1
|
Yang L, Lalic G. Regio- and Diastereoselective Synthesis of Trisubstituted Alkenes Through Hydroalkylation of Alkynyl Boronamides. Angew Chem Int Ed Engl 2024; 63:e202409429. [PMID: 38972849 DOI: 10.1002/anie.202409429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross-coupling reaction. The result of our exploration is a nickel-catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio- and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α-bromo esters, α-chloro phthalimides, and α-chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates.
Collapse
Affiliation(s)
- Langxuan Yang
- Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA 98195, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Ghosh S, Kumar S, Chakrabortty R, Ganesh V. Regioselective C(sp 3) Carboboration of 1,3-Diynes: A Direct Route to Fully Substituted Enyne Boronates. Org Lett 2024; 26:6574-6579. [PMID: 39074254 DOI: 10.1021/acs.orglett.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we report a general copper-catalyzed C(sp3) carboboration of 1,3-diynes, providing access to an array of tetra-substituted boryl enynes in a regioselective manner. All four positions of enyne can be efficiently manipulated using this methodology. The reaction was smoothly applied in the conjugation of complex bioactive molecules to the enyne scaffold. Cross-coupling reactions were carried out with boron end groups on densely substituted 1,3-enynes, opening avenues for the modular synthesis of highly functionalized enynes. Control experiments and density functional theory studies supported the proposed mechanism.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shailendra Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajesh Chakrabortty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Li Z, Zhao J, Xue W, Tang J, Li S, Ge Y, Xu J, Zheng X, Li R, Chen H, Fu H. Efficient and selective external activator-free cobalt catalyst for hydroboration of terminal alkynes enabled by BiPyPhos. Org Biomol Chem 2024; 22:4455-4460. [PMID: 38764306 DOI: 10.1039/d4ob00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Herein, a robust catalyst system, composed of a bipyridine-based diphosphine ligand (BiPyPhos) and a cobalt precursor Co(acac)2, is successfully developed and applied in the hydroboration of terminal alkynes, exclusively affording various versatile β-E-vinylboronates in high yields at room temperature.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jiangui Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Song Y, Fu C, Zheng J, Ma S. Copper-catalyzed remote double functionalization of allenynes. Chem Sci 2024; 15:7789-7794. [PMID: 38784739 PMCID: PMC11110152 DOI: 10.1039/d4sc00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Addition reactions of molecules with conjugated or non-conjugated multiple unsaturated C-C bonds are very attractive yet challenging due to the versatile issues of chemo-, regio-, and stereo-selectivities. Especially for the readily available conjugated allenyne compounds, the reactivities have not been explored. The first example of copper-catalyzed 2,5-hydrofunctionalization and 2,5-difunctionalization of allenynes, which provides a facile access to versatile conjugated vinylic allenes with a C-B or C-Si bond, has been developed. This mild protocol has a broad substrate scope tolerating many synthetically useful functional groups. Due to the highly functionalized nature of the products, they have been demonstrated as platform molecules for the efficient syntheses of monocyclic products including poly-substituted benzenes, bicyclic compounds, and highly functionalized allene molecules.
Collapse
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Jian Zheng
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University Hangzhou 310027 Zhejiang People's Republic of China
| |
Collapse
|
5
|
Zeng HH, Wang YQ, He YY, Zhong XL, Li H, Ma AJ, Peng JB. Cooperative Cu/Pd-Catalyzed 1,5-Boroacylation of Cyclopropyl-Substituted Alkylidenecyclopropanes. J Org Chem 2024; 89:2637-2648. [PMID: 38277477 DOI: 10.1021/acs.joc.3c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
A Cu/Pd-cocatalyzed 1,5-boroacylation of cyclopropyl-substituted ACPs with B2pin2 and acid chlorides has been developed. Using cyclopropyl-substituted ACPs as the starting material, a broad range of 1,5-boroacylated products with multiple functional groups was prepared in good yields with excellent regio- and stereoselectively. Both aromatic and aliphatic acid chlorides were tolerated in this reaction.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yu-Qing Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Yu He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiao-Ling Zhong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hongguang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
6
|
Jia J, Luo J, Li W, Cui F, Pan Y, Tang H. Copper-Metallized Porous N-Heterocyclic Carbene Ligand Polymer-Catalyzed Regio- and Stereoselective 1,2-Carboboration of Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308238. [PMID: 38064182 PMCID: PMC10870022 DOI: 10.1002/advs.202308238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Alkenylboronates are highly versatile building blocks and valuable reagents in the synthesis of complex molecules. Compared with that of monosubstituted alkenylboronates, the synthesis of multisubstituted alkenylboronates is challenging. The copper-catalyzed carboboration of alkynes is an operationally simple and straightforward method for synthesizing bis/trisubstituted alkenylboronates. In this work, a series of copper-metallized N-Heterocyclic Carbene (NHC) ligand porous polymer catalysts are designed and synthesized in accordance with the mechanism of carboboration. By using CuCl@POL-NHC-Ph as the optimal nanocatalyst, this study realizes the β-regio- and stereoselective (syn-addition) 1,2-carboboration of alkynes (regioselectivity up to >99:1) with satisfactory yields and a wide range of substrates. This work not only overcomes the selectivity of carboboration but also provides a new strategy for the design of nanocatalysts and their application in organic synthesis.
Collapse
Affiliation(s)
- Jun‐Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Jin‐Rong Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Wen‐Hao Li
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Fei‐Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical SciencesGuangxi Normal UniversityGuilin541004P. R. China
| |
Collapse
|
7
|
Sutro JL, Fürstner A. Total Synthesis of the Allenic Macrolide (+)-Archangiumide. J Am Chem Soc 2024; 146:2345-2350. [PMID: 38241031 PMCID: PMC10835656 DOI: 10.1021/jacs.3c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Archangiumide is the first known macrolide natural product comprising an endocyclic allene. For the ring strain that this linear substructure might entail, it was planned to unveil the allene at a very late stage of the projected total synthesis; in actual fact, this was achieved as the last step of the longest linear sequence by using an otherwise globally deprotected substrate. This unconventional timing was made possible by a gold catalyzed rearrangement of a macrocyclic propargyl benzyl ether derivative that uses a -PMB group as latent hydride source to unveil the signature cycloallene; the protecting group therefore gains a strategic role beyond its mere safeguarding function. Although the gold catalyzed reaction per se is stereoablative, the macrocyclic frame of the target was found to impose high selectivity and a stereoconvergent character on the transformation. The required substrate was formed by ring closing alkyne metathesis (RCAM) with the aid of a new air-stable molybdenum alkylidyne catalyst.
Collapse
Affiliation(s)
- Jack L. Sutro
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
8
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
9
|
Brals J, McGuire TM, Watson AJB. A Chemoselective Polarity-Mismatched Photocatalytic C(sp 3 )-C(sp 2 ) Cross-Coupling Enabled by Synergistic Boron Activation. Angew Chem Int Ed Engl 2023; 62:e202310462. [PMID: 37622419 PMCID: PMC10952440 DOI: 10.1002/anie.202310462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
We report the development of a C(sp3 )-C(sp2 ) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.
Collapse
Affiliation(s)
- Jeremy Brals
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| | - Thomas M. McGuire
- AstraZenecaDarwin Building, Unit 310Cambridge Science Park, Milton RoadCambridgeCB4 0WGUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| |
Collapse
|
10
|
Chaves-Pouso A, Rivera-Chao E, Fañanás-Mastral M. Catalytic Alkyne Allylboration: A Quest for Selectivity. ACS Catal 2023; 13:12656-12664. [PMID: 37822858 PMCID: PMC10563124 DOI: 10.1021/acscatal.3c03015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Catalytic methodologies that enable the synthesis of complex organic molecules from simple and readily available starting materials represent a goal in modern synthetic chemistry. In particular, multicomponent carboboration reactions that provide stereoselective access to densely functionalized building blocks are particularly valuable to achieve molecular diversity. This Perspective covers the developments in the area of catalytic allylboration of alkynes and highlights the key features that have allowed for the control of the regio-, diastereo-, and enantioselectivity in these transformations.
Collapse
Affiliation(s)
- Andrea Chaves-Pouso
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Rivera-Chao
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Zhu F, Yin P. Multicomponent Reaction: Pd/Cu-Catalyzed Borocarbonylation of Aryldiazonium Salts with Aliphatic Terminal Alkynes to gem-Bis(boryl) Ketones. Chemistry 2023; 29:e202301826. [PMID: 37369918 DOI: 10.1002/chem.202301826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
We report the development of Pd/Cu-catalyzed selective 2,1-borocarbonylation reactions of aliphatic terminal alkynes with aryldiazonium salts and B2 Pin2 to prepare gem-bis(boryl) ketones in one-pot. A series of corresponding products are obtained with good to excellent yields under a carbon monoxide atmosphere (10 bar). In addition, wide functional-group tolerance can be observed. Preliminary mechanistic studies reveal that ethyl acetate serves as a proton source in the reaction.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Rd S., Taiyuan, 030006, China
| | - Pengpeng Yin
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Rd S., Taiyuan, 030006, China
| |
Collapse
|
12
|
Liu S, Qian YS, Xu JL, Xu L, Xu YH. Copper-Catalyzed Regio- and Stereoselective Three-Component Coupling of Allenyl Ethers with gem-Dichlorocyclobutenones and B 2pin 2. Org Lett 2023. [PMID: 37289963 DOI: 10.1021/acs.orglett.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The three-component coupling method for regio- and stereoselective difunctionalization of allenes with allenyl ethers, bis(pinacolato)diboron, and gem-dichlorocyclobutenones as electrophiles was reported, yielding a variety of highly functionalized cyclobutenone products tethering with an alkenylborate fragment. The polysubstituted cyclobutenone products also underwent diverse transformations.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Sen Qian
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian-Lin Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Zhu F, Yin P. Multicomponent Reaction: Pd/Cu-Catalyzed Coupling and Boration of Acyl Chlorides and Alkynes to β-Boryl Ketones. J Org Chem 2023; 88:4352-4358. [PMID: 36929949 DOI: 10.1021/acs.joc.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
An unprecedented and challenging multicomponent reaction has been developed that allows for the direct transformation of acyl chlorides with alkynes into the corresponding saturated β-boryl ketones via Pd/Cu-catalyzed coupling and boration with ethyl acetate as the hydrogen sources. Various β-boryl ketones were synthesized in good to excellent yields with broad functional group tolerance. In addition, the introduction of boron groups into the products provides substantial opportunities for further conversions.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Pengpeng Yin
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Wang Z, Lamine W, Miqueu K, Liu SY. A syn outer-sphere oxidative addition: the reaction mechanism in Pd/Senphos-catalyzed carboboration of 1,3-enynes. Chem Sci 2023; 14:2082-2090. [PMID: 36845936 PMCID: PMC9945512 DOI: 10.1039/d2sc05828f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
We report a combined experimental and computational study of Pd/Senphos-catalyzed carboboration of 1,3-enynes utilizing DFT calculations, 31P NMR study, kinetic study, Hammett analysis and Arrhenius/Eyring analysis. Our mechanistic study provides evidence against the conventional inner-sphere β-migratory insertion mechanism. Instead, a syn outer-sphere oxidative addition mechanism featuring a Pd-π-allyl intermediate followed by coordination-assisted rearrangements is consistent with all the experimental observations.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College Chestnut Hill Massachusetts 02467-3860 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc, 2 Avenue P. Angot 64053 Pau Cedex 09 France
| |
Collapse
|
15
|
Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
16
|
Yang X, Yuan C, Ge S. Ligand-enabled stereodivergence in nickel-catalyzed regioselective hydroboration of internal allenes. Chem 2023. [DOI: 10.1016/j.chempr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Pradhan TR, Kyoon Park J. Chemoselective Coupling of π-Systems to Access Metallated 1,4- or 1,5-Skipped Dienes in Multicomponent Reactions. Chemistry 2022; 28:e202202120. [PMID: 36094297 DOI: 10.1002/chem.202202120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Integrating distinct unsaturated C-C systems while simultaneously installing metallic groups has been significantly challenging to execute in a multicomponent reaction. Therefore, designing a suitable mechanistic pathway that provides the required reactivity and selectivity for target C-C bonds with metallic reagents to ensure successful coupling is the key to success. Copper-catalyzed borylallylation and silylallylation have emerged as the most efficient strategies for assembling borylated/silylated skipped (1,4 or 1,5) dienes by catalytically combining an organocopper intermediate with allyl electrophiles. However, reactions involving interelemental reagents (e. g., [Si]-[B]) to accomplish intermolecular atom-economic couplings have not been studied thoroughly. Therefore, to aid the development of new transformations in this research area, this article attempts to include all precedents, including recent studies by the authors. The present Concept article may be helpful for researchers working in this area as it provides a basic conceptual framework.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| | - Jin Kyoon Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| |
Collapse
|
18
|
Rohde LN, Diver ST. Preparation of Dienyl Boronates by Tandem Ene-Yne Metathesis/Dienyl Isomerization: Ready Access to Diene Building Blocks for the Synthesis of Polyenes. J Org Chem 2022; 87:14078-14092. [PMID: 36223641 DOI: 10.1021/acs.joc.2c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ene-yne metathesis of alkenyl boronates with terminal alkynes is reported. These challenging metatheses were accomplished using a Grubbs catalyst bearing the cyclic alkyl amino carbene (CAAC) ligand, whereas N-heterocyclic carbene (NHC) derived catalysts gave lower yields. Subsequent dienyl isomerization via a cobalt-catalyzed hydrogen atom transfer (HAT) furnished the more substituted dienyl boronate with high EE/EZ ratios. Finally, the resulting dienyl boronate products were successfully used in Suzuki-Miyaura cross-coupling reactions and in a Diels-Alder cycloaddition.
Collapse
Affiliation(s)
- Laurence N Rohde
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Steven T Diver
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
19
|
Zhu F, Yin P, Wu XF. Regioselective catalytic carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones. Chem Sci 2022; 13:12122-12126. [PMID: 36349108 PMCID: PMC9600224 DOI: 10.1039/d2sc04867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
A new Pd/Cu-catalyzed carbonylation and borylation of alkynes with aryldiazonium salts toward α-unsubstituted β-boryl ketones with complete regioselectivity has been developed. This transformation shows broad substrate scope and excellent functional-group tolerance. Moreover, the obtained 1,2-carbonylboration products provide substantial opportunities for further transformations which cannot be obtained by known carbonylation procedures. Preliminary mechanistic studies indicate that the three hydrogen atoms of the products originated from ethyl acetate.
Collapse
Affiliation(s)
- Fengxiang Zhu
- Department School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Pengpeng Yin
- Department School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Leibniz-Institut für Katalyse e.V. Rostock 18059 Germany
| |
Collapse
|
20
|
Pawley SB, Conner AM, Omer HM, Watson DA. Development of a General Method for the Hiyama-Denmark Cross-Coupling of Tetrasubstituted Vinyl Silanes. ACS Catal 2022; 12:13108-13115. [PMID: 36817085 PMCID: PMC9933925 DOI: 10.1021/acscatal.2c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
General conditions for the Hiyama-Denmark cross-coupling of tetrasubstituted vinyl silanes and aryl halides are reported. Prior reports of Hiyama-Denmark reactions of tetrasubstituted vinyl silanes have required the use of vinyl silanols or silanolates, which are challenging to handle, or internally activated vinyl silanes, which lack structural generality. Now, unactivated tetrasubstituted vinyl silanes, bearing bench-stable tetraorganosilicon centers, and aryl halides can be coupled. The key to this discovery is the identification of dimethyl(5-methylfuryl)vinylsilanes as bench stable and easily prepared cross-coupling partners that are readily activated under mild conditions in Hiyama-Denmark couplings. These palladium-catalyzed cross-couplings proceed well with aryl chlorides, though aryl bromides and iodides are also tolerated, and the reactions display high stereospecificity in the formation of tetrasubstituted alkenes. In addition, only a mild base (KOSiMe3) and common solvents (THF/DMA) are required, and importantly toxic additives (such as 18-crown-6) are not needed. We also show that these conditions are equally applicable to Hiyama-Denamrk coupling of trisubstituted vinyl silanes.
Collapse
Affiliation(s)
| | | | - Humair M. Omer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Donald A. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
21
|
Kojima Y, Nishii Y, Hirano K. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes. Org Lett 2022; 24:7450-7454. [DOI: 10.1021/acs.orglett.2c03024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Pandey VK, Tiwari CS, Rit A. Silver Catalyzed One-Pot Three-Component Synthesis of α-Aminonitriles and Biologically Relevant α-Amino-phosphonates. Chem Asian J 2022; 17:e202200703. [PMID: 35950231 DOI: 10.1002/asia.202200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Indexed: 11/07/2022]
Abstract
A simple silver salt (AgSbF6) catalyzed aminophosphonylation and Strecker reaction have been developed and successfully applied to a wide range of substrates (>55 substrates). This solvent-, ligand-, and base-free one-pot three component protocol operates effectively at room temperature to provide diversified α-aminophosphonates and α-aminonitriles, which gave access to the respective α-amino amides. Importantly, the present catalyst system is also capable to produce the rarely reported and biologically relevant aminophosphonates (having anti-leishmanial activity). Further, the mechanistic studies reveal that the present phosphonylation protocol follows a radical pathway.
Collapse
Affiliation(s)
- Vipin K Pandey
- Indian Institute of Technology Madras, Department of Chemistry, INDIA
| | | | - Arnab Rit
- Indian Institute of Technology, Madras, Department of Chemistry, Sardar patel Road, 600036, Chennai, INDIA
| |
Collapse
|
23
|
Xu WY, Li YJ, Gong TJ, Fu Y. Synthesis of gem-Difluorinated 1,3-Dienes via Synergistic Cu/Pd-Catalyzed Borodifluorovinylation of Alkynes. Org Lett 2022; 24:5884-5889. [PMID: 35926100 DOI: 10.1021/acs.orglett.2c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
gem-Difluoroalkenes (=CF2), which normally act as metabolically stable bioisosteres for carbonyl groups (C═O), are widely applied in agrochemicals and pharmaceuticals and are also used as building blocks in organic synthesis. Herein, an example of Cu/Pd-catalyzed borodifluorovinylation was achieved using alkynes, difluoroethylene bromide, and B2pin2 as chemical feedstocks, providing the corresponding conjugated gem-difluoroalkene scaffold with good functional group compatibility. Moreover, an array of fluorinated synthons can be obtained through further transformations.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yu-Jie Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
24
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
25
|
Cheng T, Liu B, Wu R, Zhu S. Cu-catalyzed carboboration of acetylene with Michael acceptors. Chem Sci 2022; 13:7604-7609. [PMID: 35872813 PMCID: PMC9241969 DOI: 10.1039/d2sc02306g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
A copper-catalyzed three-component carboboration of acetylene with B2Pin2 and Michael acceptors is reported. In this reaction, a cheap and abundant C2 chemical feedstock, acetylene, was used as a starting material to afford cis-alkenyl boronates bearing a homoallylic carbonyl group. The reaction was robust and could be reliably performed on the molar scale. Furthermore, the resulting cis-alkenyl boronates could be converted to diverse functionalized molecules with ease.
Collapse
Affiliation(s)
- Tairan Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Rui Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
26
|
Gao Y, Kim N, Mendoza SD, Yazdani S, Faria Vieira A, Liu M, Kendrick A, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. (CAAC)Copper Catalysis Enables Regioselective Three-Component Carboboration of Terminal Alkynes. ACS Catal 2022; 12:7243-7247. [PMID: 37143933 PMCID: PMC10153597 DOI: 10.1021/acscatal.2c00614] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic(alkyl)(amino)carbene (CAAC) ligands are found to perturb regioselectivity of the copper-catalyzed carboboration of terminal alkynes, favoring the less commonly observed internal alkenylboron regiosomer through an α-selective borylcupration step. A variety of carbon electrophiles participate in the reaction, including allyl alcohols derivatives and alkyl halides. The method provides a straightforward and selective route to versatile tri-substituted alkenylboron compounds that are otherwise challenging to access.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Nana Kim
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Skyler D. Mendoza
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Sima Yazdani
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Andre Faria Vieira
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Mingyu Liu
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Aaron Kendrick
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Douglas B. Grotjahn
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Liu XL, Li L, Lin HZ, Deng JT, Zhang XZ, Peng JB. Copper-catalyzed 1,2-Borylacylation of 1,3-Enynes: synthesis of β-Alkynyl ketones. Chem Commun (Camb) 2022; 58:5968-5971. [PMID: 35475443 DOI: 10.1039/d2cc01732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed 1,2-borylacylation of 1,3-enynes with B2pin2 and acid chlorides has been developed. Using readily available 1,3-enynes, B2pin2 and acid chlorides as substrates, a range of highly functionalized α,α-disubstituted β-alkynyl ketones were readily prepared under mild conditions in moderate to good yields. The borylacylated products can be easily derivatized to give several valuable structures. Notably, treatment of the products with NaBO3·4H2O provided 1,2-allenyl ketones, which is proposed to proceed via a retro-aldol process of the corresponding homopropargyl alcohols.
Collapse
Affiliation(s)
- Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Han-Ze Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
| |
Collapse
|
28
|
Britt LH, Zhao Z, Murphy GK. Award Lecture Paper: Hypervalent Iodine-Mediated Oxidative Alkene Arylation: A Thorough Analysis. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypervalent iodine-mediated, oxidative alkene arylation reaction has been developed. Both Koser’s reagent (PhI(OH)OTs) and (diacetoxyiodo)toluene (TolI(OAc)<sub>2</sub>) were equally viable as oxidants, which reacted with ortho-vinylbiphenyl derivatives to produce tri-, tetra- and pentacyclic polycyclic aromatic hydrocarbons (PAHs) in yields up to 97%. Comparison of this stoichiometric reaction with a previously-reported catalytic process showed that these protocols were largely complementary, and that they likely operate via the same general mechanistic sequence involving vinyliodonium salts decomposing into vinylene phenonium ions. Various mechanistic control experiments were conducted, which ruled out epoxides as intermediates, and which showed that E- and Z- alkene geometry in 10-substituted ortho-vinylbiphenyls had no impact on the ensuing isomeric product distributions. These experiments strongly supported the formation of E-vinyliodonium ions as initial reaction intermediates, and while the occurrence of 1,2-phenyl shift products was a common phenomenon, we concluded that alkyl substitution on the ortho-vinylbiphenyl was a requirement for this alternate pathway to occur.
Collapse
Affiliation(s)
| | - Zhensheng Zhao
- University of Waterloo, Chemistry, Waterloo, Ontario, Canada,
| | - Graham Kevin Murphy
- University of Waterloo, Chemistry, C2-367 Department of Chemistry, 200 University Ave W., Waterloo, Ontario, Canada, N2L3G1,
| |
Collapse
|
29
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
30
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origin of Ligand Effects on Stereoinversion in Pd-Catalyzed Synthesis of Tetrasubstituted Olefins. J Org Chem 2021; 86:18128-18138. [PMID: 34878798 DOI: 10.1021/acs.joc.1c02400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism and origin of ligand effects on stereoinversion of Pd-catalyzed synthesis of tetrasubstituted olefins were investigated using DFT calculations and the approach of energy decomposition analysis (EDA). The results reveal that the stereoselectivity-determining steps are different when employing different phosphine ligands. This is mainly due to the steric properties of ligands. With the bulkier Xantphos ligand, the syn/anti-to-Pd 1,2-migrations determine the stereoselectivity. While using the less hindered P(o-tol)3 ligand, the 1,3-migration is the stereoselectivity-determining step. The EDA results demonstrate that Pauli repulsion and polarization are the dominant factors for controlling the stereochemistry in 1,2- and 1,3-migrations, respectively. The origins of differences of Pauli repulsion and polarization between the two stereoselective transition states are further identified.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Laboratory for Materials of Energy Conversion and Storage of Shanxi Province and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
31
|
Rasool JU, Ali A, Ahmad QN. Recent advances in Cu-catalyzed transformations of internal alkynes to alkenes and heterocycles. Org Biomol Chem 2021; 19:10259-10287. [PMID: 34806741 DOI: 10.1039/d1ob01709h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous metal-catalyzed reactions involving internal alkynes and aimed towards synthetically and pharmacologically important alkenes and heterocycles have appeared in the literature. Among these, Cu-catalyzed reactions have a special place, which has prompted the investigation and development of carbon-carbon and carbon-heteroatom bond-forming reactions. These reactions possess wide scope, and during the paths of these reactions, either stable or in situ intermediates are formed via the addition of Cu as a core catalyst or synergistic catalyst. In this review, we aim to report different contributions relating to Cu-catalyzed reactions of internal alkynes for the synthesis of different valuable alkenes and heterocycles which have appeared in the literature in the last decade. We anticipate that this appraisal will deliver basic insights for the further advancement of Cu-catalyzed reactions in organic chemistry.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Asif Ali
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Sukhdev Vihar, Delhi-110025, India
| | - Qazi Naveed Ahmad
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu-180001, India.
| |
Collapse
|
32
|
Alam S, Karim R, Khan A, Pal AK, Maruani A. Copper‐Catalyzed Preparation of Alkenylboronates and Arylboronates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Safiul Alam
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Rejaul Karim
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Aminur Khan
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Amarta Kumar Pal
- Centre for Advance Studies in Chemistry North-Eastern Hill University Mawlai Campus Shillong 793022 India
| | - Antoine Maruani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 Université de Paris UFR Biomédicale 45 rue des Saints Pères Paris 75006 France
| |
Collapse
|
33
|
Tsushima T, Tanaka H, Nakanishi K, Nakamoto M, Yoshida H. Origins of Internal Regioselectivity in Copper-Catalyzed Borylation of Terminal Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takumi Tsushima
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hideya Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kazuki Nakanishi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Masaaki Nakamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
34
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio‐ and Stereoselective 1,2‐Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Mika Sakai
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
35
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021; 60:21697-21701. [PMID: 34310824 PMCID: PMC8518048 DOI: 10.1002/anie.202107647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Catalyst‐free 1,2‐carboboration of ynamides is presented. Readily available aryldichloroboranes react with alkyl‐ or aryl‐substituted ynamides in high yields with complete regio‐ and stereoselectivity to valuable β‐boryl‐β‐alkyl/aryl α‐aryl substituted enamides which belong to the class of trisubstituted alkenylboronates. The 1,2‐carboboration reaction is experimentally easy to conduct, shows high functional group tolerance and broad substrate scope. Gram‐scale reactions and diverse synthetic transformations convincingly demonstrate the synthetic potential of this method. The reaction can also be used to access 1‐boraphenalenes, a class of boron‐doped polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
36
|
Aicher TD, Van Huis CA, Hurd AR, Skalitzky DJ, Taylor CB, Beleh OM, Glick G, Toogood PL, Yang B, Zheng T, Huo C, Gao J, Qiao C, Tian X, Zhang J, Demock K, Hao LY, Lesch CA, Morgan RW, Moisan J, Wang Y, Scatina J, Paulos CM, Zou W, Carter LL, Hu X. Discovery of LYC-55716: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ) Agonist for Use in Treating Cancer. J Med Chem 2021; 64:13410-13428. [PMID: 34499493 DOI: 10.1021/acs.jmedchem.1c00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Retinoic acid receptor-related orphan receptor γ (RORc, RORγ, or NR1F3) is the nuclear receptor master transcription factor that drives the function and development of IL-17-producing T helper cells (Th17), cytotoxic T cells (Tc17), and subsets of innate lymphoid cells. Activation of RORγ+ T cells in the tumor microenvironment is hypothesized to render immune infiltrates more effective at countering tumor growth. To test this hypothesis, a family of benzoxazines was optimized to provide LYC-55716 (37c), a potent, selective, and orally bioavailable small-molecule RORγ agonist. LYC-55716 decreases tumor growth and enhances survival in preclinical tumor models and was nominated as a clinical development candidate for evaluation in patients with solid tumors.
Collapse
Affiliation(s)
- Thomas D Aicher
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Chad A Van Huis
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Alexander R Hurd
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Donald J Skalitzky
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Clarke B Taylor
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Omar M Beleh
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Gary Glick
- Chief Scientific Officer, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Peter L Toogood
- Department of Chemistry, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Bing Yang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Tao Zheng
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Changxin Huo
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Jie Gao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Chenxi Qiao
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Xiaolong Tian
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Junping Zhang
- Department of Chemistry, Pharmaron Beijing, Co. Ltd., Beijing 100176, P. R. China
| | - Kellie Demock
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Ling-Yang Hao
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Charles A Lesch
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Rodney W Morgan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Jacques Moisan
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Yahong Wang
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - JoAnn Scatina
- Department of Preclinical Development, Lycera Corp., 620 Germantown Pike, Plymouth Meeting, Pennsylvania 19462, United States
| | - Chrystal M Paulos
- Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, MSC 509, Room 203, Charleston, South Carolina 29425, United States
| | - Weiping Zou
- School of Medicine, Department of Surgery, University of Michigan, 2101 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Laura L Carter
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| | - Xiao Hu
- Department of Biology, Lycera Corp., 1350 Highland Drive, Suite A, Ann Arbor, Michigan 48108, United States
| |
Collapse
|
37
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos JM, Chrostowska A, Miqueu K, Liu SY. C-Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:21231-21236. [PMID: 34245074 DOI: 10.1002/anie.202108534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/17/2022]
Abstract
A new family of carbon-bound boron enolates, generated by a kinetically controlled halogen exchange between chlorocatecholborane and silylketene acetals, is described. These C-boron enolates are demonstrated to activate 1,3-enyne substrates in the presence of a Pd0 /Senphos ligand complex, resulting in the first examples of a carboboration reaction of an alkyne with enolate-equivalent nucleophiles. Highly substituted dienyl boron building blocks are produced in excellent site-, regio-, and diastereoselectivity by the described catalytic cis-carboboration reaction.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.,Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| |
Collapse
|
38
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos J, Chrostowska A, Miqueu K, Liu S. C−Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3‐Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyong Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jason Wu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jean‐Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| |
Collapse
|
39
|
Ozawa Y, Endo K, Ito H. Regio- and Stereoselective Synthesis of Multi-Alkylated Allylic Boronates through Three-Component Coupling Reactions between Allenes, Alkyl Halides, and a Diboron Reagent. J Am Chem Soc 2021; 143:13865-13877. [PMID: 34424698 DOI: 10.1021/jacs.1c06538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multisubstituted allylic boronates are attractive and valuable precursors for the rapid and stereoselective construction of densely substituted carbon skeletons. Herein, we report the first synthetic approach for differentially 2,3,3-trialkyl-substituted allylic boronates that contain a stereodefined tetrasubstituted alkene structure. Copper(I)-catalyzed regio- and stereoselective three-component coupling reactions between gem-dialkylallenes, alkyl halides, and a diboron reagent afforded sterically congested allylic boronates. The allylboration of aldehydes diastereoselectively furnished the corresponding homoallylic alcohols that bear a quaternary carbon. A computational study revealed that the selectivity-determining mechanism was correlated to the coordination of a boryl copper(I) species to the allene substrate as well as the borylcupration step.
Collapse
Affiliation(s)
- Yu Ozawa
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kohei Endo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
40
|
Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Advances in the E → Z Isomerization of Alkenes Using Small Molecule Photocatalysts. Chem Rev 2021; 122:2650-2694. [PMID: 34449198 DOI: 10.1021/acs.chemrev.1c00324] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Geometrical E → Z alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. Angew. Chem., Int. Ed. Engl. 1989 28, 1193-1207). This is a consequence of the fundamental stereochemical importance of Z-alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate contra-thermodynamic and thermo-neutral isomerization reactions to generate Z-alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (Chem. Rev. 2003 103, 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.
Collapse
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Max Wienhold
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John J Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
41
|
Ghosh S, Chakrabortty R, Ganesh V. Dual Functionalization of Alkynes Utilizing the Redox Characteristics of Transition Metal Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Rajesh Chakrabortty
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
42
|
Kim-Lee SH, Mauleón P, Gómez Arrayás R, Carretero JC. Dynamic multiligand catalysis: A polar to radical crossover strategy expands alkyne carboboration to unactivated secondary alkyl halides. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Ping Y, Wang R, Wang Q, Chang T, Huo J, Lei M, Wang J. Synthesis of Alkenylboronates from N-Tosylhydrazones through Palladium-Catalyzed Carbene Migratory Insertion. J Am Chem Soc 2021; 143:9769-9780. [PMID: 34157838 DOI: 10.1021/jacs.1c02331] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The palladium-catalyzed oxidative borylation reaction of N-tosylhydrazones has been developed. The reaction features mild conditions, broad substrate scope, and good functional group tolerance. It thus represents a highly efficient and practical method for the synthesis of di-, tri-, and tetrasubstituted alkenylboronates from readily available N-tosylhydrazones. One-pot Suzuki coupling and other transformations highlight the synthetic utility of the approach. DFT calculations have revealed that palladium-carbene formation and subsequent boryl migratory insertion are the key steps in the catalytic cycle. The high stereoselectivity observed in the formation of trisubstituted alkenylboronates has been explained by distortion-interaction analysis and NBO analysis.
Collapse
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianyue Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,The State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Murata Y, Matsunagi K, Kashida J, Shoji Y, Özen C, Maeda S, Fukushima T. Observation of Borane–Olefin Proximity Interaction Governing the Structure and Reactivity of Boron‐Containing Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yukihiro Murata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Kenta Matsunagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Cihan Özen
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 060-8510 Japan
- Department of Chemistry Hokkaido University Sapporo 060-8510 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 060-8510 Japan
- Department of Chemistry Hokkaido University Sapporo 060-8510 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| |
Collapse
|
45
|
Murata Y, Matsunagi K, Kashida J, Shoji Y, Özen C, Maeda S, Fukushima T. Observation of Borane-Olefin Proximity Interaction Governing the Structure and Reactivity of Boron-Containing Macrocycles. Angew Chem Int Ed Engl 2021; 60:14630-14635. [PMID: 33860607 DOI: 10.1002/anie.202103512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/06/2022]
Abstract
While attractive interactions between borane and olefin have been postulated to trigger various boron-mediated organic transformations, proximity structures of these functional groups, other than the formation of weak van der Waals complexes, have never been directly observed. Here we show that a close intramolecular borane-olefin interaction operates in macrocyclic systems containing borane and olefinic groups obtained by multi-step 1,2-carboboration between a strained alkyne and 9-borafluorene derivatives. Depending on Lewis acidity of the borane moiety and the size of the macrocycles, the magnitude of interaction changes, resulting in different reaction modes. The whole picture of the multi-step reactions has been revealed experimentally with theoretical supports. The present finding may not only provide a deeper understanding of the fundamental boron-mediated interaction but also lead to the development of new organic transformations involving molecular activation by boranes.
Collapse
Affiliation(s)
- Yukihiro Murata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Kenta Matsunagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Cihan Özen
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 060-8510, Japan.,Department of Chemistry, Hokkaido University, Sapporo, 060-8510, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 060-8510, Japan.,Department of Chemistry, Hokkaido University, Sapporo, 060-8510, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| |
Collapse
|
46
|
Li Z, Sun J. Copper-Catalyzed 1,1-Boroalkylation of Terminal Alkynes: Access to Alkenylboronates via a Three-Component Reaction. Org Lett 2021; 23:3706-3711. [PMID: 33881877 DOI: 10.1021/acs.orglett.1c01081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A copper-catalyzed three-component reaction of terminal alkynes, diazo compounds, and B2pin2 to prepare trisubstituted alkenylboronates has been developed. This difunctionalization of alkynes selectively occurs at the terminal carbon atom and proceeds via a tandem sequence. The copper catalyst plays dual roles in the whole process, namely, the initial copper-catalyzed cross-coupling and the following copper-catalyzed stereoselective boration reaction. Typically, different carbene precursors selectively lead to Z- and E-alkenes.
Collapse
Affiliation(s)
- Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
47
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Cu/Pd-Catalyzed cis-Borylfluoroallylation of Alkynes for the Synthesis of Boryl-Substituted Monofluoroalkenes. Org Lett 2021; 23:3259-3263. [PMID: 33872017 DOI: 10.1021/acs.orglett.1c00668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monofluoroalkenes normally act as metabolically stable bioisosteres for amide groups (-NH-CO-) and have widespread applications in drug discovery. Additionally, they are widely used as building blocks in organic synthesis. In this study, the Cu/Pd-catalyzed cis-borylfluoroallylation of alkynes was achieved, providing a modular and general tactic for the preparation of monofluorinated alkene scaffolds with high regioselectivity and stereoselectivity. Moreover, an array of synthetic building blocks can be generated by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
48
|
Franco M, Sainz R, Lamsabhi AM, Díaz C, Tortosa M, Cid MB. Evaluation of the role of graphene-based Cu(i) catalysts in borylation reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A methodical experimental and theoretical analysis of different carbon-based Cu(i) materials in the context of the development of an efficient, general, scalable, and sustainable borylation reaction of aliphatic and aromatic halides has been performed.
Collapse
Affiliation(s)
- Mario Franco
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Raquel Sainz
- Institute of Catalysis and Petrochemistry
- CSIC
- 28049 Madrid
- Spain
| | - Al Mokhtar Lamsabhi
- Department of Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - Cristina Díaz
- Departamento de Química Física
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Mariola Tortosa
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| | - M. Belén Cid
- Department of Organic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
49
|
Shen BX, Min XT, Hu YC, Qian LL, Yang SN, Wan B, Chen QA. Copper-catalyzed boroacylation of allenes to access tetrasubstituted vinylboronates. Org Biomol Chem 2020; 18:9253-9260. [PMID: 33150922 DOI: 10.1039/d0ob02008g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A distinct copper-catalyzed boroacylation of allenes with acyl chlorides and bis(pinacolato)diboron is developed. For aromatic acyl chlorides, 1,2-boroacylation of allenes readily takes place, leading to the formation of tetrasubstituted vinylboronates with exclusive (E)-stereoselectivity. In comparison, the employment of alkyl acyl chlorides as electrophiles alters the selectivity to 2,3-boroacylated products. Additionally, the product can easily undergo Suzuki-Miyaura cross-coupling to afford tetrasubstituted alkene with complete retention of the configuration.
Collapse
Affiliation(s)
- Bing-Xue Shen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wilson DWN, Mehta M, Franco MP, McGrady JE, Goicoechea JM. Linkage Isomerism Leading to Contrasting Carboboration Chemistry: Access to Three Constitutional Isomers of a Borylated Phosphaalkene. Chemistry 2020; 26:13462-13467. [PMID: 32495945 PMCID: PMC7702093 DOI: 10.1002/chem.202002226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/03/2022]
Abstract
We describe the reactivity of two linkage isomers of a boryl-phosphaethynolate, [B]OCP and [B]PCO (where [B]=N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), towards tris- (pentafluorophenyl)borane (BCF). These reactions afforded three constitutional isomers all of which contain a phosphaalkene core. [B]OCP reacts with BCF through a 1,2 carboboration reaction to afford a novel phosphaalkene, E-[B]O{(C6 F5 )2 B}C=P(C6 F5 ), which subsequently undergoes a rearrangement process involving migration of both the boryloxy and pentafluorophenyl substituents to afford Z-{(C6 F5 )2 B}(C6 F5 )C=PO[B]. By contrast, [B]PCO undergoes a 1,3-carboboration process accompanied by migration of the N,N'-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl to the carbon centre.
Collapse
Affiliation(s)
- Daniel W. N. Wilson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Meera Mehta
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mauricio P. Franco
- Instituto de QuímicaUniversity of São PauloAv. Prof. Lineu Prestes, 748—Vila UniversitariaSão Paulo—SP05508-000Brazil
| | - John E. McGrady
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|