 (SiMe3 )4 }(BH4 )3 ][Li(THF)4 ] (3), where use of a borohydride and preformed C4 -unit circumvents difficulties in product isolation and closing a C4 -ring at uranium. Complex 3 is an unprecedented example of an f-element half-sandwich cyclobutadienyl complex, and it is only the second example of an actinide-cyclobutadienyl complex, the other being an inverse-sandwich. The U-C distances are short (av. 2.513 Å), reflecting the formal 2- charge of the C4 -unit, and the SiMe3 groups are displaced from the C4 -plane, which we propose maximises U-C4 orbital overlap. DFT calculations identify two quasi-degenerate U-C4 π-bonds utilising the ψ2 and ψ3 molecular orbitals of the C4 -unit, but the potential δ-bond using the ψ4 orbital is vacant.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Laurence R Doyle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
21
|
Boronski JT, Doyle LR, Seed JA, Wooles AJ, Liddle ST. f‐Element Half‐Sandwich Complexes: A Tetrasilylcyclobutadienyl–Uranium(IV)–Tris(tetrahydroborate) Anion Pianostool Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Laurence R. Doyle
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A. Seed
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
22
|
Barluzzi L, Falcone M, Mazzanti M. Small molecule activation by multimetallic uranium complexes supported by siloxide ligands. Chem Commun (Camb) 2019; 55:13031-13047. [PMID: 31608910 DOI: 10.1039/c9cc05605j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and reactivity of uranium compounds supported by the tris-tert-butoxysiloxide ligand is surveyed. The multiple binding modes of the tert-butoxysiloxide ligand have proven very well suited to stabilize highly reactive homo- and heteropolymetallic complexes of uranium that have shown an unusual high reactivity towards small molecules such as CO2, CS2, chalcogens and azides. Moreover, these ligands have allowed the isolation of dinuclear nitride and oxide bridged complexes of uranium in various oxidation states. The ability of the tris-tert-butoxysiloxide ligands to trap alkali ions in these nitride or oxide complexes leads to unprecedented ligand based and metal based reduction and functionalization of N2, CO, CO2 and H2.
Collapse
Affiliation(s)
- Luciano Barluzzi
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marta Falcone
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Marinella Mazzanti
- I Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Identification of a uranium-rhodium triple bond in a heterometallic cluster. Proc Natl Acad Sci U S A 2019; 116:17654-17658. [PMID: 31427529 DOI: 10.1073/pnas.1904895116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chemistry of d-block metal-metal multiple bonds has been extensively investigated in the past 5 decades. However, the synthesis and characterization of species with f-block metal-metal multiple bonds are significantly more challenging and such species remain extremely rare. Here, we report the identification of a uranium-rhodium triple bond in a heterometallic cluster, which was synthesized under routine conditions. The uranium-rhodium triple-bond length of 2.31 Å in this cluster is only 3% longer than the sum of the covalent triple-bond radii of uranium and rhodium (2.24 Å). Computational studies reveal that the nature of this uranium-rhodium triple bond is 1 covalent bond with 2 rhodium-to-uranium dative bonds. This heterometallic cluster represents a species with f-block metal-metal triple bond structurally authenticated by X-ray diffraction. These studies not only demonstrate the authenticity of the uranium-metal triple bond, but also provide a possibility for the synthesis of other f-block metal-metal multiple bonds. We expect that this work may further our understanding of the bonding between uranium and transition metals, which may help to design new d-f heterometallic catalysts with uranium-metal bonds for small-molecule activation and to promote the utilization of abundant depleted uranium resources.
Collapse
|
24
|
Rosenzweig MW, Hümmer J, Scheurer A, Lamsfus CA, Heinemann FW, Maron L, Mazzanti M, Meyer K. A complete series of uranium(iv) complexes with terminal hydrochalcogenido (EH) and chalcogenido (E) ligands E = O, S, Se, Te. Dalton Trans 2019; 48:10853-10864. [PMID: 30950469 DOI: 10.1039/c9dt00530g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the synthesis and characterization of a complete series of terminal hydrochalcogenido, U-EH, and chalcogenido uranium(iv) complexes, U≡E (with E = O, S, Se, Te), supported by the (Ad,MeArOH)3tacn (1,4,7-tris(3-(1-adamantyl)-5-methyl-2-hydroxybenzyl)-1,4,7-triazacyclononane) ligand system. Reaction of H2E with the trivalent precursor [((Ad,MeArO)3tacn)U] (1) yields the corresponding uranium(iv) hydrochalcogenido complexes [((Ad,MeArO)3tacn)U(EH)] (2). Subsequent deprotonation of the terminal hydrochalcogenido species with KN(SiMe3)2, in the presence of 2.2.2-cryptand, gives access to the uranium(iv) complexes with terminal chalcogenido ligands [K(2.2.2-crypt)][((Ad,MeArO)3tacn)U≡E] (3). In order to study the influence of the varying terminal chalogenido ligands on the overall molecular and electronic structure, all complexes were studied by single-crystal X-ray diffractometry, UV/vis/NIR, electronic absorption, and IR vibrational spectroscopy as well as SQUID magnetometry and computational analyses (DFT, MO, NBO).
Collapse
Affiliation(s)
- Michael W Rosenzweig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Julian Hümmer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Carlos Alvarez Lamsfus
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
| |
Collapse
|
25
|
Tomson NC, Anderson NH, Tondreau AM, Scott BL, Boncella JM. Oxidation of uranium(iv) mixed imido-amido complexes with PhEEPh and to generate uranium(vi) bis(imido) dichalcogenolates, U(NR) 2(EPh) 2(L) 2. Dalton Trans 2019; 48:10865-10873. [PMID: 31049520 DOI: 10.1039/c9dt00680j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work provides new routes for the conversion of U(iv) into U(vi) bis(imido) complexes and offers new information on the manner in which the U(vi) compounds form. Many compounds from the series described by the general formula U(NR)2(EPh)2(L)2 (R = 2,6-diisopropylphenyl, tert-butyl; E = S, Se, Te; L = py, EPh) were synthesized via oxidation of an in situ generated U(iv) amido-imido species with Ph2E2. This synthetic sequence provides a general route into bis(imido) U(vi) chalcogenolate complexes, circumventing the need to perform problematic salt metathesis reactions on U(vi) iodides. Investigation into the speciation of the U(iv) complexes that form prior to oxidation found a significant dependence on the identity of the ancillary ligands, with tBu2bpy forming the isolable imido-(bis)amido complex, U(NDipp)(NHDipp)2(tBu2bpy)2. Together, these data are consistent with the view that the bis(imido) U(vi) motif - much like the uranyl ion, UO22+- is a thermodynamic sink into which simple ligand frameworks are unable to prevent uranium from falling when in the presence of a suitable retinue of imido proligands.
Collapse
Affiliation(s)
- Neil C Tomson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Nickolas H Anderson
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Aaron M Tondreau
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - Brian L Scott
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| | - James M Boncella
- Chemistry Division, Los Alamos National Laboratory, MS J514, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
26
|
Sharma P, Pahls DR, Ramirez BL, Lu CC, Gagliardi L. Multiple Bonds in Uranium-Transition Metal Complexes. Inorg Chem 2019; 58:10139-10147. [PMID: 31329432 DOI: 10.1021/acs.inorgchem.9b01264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel heterobimetallic complexes featuring a uranium atom paired with a first-row transition metal have been computationally predicted and analyzed using density functional theory and multireference wave function based methods. The synthetically inspired metalloligands U{(iPr2PCH2NAr)3tacn} (1) and U(iPr2PCH2NPh)3 (2) are explored in this study. We report the presence of multiple bonds between uranium and chromium, uranium and manganese, and uranium and iron. The calculations predict a 5-fold bonding between uranium and manganese in the UMn(iPr2PCH2NPh)3 complex, which is unprecedented in the literature.
Collapse
|
27
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
28
|
Recent advances in transition metal-mediated transformations of white phosphorus. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Pagano JK, Arney DSJ, Scott BL, Morris DE, Kiplinger JL, Burns CJ. A sulphur and uranium fiesta! Synthesis, structure, and characterization of neutral terminal uranium(vi) monosulphide, uranium(vi) η2-disulphide, and uranium(iv) phosphine sulphide complexes. Dalton Trans 2019; 48:50-57. [DOI: 10.1039/c8dt02932f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new uranium species, (C5Me5)2U(N-2,6-iPr2-C6H3)(S), (C5Me5)2U(N-2,6-iPr2-C6H3)(η2-S2), and (C5Me5)2U(N-2,6-iPr2-C6H3)(SPMe3) have been prepared.
Collapse
|
30
|
Wu W, Rehe D, Hrobárik P, Kornienko AY, Emge TJ, Brennan JG. Molecular Thorium Compounds with Dichalcogenide Ligands: Synthesis, Structure, 77Se NMR Study, and Thermolysis. Inorg Chem 2018; 57:14821-14833. [DOI: 10.1021/acs.inorgchem.8b02555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen Wu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - David Rehe
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anna Y. Kornienko
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| | - John G. Brennan
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
31
|
Wu L, Cao X, Chen X, Fang W, Dolg M. Visible‐Light Photocatalysis of C(sp
3
)‐H Fluorination by the Uranyl Ion: Mechanistic Insights. Angew Chem Int Ed Engl 2018; 57:11812-11816. [DOI: 10.1002/anie.201806554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Liangliang Wu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of EducationDepartment of ChemistryBeijing Normal University Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Xiaoyan Cao
- Theoretical ChemistryUniversity of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of EducationDepartment of ChemistryBeijing Normal University Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of EducationDepartment of ChemistryBeijing Normal University Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Michael Dolg
- Theoretical ChemistryUniversity of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
32
|
Wu L, Cao X, Chen X, Fang W, Dolg M. Photokatalyse der C(sp3
)-H-Fluorierung durch Uranyl mit sichtbarem Licht: Einblicke in den Mechanismus. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangliang Wu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education; Department of Chemistry; Beijing Normal University; Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Xiaoyan Cao
- Theoretische Chemie; Universität zu Köln; Greinstraße 4 50939 Cologne Germany
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education; Department of Chemistry; Beijing Normal University; Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education; Department of Chemistry; Beijing Normal University; Xin-wai-da-jie No. 19 Beijing 100875 China
| | - Michael Dolg
- Theoretische Chemie; Universität zu Köln; Greinstraße 4 50939 Cologne Germany
| |
Collapse
|
33
|
Zhang X, Li W, Feng L, Chen X, Hansen A, Grimme S, Fortier S, Sergentu DC, Duignan TJ, Autschbach J, Wang S, Wang Y, Velkos G, Popov AA, Aghdassi N, Duhm S, Li X, Li J, Echegoyen L, Schwarz WHE, Chen N. A diuranium carbide cluster stabilized inside a C 80 fullerene cage. Nat Commun 2018; 9:2753. [PMID: 30013067 PMCID: PMC6048043 DOI: 10.1038/s41467-018-05210-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/21/2018] [Indexed: 11/23/2022] Open
Abstract
Unsupported non-bridged uranium-carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizing Ih(7)-C80 fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer-Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium-carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80 and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.
Collapse
Affiliation(s)
- Xingxing Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanlu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Lai Feng
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany
| | - Skye Fortier
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Thomas J Duignan
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Shuao Wang
- School of Radiological and Interdisciplinary Sciences & Collaborative Innovation Center of Radiation Medicine of Jiangsu, Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yaofeng Wang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Giorgios Velkos
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Alexey A Popov
- Nanoscale Chemistry, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Nabi Aghdassi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Steffen Duhm
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaohong Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China.
| | - Luis Echegoyen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, 53115, Bonn, Germany.
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
- Physikalische und Theoretische Chemie, Universität Siegen, 57068, Siegen, Germany
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
34
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)-Rhodium(I) Bond with Net Double-Dative Bonding Character. Angew Chem Int Ed Engl 2018; 57:6587-6591. [PMID: 29665209 PMCID: PMC6055764 DOI: 10.1002/anie.201803493] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 11/08/2022]
Abstract
Reaction of [U{C(SiMe3 )(PPh2 )}(BIPM)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5 ]2 (BIPM=C(PPh2 NSiMe3 )2 ; TMEDA=Me2 NCH2 CH2 NMe2 ) with [Rh(μ-Cl)(COD)]2 (COD=cyclooctadiene) affords the heterotrimetallic UIV -RhI2 complex [U(Cl)2 {C(PPh2 NSiMe3 )(PPh[C6 H4 ]NSiMe3 )}{Rh(COD)}{Rh(CH(SiMe3 )(PPh2 )}]. This complex has a very short uranium-rhodium distance, the shortest uranium-rhodium bond on record and the shortest actinide-transition metal bond in terms of formal shortness ratio. Quantum-chemical calculations reveal a remarkable RhI→→ UIV net double dative bond interaction, involving RhI 4dz2 - and 4dxy/xz -type donation into vacant UIV 5f orbitals, resulting in a Wiberg/Nalewajski-Mrozek U-Rh bond order of 1.30/1.44, respectively. Despite being, formally, purely dative, the uranium-rhodium bonding interaction is the most substantial actinide-metal multiple bond yet prepared under conventional experimental conditions, as confirmed by structural, magnetic, and computational analyses.
Collapse
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Philip J. Cobb
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
35
|
Lu E, Boronski JT, Gregson M, Wooles AJ, Liddle ST. Silyl-Phosphino-Carbene Complexes of Uranium(IV). Angew Chem Int Ed Engl 2018; 57:5506-5511. [PMID: 29534326 PMCID: PMC6001699 DOI: 10.1002/anie.201802080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/08/2018] [Indexed: 11/08/2022]
Abstract
Unprecedented silyl-phosphino-carbene complexes of uranium(IV) are presented, where before all covalent actinide-carbon double bonds were stabilised by phosphorus(V) substituents or restricted to matrix isolation experiments. Conversion of [U(BIPMTMS )(Cl)(μ-Cl)2 Li(THF)2 ] (1, BIPMTMS =C(PPh2 NSiMe3 )2 ) into [U(BIPMTMS )(Cl){CH(Ph)(SiMe3 )}] (2), and addition of [Li{CH(SiMe3 )(PPh2 )}(THF)]/Me2 NCH2 CH2 NMe2 (TMEDA) gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5 ]2 (3) by α-hydrogen abstraction. Addition of 2,2,2-cryptand or two equivalents of 4-N,N-dimethylaminopyridine (DMAP) to 3 gave [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(Cl)][Li(2,2,2-cryptand)] (4) or [U{C(SiMe3 )(PPh2 )}(BIPMTMS )(DMAP)2 ] (5). The characterisation data for 3-5 suggest that whilst there is evidence for 3-centre P-C-U π-bonding character, the U=C double bond component is dominant in each case. These U=C bonds are the closest to a true uranium alkylidene yet outside of matrix isolation experiments.
Collapse
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Josef T. Boronski
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
36
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J. Cobb
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
37
|
Lu E, Boronski JT, Gregson M, Wooles AJ, Liddle ST. Silyl-Phosphino-Carbene Complexes of Uranium(IV). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erli Lu
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Josef T. Boronski
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
38
|
Kiernicki JJ, Tatebe CJ, Zeller M, Bart SC. Tailoring the Electronic Structure of Uranium Mono(imido) Species through Ligand Variation. Inorg Chem 2018; 57:1870-1879. [PMID: 29419291 DOI: 10.1021/acs.inorgchem.7b02791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- John J. Kiernicki
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caleb J. Tatebe
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C. Bart
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Mixed sandwich imido complexes of Uranium(V) and Uranium(IV): Synthesis, structure and redox behaviour. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Mullane KC, Cheisson T, Nakamaru-Ogiso E, Manor BC, Carroll PJ, Schelter EJ. Reduction of Carbonyl Groups by Uranium(III) and Formation of a Stable Amide Radical Anion. Chemistry 2018; 24:826-837. [PMID: 28873254 DOI: 10.1002/chem.201703396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 12/25/2022]
Abstract
Methyl benzoate, N,N-dimethylbenzamide, and benzophenone were reduced by UIII [N(SiMe3 )2 ]3 resulting in uranium(IV) products. Reduction of benzophenone lead to UIV [OC⋅Ph2 )][N(SiMe3 )2 ]3 , (1.1) which forms the dinuclear complex, [N(SiMe3 )2 ]3 UIV (OCPhPh-CPh2 O)UIV [N(SiMe3 )2 ]3 (1.2), through coupling of the ketyl radical species upon crystallization. Reaction of N,N-dimethylbenzamide with UIII [N(SiMe3 )2 ]3 resulted in UIV [OC⋅(Ph)(NMe2 )][N(SiMe3 )2 ]3 (2), a uranium(IV) compound and the first example of a charge-separated amide radical. In the case of methyl benzoate, the reduction resulted in UIV (OMe)[N(SiMe3 )2 ]3 (3) and benzaldehyde as the reduced organic fragment. Compound 2 showed the ability to act as a uranium(III) synthon in its reactivity with trimethylsilyl azide, a reaction that yielded UV (=NSiMe3 )[N(SiMe3 )2 ]3 . Additionally, 2 was reduced with potassium graphite resulting in [U(μ-O)[O=C(NMe2 )(Ph)][N(SiMe3 )2 ]2 ]2 (4), a dinuclear uranium compound bridged by oxo ligands. Reduction of 2 in the presence of 15-crown-5 afforded isolation of the mono-oxo compound, [(15-crown-5)2 K][UO[N(SiMe3 )2 ]3 ] (5). The results expand the reduction capabilities of UIII complexes and demonstrate a strategy for isolating novel metal-stabilized radicals.
Collapse
Affiliation(s)
- Kimberly C Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Pennsylvania, 19104, USA
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Pennsylvania, 19104, USA
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, 19104, USA.,Mitochondrial Medicine Center, Children's Hospital of Philadelphia, Pennsylvania, 19104, USA
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Pennsylvania, 19104, USA
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Pennsylvania, 19104, USA
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Pennsylvania, 19104, USA
| |
Collapse
|
41
|
The role of uranium–arene bonding in H2O reduction catalysis. Nat Chem 2017; 10:259-267. [DOI: 10.1038/nchem.2899] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/25/2017] [Indexed: 11/08/2022]
|
42
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017; 56:10495-10500. [PMID: 28677144 PMCID: PMC5577518 DOI: 10.1002/anie.201706002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/11/2022]
Abstract
Reaction of [U(TrenTIPS )(PH2 )] (1, TrenTIPS =N(CH2 CH2 NSiPri3 )3 ) with C6 H5 CH2 K and [U(TrenTIPS )(THF)][BPh4 ] (2) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS )}2 (μ-PH)] (3). Treatment of 3 with C6 H5 CH2 K and two equivalents of benzo-15-crown-5 ether (B15C5) gave the diuranium μ-phosphido complex [{U(TrenTIPS )}2 (μ-P)][K(B15C5)2 ] (4). Alternatively, reaction of [U(TrenTIPS )(PH)][Na(12C4)2 ] (5, 12C4=12-crown-4 ether) with [U{N(CH2 CH2 NSiMe2 But )2 CH2 CH2 NSi(Me)(CH2 )(But )}] (6) produced the diuranium μ-phosphido complex [{U(TrenTIPS )}(μ-P){U(TrenDMBS )}][Na(12C4)2 ] [7, TrenDMBS =N(CH2 CH2 NSiMe2 But )3 ]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.
Collapse
Affiliation(s)
- Thomas M. Rookes
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Benedict M. Gardner
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Floriana Tuna
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
43
|
Kelly RP, Falcone M, Lamsfus CA, Scopelliti R, Maron L, Meyer K, Mazzanti M. Metathesis of a U V imido complex: a route to a terminal U V sulfide. Chem Sci 2017; 8:5319-5328. [PMID: 28970911 PMCID: PMC5607896 DOI: 10.1039/c7sc01111c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 11/21/2022] Open
Abstract
The metathesis reaction of a UV imido complex supported by sterically demanding tris(tert-butoxy)siloxide ligands with CS2 afforded a terminal UV thiocarbonate but metathesis with H2S afforded the first example of a terminal UV sulfide.
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7.
Collapse
Affiliation(s)
- Rory P Kelly
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Marta Falcone
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Carlos Alvarez Lamsfus
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Laurent Maron
- Université de Toulouse et CNRS INSA , UPS , CNRS , UMR 5215 , LPCNO , 135 avenue de Rangueil , 31077 Toulouse , France
| | - Karsten Meyer
- Department of Chemistry and Pharmacy , Inorganic Chemistry , Friedrich-Alexander University Erlangen-Nürnberg , Egerlandstraße 1 , 91058 Erlangen , Germany
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
44
|
Rookes TM, Gardner BM, Balázs G, Gregson M, Tuna F, Wooles AJ, Scheer M, Liddle ST. Crystalline Diuranium Phosphinidiide and μ-Phosphido Complexes with Symmetric and Asymmetric UPU Cores. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas M. Rookes
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Benedict M. Gardner
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Matthew Gregson
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry; University of Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Stephen T. Liddle
- School of Chemistry; The University of Manchester; Oxford Road Manchester M13 9PL UK
| |
Collapse
|
45
|
Gardner BM, King DM, Tuna F, Wooles AJ, Chilton NF, Liddle ST. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with U IV-E-U IV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem Sci 2017; 8:6207-6217. [PMID: 28989654 PMCID: PMC5628351 DOI: 10.1039/c7sc01998j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and characterisation of a family of diuranium(iv)-μ-chalcogenide complexes including a detailed examination of their electronic structures and magnetic behaviours. Treatment of [U(TrenTIPS)] [1, TrenTIPS = N(CH2CH2NSiPri3)3] with Ph3PS, selenium or tellurium affords the diuranium(iv)-sulfide, selenide, and telluride complexes [{U(TrenTIPS)}2(μ-E)] (E = S, 2; Se, 5; Te, 6). Complex 2 is also formed by treatment of [U(TrenTIPS){OP(NMe2)3}] (3) with Ph3PS, whereas treatment of 3 with elemental sulfur gives the diuranium(iv)-persulfido complex [{U(TrenTIPS)}2(μ-η2:η2-S2)] (4). Complexes 2-6 have been variously characterised by single crystal X-ray diffraction, NMR, IR, and optical spectroscopies, room temperature Evans and variable temperature SQUID magnetometry, elemental analyses, and complete active space self consistent field spin orbit calculations. The combined characterisation data present a self-consistent picture of the electronic structure and magnetism of 2, 5, and 6, leading to the conclusion that single-ion crystal field effects, and not diuranium magnetic coupling, are responsible for features in their variable-temperature magnetisation data. The presence of magnetic coupling is often implied and sometimes quantified by such data, and so this study highlights the importance of evaluating other factors, such as crystal field effects, that can produce similar magnetic observables, and to thus avoid misassignments of such phenomena.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - David M King
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| | - Floriana Tuna
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Ashley J Wooles
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Nicholas F Chilton
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Stephen T Liddle
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| |
Collapse
|
46
|
Cross JN, Su J, Batista ER, Cary SK, Evans WJ, Kozimor SA, Mocko V, Scott BL, Stein BW, Windorff CJ, Yang P. Covalency in Americium(III) Hexachloride. J Am Chem Soc 2017; 139:8667-8677. [DOI: 10.1021/jacs.7b03755] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justin N. Cross
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jing Su
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R. Batista
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Samantha K. Cary
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - William J. Evans
- University of California, Irvine, California 92697-2025, United States
| | - Stosh A. Kozimor
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Veronika Mocko
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L. Scott
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin W. Stein
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Cory J. Windorff
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- University of California, Irvine, California 92697-2025, United States
| | - Ping Yang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
47
|
Arnold PL, Stevens CJ, Bell NL, Lord RM, Goldberg JM, Nichol GS, Love JB. Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(iii) borohydride complexes. Chem Sci 2017; 8:3609-3617. [PMID: 30155206 PMCID: PMC6094157 DOI: 10.1039/c7sc00382j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged 'Pacman' ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(μ-BH4)(LA)(THF)2] 1-M, (M = Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(μ-MBH4)(LA)(THF)2] 2-M (OAr = OC6H2t Bu3-2,4,6, M = Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium counter-cation is also incorporated into the cleft through η5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U-U separation compared to the 'ate' complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2- as a ligand in [{U(CS3)}2(μ-κ2:κ2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2- group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(μ-κ2:κ2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2- ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2- complex [{U(OAr)}2(μ-S)(LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Charlotte J Stevens
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Nicola L Bell
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Rianne M Lord
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Jonathan M Goldberg
- Department of Chemistry , University of Washington , Box 351700 , Seattle , WA 98195-1700 , USA
| | - Gary S Nichol
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| | - Jason B Love
- EaStCHEM School of Chemistry , University of Edinburgh , The King's Buildings , Edinburgh EH9 3JF , UK . ; ; ; Tel: +44 (0)131 6505429
| |
Collapse
|
48
|
Gregson M, Lu E, Mills DP, Tuna F, McInnes EJL, Hennig C, Scheinost AC, McMaster J, Lewis W, Blake AJ, Kerridge A, Liddle ST. The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes. Nat Commun 2017; 8:14137. [PMID: 28155857 PMCID: PMC5296655 DOI: 10.1038/ncomms14137] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal-ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inverse-trans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C=M=C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle.
Collapse
Affiliation(s)
- Matthew Gregson
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Erli Lu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - David P. Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Floriana Tuna
- EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Eric J. L. McInnes
- EPSRC National UK EPR Facility, School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Christoph Hennig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, D-01314 Dresden, Germany
- The Rossendorf Beamline, ESRF, BP 220, F-38043 Grenoble, France
| | - Andreas C. Scheinost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, D-01314 Dresden, Germany
- The Rossendorf Beamline, ESRF, BP 220, F-38043 Grenoble, France
| | - Jonathan McMaster
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Stephen T. Liddle
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
49
|
Jin GB, Malliakas CD, Lin J. Thorium copper phosphides: more diverse metal–phosphorus and phosphorus–phosphorus interactions than U analogues. Dalton Trans 2017; 46:12041-12052. [DOI: 10.1039/c7dt02145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new thorium phosphides synthesized through CuI-mediated solid-state reactions exhibit more diverse ion–ion interactions than those in U pnictides.
Collapse
Affiliation(s)
- Geng Bang Jin
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| | - Christos D. Malliakas
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
- Department of Chemistry
| | - Jian Lin
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Argonne
- USA
| |
Collapse
|
50
|
Thorium-phosphorus triamidoamine complexes containing Th-P single- and multiple-bond interactions. Nat Commun 2016; 7:12884. [PMID: 27682617 PMCID: PMC5056418 DOI: 10.1038/ncomms12884] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/09/2016] [Indexed: 11/09/2022] Open
Abstract
Despite the burgeoning field of uranium-ligand multiple bonds, analogous complexes involving other actinides remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, oxygen, sulfur, selenium and tellurium are reported, and no multiple bonds to phosphorus are known, reflecting a general paucity of synthetic methodologies and also problems associated with stabilising these linkages at the large thorium ion. Here we report structurally authenticated examples of a parent thorium(IV)-phosphanide (Th-PH2), a terminal thorium(IV)-phosphinidene (Th=PH), a parent dithorium(IV)-phosphinidiide (Th-P(H)-Th) and a discrete actinide-phosphido complex under ambient conditions (Th=P=Th). Although thorium is traditionally considered to have dominant 6d-orbital contributions to its bonding, contrasting to majority 5f-orbital character for uranium, computational analyses suggests that the bonding of thorium can be more nuanced, in terms of 5f- versus 6d-orbital composition and also significant involvement of the 7s-orbital and how this affects the balance of 5f- versus 6d-orbital bonding character.
Collapse
|