1
|
Uzal-Varela R, Rodríguez-Rodríguez A, Lalli D, Valencia L, Maneiro M, Botta M, Iglesias E, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Endeavor toward Redox-Responsive Transition Metal Contrast Agents Based on the Cross-Bridge Cyclam Platform. Inorg Chem 2024; 63:1575-1588. [PMID: 38198518 PMCID: PMC10806912 DOI: 10.1021/acs.inorgchem.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento
de Química Inorgánica, Facultade de Ciencias, Campus
Terra, Universidade de Santiago de Compostela, Lugo 27002, Galicia, Spain
| | - Mauro Botta
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Emilia Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - David Esteban-Gómez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Goran Angelovski
- Laboratory
of Molecular and Cellular Neuroimaging, International Center for Primate
Brain Research (ICPBR), Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Chinese
Academy of Sciences (CAS), Shanghai 201602, PR China
| | - Carlos Platas-Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| |
Collapse
|
2
|
Guo X, Zhang L, Hu J, Szilágyi B, Yu M, Chen S, Tircsó G, Zhou X, Tao J. Improving the potential of paraCEST through magnetic-coupling induced line sharpening. Chem Sci 2023; 14:14157-14165. [PMID: 38098703 PMCID: PMC10717539 DOI: 10.1039/d3sc04770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Magnetic coupling between paramagnetic centers is a crucial phenomenon in the design of efficient MRI contrast agents. In this study, we investigate the paraCEST properties and magnetic coupling effects of a novel homodinuclear Ni(ii) complex, 1, containing a Robson type macrocyclic ligand. A thorough analysis of the complex's electronic and magnetic properties revealed that the magnetic coupling effect reduces the transverse relaxation rate and enhances the sharpness of the proton resonances, leading to enhanced CEST efficiency. This novel mechanism, which we coined "magnetic-coupling induced line sharpening" (MILS), can be crucial for optimizing the performance of paramagnetic metal complexes in paraCEST imaging. Moreover, magnetic coupling plays a critical role in the relaxation properties of homodinuclear complexes. Our study not only paves the way for the creation of advanced paraCEST agents with enhanced CEST capabilities and sensitivity but also provides valuable guidance for the design of other MRI contrast agents utilizing dinuclear metal complexes.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiesheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Balázs Szilágyi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
- Doctoral School of Chemistry, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
3
|
Goren E, Iron MA, Diskin-Posner Y, Falkovich A, Avram L, Bar-Shir A. NMR exchange dynamics studies of metal-capped cyclodextrins reveal multiple populations of host-guest complexes in solution. Chem Sci 2023; 14:11351-11358. [PMID: 37886095 PMCID: PMC10599603 DOI: 10.1039/d3sc03630h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023] Open
Abstract
Metal-capped molecular hosts are unique in supramolecular chemistry, benefitting from the inner cavity's hydrophobic nature and the metal center's electrochemical properties. It is shown here that the paramagnetic properties of the metals in lanthanide-capped cyclodextrins (Ln-α-CDs and Ln-β-CDs) are a convenient NMR indicator for different populations of host-guest complexes in a given solution. The paramagnetic guest exchange saturation transfer (paraGEST) method was used to study the exchange dynamics in systems composed of Ln-α-CDs or Ln-β-CDs with fluorinated guests, revealing multiple co-existing populations of host-guest complexes exclusively in solutions containing Ln-β-CDs. The enhanced spectral resolution of paraGEST, achieved by a strong pseudo contact shift induction, revealed that different molecular guests can adopt multiple orientations within Ln-β-CDs' cavities and, in contrast, only a single orientation inside Ln-α-CDs. Thus, paraGEST, which can significantly improve NMR detectability and spectral resolution of host-guest systems that experience fast exchange dynamics, is a convenient tool for studying supramolecular systems of metal-capped molecular hosts.
Collapse
Affiliation(s)
- Elad Goren
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Mark A Iron
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Alla Falkovich
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
4
|
Panda SK, Torres J, Kremer C, Singh AK. Comparative paraCEST effect of amide and hydroxy groups in divalent cobalt and nickel complexes of tripyridine-based ligands. Dalton Trans 2023; 52:13594-13607. [PMID: 37698164 DOI: 10.1039/d3dt01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Co(II) and Ni(II) complexes of two tri-pyridine-based ligands with two hydroxy and two amide exchangeable protons (TDTA) and with six amide exchangeable protons (TMTP) were investigated for application as paraCEST-based magnetic resonance imaging (MRI) contrast agents. The two hydroxy groups present in the TDTA ligand were found to be passive while the amide group was active towards the CEST process. In the case of the Co(II) and Ni(II) complexes of the TMTP ligand, all three coordinated amide groups participated in the exchange process, and excellent CEST signals were observed. The X-ray structure of the four complexes revealed the seven-coordinate geometry of Co(II) complexes and the six-coordinate geometry of Ni(II) complexes. The presence of amide protons and hydroxy protons in the complexes was detected by the NMR method. The stability of the complexes in solution at high temperatures, in different pH ranges and acidic conditions, in the presence of competing cations, and biologically relevant anions was investigated. Potentiometric titrations were carried out to determine the ligand's protonation constants and the complexes' thermodynamic stability constant at 25.0 °C and I = 0.15 mol L-1 NaClO4. ParaCEST studies of [Co(TMTP)]2+ and [Ni(TMTP)]2+ at variable pH and variable pulse power are highlighted.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- Indian Institute of Technology Bhubaneswar, Khordha, Odisha 752050, India.
| | - Julia Torres
- Área de Química Inorgánica - DEC, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Carlos Kremer
- Área de Química Inorgánica - DEC, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | | |
Collapse
|
5
|
Pradhan RN, Irrera P, Romdhane F, Panda SK, Longo DL, Torres J, Kremer C, Assaiya A, Kumar J, Singh AK. Di-Pyridine-Containing Macrocyclic Triamide Fe(II) and Ni(II) Complexes as ParaCEST Agents. Inorg Chem 2022; 61:16650-16663. [PMID: 36205705 DOI: 10.1021/acs.inorgchem.2c02242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.
Collapse
Affiliation(s)
- Rabindra N Pradhan
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Caserta81100, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Julia Torres
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Carlos Kremer
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Anshul Assaiya
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Janesh Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Akhilesh K Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| |
Collapse
|
6
|
Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022; 61:14487-14499. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.
Collapse
Affiliation(s)
- Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
7
|
Pérez-Lourido P, Madarasi E, Antal F, Esteban-Gómez D, Wang G, Angelovski G, Platas-Iglesias C, Tircsó G, Valencia L. Stable and inert macrocyclic cobalt(II) and nickel(II) complexes with paraCEST response. Dalton Trans 2022; 51:1580-1593. [PMID: 34991150 DOI: 10.1039/d1dt03217h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of the macrocyclic ligands 3,9-PC2AMH (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)diacetamide) and 3,9-PC2AMtBu (2,2'-(3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-3,9-diyl)bis(N-tert-butyl)acetamide) which contain a pyclen platform functionalized with acetamide or tert-butylacetamide pendant arms at positions 3 and 9 of the macrocyclic unit. The corresponding Co(II) and Ni(II) complexes were prepared, isolated and characterised as potential paramagnetic chemical exchange saturation transfer (paraCEST) agents. The X-ray structures of the Ni(II) complexes reveal six-coordination of the ligands to the metal ion. The Co(II) complex with 3,9-PC2AMtBu shows a similar six-coordinate structure in the solid state, while the Co(II) complex with 3,9-PC2AMH contains a seven-coordinate metal ion, seventh coordination being completed by the presence of an inner-sphere water molecule. The structure of the Co(II) complexes was investigated using 1H NMR spectroscopy and computational methods. The complexes present a seven-coordinate structure in solution, as demonstrated by the analysis of the paramagnetic shifts using density functional theory. Ligand protonation constants and stability constants of the complexes with 3,9-PC2AMH were determined using potentiometric titrations (I = 0,15 M NaCl). The Co(II) complex was found to be more stable than the Ni(II) analogue (log KCoL = 14.46(5) and log KNiL = 13.15(3)). However, the Ni(II) and Co(II) complexes display similar rate constants characterizing the proton-assisted dissociation mechanism. The presence of highly shifted 1H NMR signals due to the amide protons in slow exchange with bulk water results in sizeable CEST signals, which are observed at +67 and +15 ppm for the Co(II) complex with 3,9-PC2AMH and +42 and +7 ppm for the Ni(II) analogue at 25 °C.
Collapse
Affiliation(s)
- Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain.
| | - Enikő Madarasi
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - Fanni Antal
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Gaoji Wang
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.,Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), 20031 Shanghai, PR China
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010, Debrecen, Egyetem tér 1, Hungary
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain.
| |
Collapse
|
8
|
Lu C, Xu X, Zhang T, Wang Z, Chai Y. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T1 contrast agents for magnetic resonance imaging. J Mater Chem B 2022; 10:1623-1633. [DOI: 10.1039/d1tb02572d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-sized iron oxide nanoparticles (IONPs) are excellent alternative to clinical gadolinium-based contrast agents (GBCAs) in T1-weighted magnetic resonance imaging (MRI) due to their biosafety. However, the relaxation efficiency and contrast...
Collapse
|
9
|
Castro G, Wang G, Gambino T, Esteban-Gómez D, Valencia L, Angelovski G, Platas-Iglesias C, Pérez-Lourido P. Lanthanide(III) Complexes Based on an 18-Membered Macrocycle Containing Acetamide Pendants. Structural Characterization and paraCEST Properties. Inorg Chem 2021; 60:1902-1914. [PMID: 33471999 PMCID: PMC8929667 DOI: 10.1021/acs.inorgchem.0c03385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a detailed investigation of the coordination properties of macrocyclic lanthanide complexes containing a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane scaffold functionalized with four acetamide pendant arms. The X-ray structures of the complexes with the large Ln3+ ions (La and Sm) display 12- and 10-coordinated metal ions, where the coordination sphere is fulfilled by the six N atoms of the macrocycle, the four O atoms of the acetamide pendants, and a bidentate nitrate anion in the La3+ complex. The analogous Yb3+ complex presents, however, a 9-coordinated metal ion because one of the acetamide pendant arms remains uncoordinated. 1H NMR studies indicate that the 10-coordinated form is present in solution throughout the lanthanide series from La to Tb, while the smaller lanthanides form 9-coordinated species. 1H and 89Y NMR studies confirm the presence of this structural change because the two species are present in solution. Analysis of the 1H chemical shifts observed for the Tb3+ complex confirms its D2 symmetry in aqueous solution and evidences a highly rhombic magnetic susceptibility tensor. The acetamide resonances of the Pr3+ and Tb3+ complexes provided sizable paraCEST effects, as demonstrated by the corresponding Z-spectra recorded at different temperatures and studies on tube phantoms recorded at 22 °C.
Collapse
Affiliation(s)
- Goretti Castro
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Gaoji Wang
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Tanja Gambino
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.,Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 20031 Shanghai, P. R. China
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| |
Collapse
|
10
|
Rodríguez-Rodríguez A, Zaiss M, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Moritz Zaiss
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Lab of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P.R. China
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
11
|
Xie D, Yu M, Xie Z, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination‐Induced Spin‐State Switches for
19
F Magnetic Resonance‐Based Detection. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Da Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Meng Yu
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Zhu‐Lin Xie
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Rahul T. Kadakia
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Chris Chung
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Lauren E. Ohman
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Emily L. Que
- Department of Chemistry The University of Texas at Austin 105 E. 24th St Stop A5300 Austin TX 78712 USA
| |
Collapse
|
12
|
Xie D, Yu M, Xie ZL, Kadakia RT, Chung C, Ohman LE, Javanmardi K, Que EL. Versatile Nickel(II) Scaffolds as Coordination-Induced Spin-State Switches for 19 F Magnetic Resonance-Based Detection. Angew Chem Int Ed Engl 2020; 59:22523-22530. [PMID: 32790890 DOI: 10.1002/anie.202010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 12/15/2022]
Abstract
19 F magnetic resonance (MR) based detection coupled with well-designed inorganic systems shows promise in biological investigations. Two proof-of-concept inorganic probes that exploit a novel mechanism for 19 F MR sensing based on converting from low-spin (S=0) to high-spin (S=1) Ni2+ are reported. Activation of diamagnetic NiL1 and NiL2 by light or β-galactosidase, respectively, converts them into paramagnetic NiL0 , which displays a single 19 F NMR peak shifted by >35 ppm with accelerated relaxation rates. This spin-state switch is effective for sensing light or enzyme expression in live cells using 19 F MR spectroscopy and imaging that differentiate signals based on chemical shift and relaxation times. This general inorganic scaffold has potential for developing agents that can sense analytes ranging from ions to enzymes, opening up diverse possibilities for 19 F MR based biosensing.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Zhu-Lin Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Chris Chung
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Lauren E Ohman
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, TX, 78712, USA
| |
Collapse
|
13
|
Bond CJ, Cineus R, Nazarenko AY, Spernyak JA, Morrow JR. Isomeric Co(ii) paraCEST agents as pH responsive MRI probes. Dalton Trans 2020; 49:279-284. [PMID: 31833500 DOI: 10.1039/c9dt04558a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A newly discovered isomer of Co(ii) (1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane = CCRM) produces four highly paramagnetically shifted chemical exchange saturation transfer (CEST) peaks. The 1,8-pendants of the complex are bound in a trans-arrangement to produce a Co(ii) complex of increased kinetic inertness. The isomers have a stabilized Co(ii) center (E1/2 of 540 to 550 mV versus SHE). Both the 1,8 and the 1,4-isomer are excellent pH probes in solution and in tissue homogenate by virtue of their highly paramagnetically shifted amide protons. These isomers produce both a ratiometric pH readout as well as amide proton exchange rate constants that correlate to pH.
Collapse
Affiliation(s)
- Christopher J Bond
- Department of Chemistry, Natural Sciences Complex, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|
14
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
15
|
Gambino T, Valencia L, Pérez-Lourido P, Esteban-Gómez D, Zaiss M, Platas-Iglesias C, Angelovski G. Inert macrocyclic Eu3+ complex with affirmative paraCEST features. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01612k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly kinetically inert paramagnetic platform shows outstanding CEST properties suitable for advantageous MRI applications.
Collapse
Affiliation(s)
- Tanja Gambino
- MR Neuroimaging Agents
- MPI for Biological Cybernetics
- Tuebingen
- Germany
| | - Laura Valencia
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidade de Vigo
- 36310 Pontevedra
- Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidade de Vigo
- 36310 Pontevedra
- Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Moritz Zaiss
- High-Field Magnetic Resonance
- MPI for Biological Cybernetics
- Tuebingen
- Germany
- Department of Neuroradiology
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Goran Angelovski
- MR Neuroimaging Agents
- MPI for Biological Cybernetics
- Tuebingen
- Germany
| |
Collapse
|
16
|
Dou W, Lin CYE, Ding H, Shen Y, Dou C, Qian L, Wen B, Wu B. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 2019; 9:1747-1766. [PMID: 31728316 PMCID: PMC6828581 DOI: 10.21037/qims.2019.10.03] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is a novel contrast mechanism, relying on the exchange between mobile protons in amide (-NH), amine (-NH2) and hydroxyl (-OH) groups and bulk water. Due to the targeted protons present in endogenous molecules or exogenous compounds applied externally, CEST imaging can respectively, generate endogenous or exogenous contrast. Nowadays, CEST imaging for endogenous contrast has been explored in pre-clinical and clinical studies. Amide CEST, also called amide proton transfer weighted (APT) imaging, generates CEST effect at 3.5 ppm away from the water signal and has been widely investigated. Given the sensitivity to amide proton concentration and pH level, APT imaging has shown robust performance in the assessment of ischemia, brain tumors, breast and prostate cancer as well as neurodegenerative diseases. With advanced methods proposed, pure APT and Nuclear Overhauser Effect (NOE) mediated CEST effects were separately fitted from original APT signal. Using both effects, early but promising results were obtained for glioma patients in the evaluation of tumor response to therapy and patient survival. Compared to amide CEST, amine CEST is also mobile proton concentration and pH dependent, but has a faster exchange rate between amine protons and water. The resultant CEST effect is usually introduced at 1.8-3 ppm. Glutamate and creatine, as two main metabolites with amine groups for CEST imaging, have been applied to quantitatively assess diseases in the central nervous system and muscle system, respectively. Glycosaminoglycan (Gag) as a representative metabolite with hydroxyl groups has also been measured to evaluate the cartilage of knee or intervertebral discs in CEST MRI. Due to limited frequency difference between hydroxyl protons and water, 7T for better spectral separation is preferred over 3T for GagCEST measurement. The applications of CEST MRI with exogenous contrast agents are still quite limited in clinic. While certain diamagnetic CEST agents, such as dynamic-glucose, have been tried in human for brain tumor or neck cancer assessment, most exogenous agents, i.e., paramagnetic CEST agents, are still tested in the pre-clinical stage, mainly due to potential toxicity. Engineered tissues for tissue regeneration and drug delivery have also shown a great potential in CEST imaging, as many of them, such as hydrogel and polyamide materials, contain mobile protons or can be incorporated with CEST specific chemical compounds. These engineered tissues can thus generate CEST effect in vivo, allowing a possibility to understand the fate of them in vivo longitudinally. Although the CEST MRI with engineered tissues has only been established in early stage, the obtained first evidence is crucial for further optimizing these biomaterials and finally accomplishing the translation into clinical use.
Collapse
Affiliation(s)
- Weiqiang Dou
- MR Research, GE Healthcare, Beijing 100076, China
| | | | - Hongyuan Ding
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yong Shen
- MR Enhanced Application, GE Healthcare, Beijing 100076, China
| | - Carol Dou
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100076, China
| | - Baohong Wen
- Department of MRI, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Wu
- MR Research, GE Healthcare, Beijing 100076, China
| |
Collapse
|
17
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Pradhan RN, Chakraborty S, Bharti P, Kumar J, Ghosh A, Singh AK. Seven coordinate Co(ii) and six coordinate Ni(ii) complexes of an aromatic macrocyclic triamide ligand as paraCEST agents for MRI. Dalton Trans 2019; 48:8899-8910. [PMID: 31140528 DOI: 10.1039/c9dt00747d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We are reporting Co(ii) and Ni(ii) complexes of a pyridine containing aromatic macrocyclic triamide ligand, 3,6,9,15-tetraazabicyclo(9.3.1)pentadeca-1(15),11,13-triene-3,6,9-triacetamide (TPTA), as paramagnetic chemical exchange saturation transfer (paraCEST) MRI contrast agents. The synthesis and characterization of TPTA and its complexes are reported. The solution chemistry and solid-state structure of Co(ii) and Ni(ii) complexes are studied. Crystallographic data show that the [Co(TPTA)]·Cl2·2H2O complex (seven-coordinate, all four N atoms of ring and three amide O atoms) has a distorted pentagonal bipyramidal geometry, however the [Ni(TPTA)Cl]·Cl·0.25H2O complex (six-coordinate, all four N atoms of the ring, one amide O and one chloride ion) adopts a distorted octahedral geometry. Notably the two pendent amide arms are not coordinated in the [Ni(TPTA)Cl]+ complex and one chloride ion fulfils its sixth coordination. The CEST effect of [Co(TPTA)]2+ and [Ni(TPTA)Cl]+ amide protons is observed at 57 ppm and 78 ppm downfield of the bulk water proton respectively in a buffer solution containing 20 mM N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid and 100 mM NaCl at pH 7.4 at 37 °C on a 9.4 T NMR spectrometer. The effects of CEST intensity and exchange rate constant with variation of pH of the solution were studied. The CEST effect and exchange rate constant for the amide protons of the [Co(TPTA)]2+ complex have been monitored in HEPES buffer, fetal bovine serum (FBS), rabbit serum and 4% agarose gel (w/w). The stability of the [Co(TPTA)]2+ complex in aqueous solution towards oxidation was verified by cyclic voltammetry measurement. The stability of [Co(TPTA)]2+ has further been monitored in the presence of biologically relevant ions including HPO42-, CO32-, and Zn2+ and under acidic conditions.
Collapse
Affiliation(s)
- Rabindra N Pradhan
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India.
| | - Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (HBNI) Bhubaneswar, 752050, India.
| | - Pratibha Bharti
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Janesh Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (HBNI) Bhubaneswar, 752050, India.
| | - Akhilesh K Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752050, India.
| |
Collapse
|
19
|
Scepaniak JJ, Kang EB, John M, Kaminsky W, Dechert S, Meyer F. Non‐Macrocyclic Schiff Base Complexes of Iron(II) as ParaCEST Agents for MRI. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jeremiah J. Scepaniak
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Eun Byoung Kang
- Department of Chemistry Drexel University 32 S. 32nd St. Disque Hall 506 19104 Philadelphia PA USA
| | - Michael John
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Werner Kaminsky
- Department of Chemistry University of Washington Box 351700 98195‐1700 Seattle WA USA
| | - Sebastian Dechert
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische Chemie Georg‐August‐Universität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
20
|
Du K, Thorarinsdottir AE, Harris TD. Selective Binding and Quantitation of Calcium with a Cobalt-Based Magnetic Resonance Probe. J Am Chem Soc 2019; 141:7163-7172. [PMID: 30946580 DOI: 10.1021/jacs.9b02661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report a cobalt-based paramagnetic chemical exchange saturation transfer (PARACEST) magnetic resonance (MR) probe that is able to selectively bind and quantitate the concentration of Ca2+ ions under physiological conditions. The parent LCo complex features CEST-active carboxamide groups and an uncoordinated crown ether moiety in close proximity to a high-spin pseudo-octahedral CoII center. Addition of Na+, Mg2+, K+, and Ca2+ leads to binding of these metal ions within the crown ether. Single-crystal X-ray diffraction and solid-state magnetic measurements reveal the presence of a cation-specific coordination environment and magnetic anisotropy of CoII, with axial zero-field splitting parameters for the Na+- and Ca2+-bound complexes differing by over 90%. Owing to these differences, solution-based measurements under physiological conditions indicate reversible binding of Na+ and Ca2+ to give well-separated CEST peaks at 69 and 80 ppm for [LCoNa]+ and [LCoCa]2+, respectively. Dissociation constants for different cation-bound complexes of LCo, as determined by 1H NMR spectroscopy, demonstrate high selectivity toward Ca2+. This finding, in conjunction with the large excess of Na+ in physiological environments, minimizes interference from related cations, such as Mg2+ and K+. Finally, variable-[Ca2+] CEST spectra establish the ratio between the CEST peak intensities for the Ca2+- and Na+-bound probes (CEST80 ppm/CEST69 ppm) as a measure of [Ca2+], providing the first example of a ratiometric quantitation of Ca2+ concentration using PARACEST. Taken together, these results demonstrate the ability of transition metal PARACEST probes to afford a concentration-independent measure of [Ca2+] and provide a new approach for designing MR probes for cation sensing.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - T David Harris
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
21
|
Pujales‐Paradela R, Savić T, Esteban‐Gómez D, Angelovski G, Carniato F, Botta M, Platas‐Iglesias C. Gadolinium(III)‐Based Dual1H/19F Magnetic Resonance Imaging Probes. Chemistry 2019; 25:4782-4792. [DOI: 10.1002/chem.201806192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Rosa Pujales‐Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Tanja Savić
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - David Esteban‐Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas‐Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| |
Collapse
|
22
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Pujales-Paradela R, Savić T, Brandariz I, Pérez-Lourido P, Angelovski G, Esteban-Gómez D, Platas-Iglesias C. Reinforced Ni(ii)-cyclam derivatives as dual1H/19F MRI probes. Chem Commun (Camb) 2019; 55:4115-4118. [DOI: 10.1039/c9cc01204d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extremely inert paramagnetic nickel(ii) complexes based on a cross-bridged cyclam platform present responses at the1H (CEST) and19F frequencies.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Tanja Savić
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tuebingen
- Germany
| | - Isabel Brandariz
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Paulo Pérez-Lourido
- Departamento de Química Inorgánica
- Facultad de Ciencias, Universidade de Vigo
- As Lagoas
- Marcosende
- 36310 Pontevedra
| | - Goran Angelovski
- MR Neuroimaging Agents
- Max Planck Institute for Biological Cybernetics
- Tuebingen
- Germany
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias
- Universidade da Coruña
- 15071 A Coruña
- Spain
| |
Collapse
|
24
|
Thorarinsdottir AE, Tatro SM, Harris TD. Electronic Effects of Ligand Substitution in a Family of CoII2 PARACEST pH Probes. Inorg Chem 2018; 57:11252-11263. [DOI: 10.1021/acs.inorgchem.8b01896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Scott M. Tatro
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - T. David Harris
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Caneda-Martínez L, Valencia L, Fernández-Pérez I, Regueiro-Figueroa M, Angelovski G, Brandariz I, Esteban-Gómez D, Platas-Iglesias C. Toward inert paramagnetic Ni(ii)-based chemical exchange saturation transfer MRI agents. Dalton Trans 2018; 46:15095-15106. [PMID: 29067395 DOI: 10.1039/c7dt02758c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ni2+ complexes with hexadentate ligands containing two 6-methylpicolinamide groups linked by ethane-1,2-diamine (dedpam) or cyclohexane-1,2-diamine (chxdedpam) spacers were investigated as potential contrast agents in magnetic resonance imaging (MRI). The properties of the complexes were compared to that of the analogues containing 6-methylpicolinate units (dedpa2- and chxdedpa2-). The X-ray structure of the [Ni(dedpam)]2+ complex reveals a six-coordinated metal ion with a distorted octahedral environment. The protonation constants of the dedpa2- and dedpam ligands and the stability constants of their Ni2+ complexes were determined using pH-potentiometry and spectrophotometric titrations (25 °C, 0.15 M NaCl). The [Ni(dedpa)] complex (log KNiL = 20.88(1)) was found to be considerably more stable than the corresponding amide derivative [Ni(dedpam)]2+ (log KNiL = 14.29(2)). However, the amide derivative [Ni(chxdedpam)]2+ was found to be considerably more inert with respect to proton-assisted dissociation than the carboxylate derivative [Ni(chxdedpa)]. A detailed 1H NMR and DFT study was conducted to assign the 1H NMR spectra of the [Ni(chxdedpa)] and [Ni(chxdedpam)]2+ complexes. The observed 1H NMR paramagnetic shifts were found to be dominated by the Fermi contact contribution. The amide resonances of [Ni(chxdedpam)]2+ at 91.5 and 22.2 ppm were found to provide a sizeable chemical exchange saturation transfer effect, paving the way for the development of NiCEST agents based on these rigid non-macrocyclic platforms.
Collapse
Affiliation(s)
- Laura Caneda-Martínez
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dastrù W, Menchise V, Ferrauto G, Fabretto S, Carrera C, Terreno E, Aime S, Castelli DD. Modulation of the Prototropic Exchange Rate in pH-Responsive Yb-HPDO3A Derivatives as ParaCEST Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201800283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Valeria Menchise
- Istituto di Biostrutture e Bioimmagini; Consiglio Nazionale delle Ricerche; via Mezzocannone 16 80134 Napoli Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Serena Fabretto
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Carla Carrera
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences; Molecular Imaging Center; University of Torino; Via Nizza 52 10126 Torino Italy
| |
Collapse
|
27
|
Abozeid SM, Snyder EM, Lopez AP, Steuerwald CM, Sylvester E, Ibrahim KM, Zaky RR, Abou‐El‐Nadar HM, Morrow JR. Nickel(II) Complexes as Paramagnetic Shift and paraCEST Agents. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samira M. Abozeid
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
- Department of Chemistry Faculty of Science Mansoura University El‐Gomhoria Street 35516 Mansoura Egypt
| | - Eric M. Snyder
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
| | - Alejandra P. Lopez
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
| | - Charles M. Steuerwald
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
| | - Eric Sylvester
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
| | - Kamal M. Ibrahim
- Department of Chemistry Faculty of Science Mansoura University El‐Gomhoria Street 35516 Mansoura Egypt
| | - Rania R. Zaky
- Department of Chemistry Faculty of Science Mansoura University El‐Gomhoria Street 35516 Mansoura Egypt
| | - Hamed M. Abou‐El‐Nadar
- Department of Chemistry Faculty of Science Mansoura University El‐Gomhoria Street 35516 Mansoura Egypt
| | - Janet R. Morrow
- University at Buffalo, State University of New York Department of Chemistry 526 Natural Sciences Complex 14260 Amherst NY USA
| |
Collapse
|
28
|
Pota K, Garda Z, Kálmán FK, Barriada JL, Esteban-Gómez D, Platas-Iglesias C, Tóth I, Brücher E, Tircsó G. Taking the next step toward inert Mn2+ complexes of open-chain ligands: the case of the rigid PhDTA ligand. NEW J CHEM 2018. [DOI: 10.1039/c8nj00121a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Equilibrium, dissociation kinetics, relaxometric and electrochemical properties of the [Mn(PhDTA)]2− complex were investigated and the structure of the [Mn(PhDTA)]2− complex was studied by using DFT calculations.
Collapse
Affiliation(s)
- Kristof Pota
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Zoltán Garda
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Ferenc Krisztián Kálmán
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - José Luis Barriada
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - David Esteban-Gómez
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA)
- Departamento de Química, Universidade da Coruña
- Spain
| | - Imre Tóth
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Ernő Brücher
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Gyula Tircsó
- Department of Inorganic and Analytical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- H-4032 Debrecen
- Hungary
| |
Collapse
|
29
|
Gonçalves MA, Santos LS, Peixoto FC, da Cunha EFF, Silva TC, Ramalho TC. Comparing Structure and Dynamics of Solvation of Different Iron Oxide Phases for Enhanced Magnetic Resonance Imaging. ChemistrySelect 2017. [DOI: 10.1002/slct.201701705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Lizandro S. Santos
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | - Fernando C. Peixoto
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | | | - Telles C. Silva
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
- Center for Basic and Applied Research; University of Hradec Kralove; Hradec Kralove Czech Republic
| |
Collapse
|
30
|
Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: Evolution of new mechanisms. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:32-42. [PMID: 29157492 PMCID: PMC5726449 DOI: 10.1016/j.pnmrs.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
31
|
Thorarinsdottir AE, Du K, Collins JHP, Harris TD. Ratiometric pH Imaging with a CoII2 MRI Probe via CEST Effects of Opposing pH Dependences. J Am Chem Soc 2017; 139:15836-15847. [DOI: 10.1021/jacs.7b08574] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Kang Du
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James H. P. Collins
- Advanced
Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, Florida 32611, United States
| | - T. David Harris
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Angelovski G. Heading toward Macromolecular and Nanosized Bioresponsive MRI Probes for Successful Functional Imaging. Acc Chem Res 2017; 50:2215-2224. [PMID: 28841293 DOI: 10.1021/acs.accounts.7b00203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The quest for bioresponsive or smart contrast agents (SCAs) in molecular imaging, in particular magnetic resonance imaging (MRI), is progressively increasing since they allow for the monitoring of essential biological processes on molecular and cellular levels in a dynamic fashion. These are offshoot molecules of common contrast agents that are sensitive to biochemical changes in their environment, capable of reporting on such changes by inducing MRI signal alteration. Various mechanistic approaches and different types of SCAs have been developed in order to visualize desired processes, using diverse imaging protocols and methods. To date, the most frequently exploited probes are paramagnetic molecules that change longitudinal or transverse relaxation at proton frequency, or so-called T1- and T2-weighted probes, respectively. Moreover, SCAs operating by the chemical exchange saturation transfer mechanism, suitable for 19F MRI or possessing hyperpolarized nuclei have also appeared in the past decade, slowly finding their role in functional imaging studies. Following these mechanistic principles, a large number of SCAs suitable for diverse targets have been reported to date. This Account condenses this exciting progress, particularly focusing on probes designed for abundant targets that are suitable for practical, in vivo utilization. To date, the greatest advancements have been certainly made in the preparation of pH sensitive probes, which usually contain protonable groups that interact with paramagnetic centers, or take advantage of supramolecular (dis)assembling to induce the MRI signal change, thereupon enabling pH mapping in vivo. In a complementary approach, a combination of metal chelating ligands for Ca2+ or Zn2+ with MR reporting units results in a wide variety of SCAs that operate with different contrast mechanisms and can be used for initial functional experiments. Finally, the first examples of molecular sensing by creating host-guest complexes to track neurotransmitter flux have also been recently reported, allowing the study of brain function in an unprecedented manner. Nevertheless, wider SCA utilization in vivo has not yet been achieved. There are a few reasons for this disparity between their nominal potential and practical usage, with one of the major reasons being the low sensitivity of the MRI technique. Subsequently, the production of detectable signal change can be achieved using higher concentrations of the bioresponsive probe; however, the biocompatibility of these probes then starts to play an important role. An elegant solution to these practical challenges has been found with the integration of multiple small-sized SCAs into macromolecular and nanosized probes. In such case, the multivalent SCAs are able to circumvent the sensitivity issue, thus enhancing the MR signal and desired contrast changes. Moreover, they prolong the probe tissue retention time, while often reducing their toxicity. Finally, with altered size and properties, they allow for exploitation of mechanisms that induce the contrast change which is not possible with small-sized SCAs. To this end, this Account also discusses the current approaches that aim to develop macromolecular and nanosized SCAs suitable for practical MRI applications. With these, further progress of this exciting field is affirmed, with remarkable results expected in the near future on both the probe preparation and their utilization in functional molecular imaging.
Collapse
Affiliation(s)
- Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, D-72076 Tuebingen, Germany
| |
Collapse
|
33
|
Singh J, Rustagi V, Zhang S, Sherry AD, Udugamasooriya DG. On-bead combinatorial synthesis and imaging of europium(III)-based paraCEST agents aids in identification of chemical features that enhance CEST sensitivity. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:747-753. [PMID: 28220538 PMCID: PMC5501467 DOI: 10.1002/mrc.4588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 05/08/2023]
Abstract
The rate of water exchange between the inner sphere of a paramagnetic ion and bulk water is an important parameter in determining the magnitude of the chemical exchange saturation transfer signal from paramagnetic CEST agents (paraCEST). This is governed by various geometric, steric and ligand field factors created by macrocyclic ligands surrounding the paramagnetic metal ion. Our previous on-bead combinatorial studies of di-peptoid-europium(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-tetraamide complexes revealed that negatively charged groups in the immediate vicinity of the metal center strongly enhances the CEST signal. Here, we report a solid phase synthesis and on-bead imaging of 76 new DOTA derivatives that are developed by coupling with a single residue onto each of the three arms of a DOTA-tetraamide scaffold attached to resin beads. This single residue predominantly carries negatively charged groups blended with various physico-chemical characteristics. We found that non-bulky negatively charged groups are best suited at the immediate vicinity of the metal ion, while positive, bulky and halogen containing moieties suppress the CEST signal. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jaspal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd, Houston, TX, 77204-5037, USA
| | - Vineeta Rustagi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd, Houston, TX, 77204-5037, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8568, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8568, USA
- Department of Chemistry, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX, 75083-3021, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd, Houston, TX, 77204-5037, USA
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77030-4009, USA
| |
Collapse
|
34
|
Cakić N, Tickner B, Zaiss M, Esteban-Gómez D, Platas-Iglesias C, Angelovski G. Spectrally Undiscerned Isomers Might Lead to Erroneous Determination of Water Exchange Rates of paraCEST Eu(III) Agents. Inorg Chem 2017. [DOI: 10.1021/acs.inorgchem.7b00441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nevenka Cakić
- MR
Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Ben Tickner
- MR
Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Moritz Zaiss
- High-Field
Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - David Esteban-Gómez
- Universidade da Coruña, Centro de Investigacións
Científicas Avanzadas (CICA) and Departamento de Química
Fundamental, Facultade de Ciencias, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Universidade da Coruña, Centro de Investigacións
Científicas Avanzadas (CICA) and Departamento de Química
Fundamental, Facultade de Ciencias, 15071 A Coruña, Galicia, Spain
| | - Goran Angelovski
- MR
Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Xie D, Kim S, Kohli V, Banerjee A, Yu M, Enriquez JS, Luci JJ, Que EL. Hypoxia-Responsive 19F MRI Probes with Improved Redox Properties and Biocompatibility. Inorg Chem 2017; 56:6429-6437. [PMID: 28537705 DOI: 10.1021/acs.inorgchem.7b00500] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
19F magnetic resonance imaging (MRI), an emerging modality in biomedical imaging, has shown promise for in vitro and in vivo preclinical studies. Here we present a series of fluorinated Cu(II)ATSM derivatives for potential use as 19F magnetic resonance agents for sensing cellular hypoxia. The synthesized complexes feature a hypoxia-targeting Cu2+ coordination core, nine equivalent fluorine atoms connected via a variable-length poly(ethylene glycol) linker. Introduction of the fluorine moiety maintains the planar coordination geometry of the Cu2+ center, while the linker length modulates the Cu2+/+ reduction potential, 19F NMR relaxation properties, and lipophilicity. In particular, the 19F NMR relaxation properties were quantitatively evaluated by the Solomon-Bloembergen model, revealing a regular pattern of relaxation enhancement tuned by the distance between Cu2+ and F atoms. Finally, the potential utility of these complexes for sensing reductive environments was demonstrated using both 19F MR phantom imaging and 19F NMR, including experiments in intact live cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Seyong Kim
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Vikraant Kohli
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Arnab Banerjee
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - José S Enriquez
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin , Austin, Texas 78712, United States.,Imaging Research Center, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
36
|
McMahon MT, Gilad AA. Cellular and Molecular Imaging Using Chemical Exchange Saturation Transfer. Top Magn Reson Imaging 2017; 25:197-204. [PMID: 27748713 DOI: 10.1097/rmr.0000000000000105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a powerful new tool well suited for molecular imaging. This technology enables the detection of low concentration probes through selective labeling of rapidly exchanging protons or other spins on the probes. In this review, we will highlight the unique features of CEST imaging technology and describe the different types of CEST agents that are suited for molecular imaging studies, including CEST theranostic agents, CEST reporter genes, and CEST environmental sensors.
Collapse
Affiliation(s)
- Michael T McMahon
- *F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute †The Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research ‡Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
37
|
Burns PJ, Cox JM, Morrow JR. Imidazole-Appended Macrocyclic Complexes of Fe(II), Co(II), and Ni(II) as ParaCEST Agents. Inorg Chem 2017; 56:4546-4555. [DOI: 10.1021/acs.inorgchem.7b00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick J. Burns
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Jordan M. Cox
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
38
|
A quantum chemistry evaluation of the stereochemical activity of the lone pair in PbII complexes with sequestering ligands. J Mol Model 2017; 23:24. [DOI: 10.1007/s00894-016-3190-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
|
39
|
O’Neill ES, Kolanowski JL, Bonnitcha PD, New EJ. A cobalt(ii) complex with unique paraSHIFT responses to anions. Chem Commun (Camb) 2017; 53:3571-3574. [DOI: 10.1039/c7cc00619e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A cobalt(ii) complex can distinguish between anions by observing the paramagnetic 1H NMR shift.
Collapse
Affiliation(s)
- E. S. O’Neill
- School of Chemistry
- The University of Sydney
- Australia
| | | | - P. D. Bonnitcha
- Sydney Medical School
- Royal North Shore Hospital
- St. Leonards
- Australia
| | - E. J. New
- School of Chemistry
- The University of Sydney
- Australia
| |
Collapse
|
40
|
Tsitovich PB, Cox JM, Spernyak JA, Morrow JR. Gear Up for a pH Shift: A Responsive Iron(II) 2-Amino-6-picolyl-Appended Macrocyclic paraCEST Agent That Protonates at a Pendent Group. Inorg Chem 2016; 55:12001-12010. [PMID: 27934305 DOI: 10.1021/acs.inorgchem.6b02159] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two high-spin Fe(II) and Co(II) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with four 2-amino-6-picolyl groups, denoted as [Fe(TAPC)]2+ and [Co(TAPC)]2+, are reported. These complexes demonstrate C2-symmetrical geometry from coordination of two pendents, and they are present in a single diastereomeric form in aqueous solution as shown by 1H NMR spectroscopy and by a single-crystal X-ray structure for the Co(II) complex. A highly shifted but low-intensity CEST (chemical exchange saturation transfer) signal from NH groups is observed at -118 ppm for [Co(TAPC)]2+ at pH 6.0 and 37 °C. A higher intensity CEST peak is observed for [Fe(TAPC)]2+, which demonstrates a pH-dependent frequency shift from -72 to -79 ppm at pH 7.7 to 4.8, respectively, at 37 °C. This shift in the CEST peak correlates with the protonation of the unbound 2-amino-6-picolyl pendents, as suggested by UV-vis and 1H NMR spectroscopy studies at different pH values. Phantom imaging demonstrates the challenges and feasibility of using the [Fe(TAPC)]2+ agent on a low-field MRI scanner. The [Fe(TAPC)]2+ complex is the first transition-metal-based paraCEST agent that produces a pH-induced CEST frequency change toward the development of probes for concentration-independent imaging of pH.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| | - Jordan M Cox
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer Institute , Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
41
|
Zhou IY, Fuss TL, Igarashi T, Jiang W, Zhou X, Cheng LL, Sun PZ. Tissue Characterization with Quantitative High-Resolution Magic Angle Spinning Chemical Exchange Saturation Transfer Z-Spectroscopy. Anal Chem 2016; 88:10379-10383. [PMID: 27709896 PMCID: PMC5441684 DOI: 10.1021/acs.analchem.6b03137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.
Collapse
Affiliation(s)
- Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Taylor L. Fuss
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Weiping Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Leo L. Cheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
42
|
Du K, Harris TD. A CuII2 Paramagnetic Chemical Exchange Saturation Transfer Contrast Agent Enabled by Magnetic Exchange Coupling. J Am Chem Soc 2016; 138:7804-7. [DOI: 10.1021/jacs.6b03060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kang Du
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - T. David Harris
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
43
|
Sun PZ, Xiao G, Zhou IY, Guo Y, Wu R. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:195-202. [PMID: 26689424 PMCID: PMC4892969 DOI: 10.1002/cmmi.1680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/04/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI holds enormous promise for imaging pH. Whereas the routine CEST-weighted MRI contrast is complex and susceptible to confounding factors such as labile proton ratio, chemical shift, bulk water relaxation and RF saturation, ratiometric CEST imaging simplifies pH determination. However, the conventional ratiometric CEST (RCEST) MRI approach is limited to CEST agents with multiple exchangeable groups. To address this limitation, RF power-based ratiometric CEST (PRCEST) imaging has been proposed that ratios CEST effects obtained under different RF power levels. Nevertheless, due to concomitant RF saturation (spillover) effect, the recently proposed PRCEST imaging is somewhat dependent on parameters including bulk water relaxation time and chemical shift. Herein we hypothesized that RF power-based ratiometric analysis of RF spillover effect-corrected inverse CEST asymmetry (PRICEST) provides enhanced pH measurement. The postulation was verified numerically, and validated experimentally using an in vitro phantom. Briefly, our study showed that the difference between MRI-determined pH (pHMRI ) and electrode-measured pH being 0.12 ± 0.13 and 0.04 ± 0.03 for PRCEST and PRICEST imaging, respectively, and the newly proposed PRICEST imaging provides significantly more accurate pH determination than PRCEST imaging (P < 0.01, Wilcoxon signed-rank test). Notably, the exchange rate shows dominantly base-catalysed relationship with pH, independent of creatine concentration (P > 0.10, Analysis of Covariance). In addition, the derived labile proton ratio linearly scales with creatine concentration (P < 0.01, Pearson Regression). To summarize, PRICEST MRI provides concentration-independent pH imaging, augmenting prior quantitative CEST methods for accurate pH mapping. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,
USA
- Corresponding Authors: Prof. Phillip Zhe Sun
(), Athinoula A. Martinos Center
for Biomedical Imaging, Department of Radiology, MGH and Harvard Medical School,
Rm 2301, 149 13 Street, Charlestown, MA 02129, Phone: 617-726-4060,
Fax: 617-726-7422; Prof. Renhua Wu (), Department
of Radiology, 2 Affiliated Hospital of Shantou University Medical
College, Shantou 515041, Guangdong, China, Tel: (86) 0754-88915674
| | - Gang Xiao
- Department of Math and Applied Mathematics, Hanshan Normal
University, Chaozhou, China
- Department of Radiology, 2 Affiliated Hospital of
Shantou University Medical College, Shantou, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,
USA
| | - Yingkun Guo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of
Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA,
USA
| | - Renhua Wu
- Department of Radiology, 2 Affiliated Hospital of
Shantou University Medical College, Shantou, China
- Corresponding Authors: Prof. Phillip Zhe Sun
(), Athinoula A. Martinos Center
for Biomedical Imaging, Department of Radiology, MGH and Harvard Medical School,
Rm 2301, 149 13 Street, Charlestown, MA 02129, Phone: 617-726-4060,
Fax: 617-726-7422; Prof. Renhua Wu (), Department
of Radiology, 2 Affiliated Hospital of Shantou University Medical
College, Shantou 515041, Guangdong, China, Tel: (86) 0754-88915674
| |
Collapse
|
44
|
Li J, Feng X, Zhu W, Oskolkov N, Zhou T, Kim BK, Baig N, McMahon MT, Oldfield E. Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI. Chemistry 2016; 22:264-71. [PMID: 26616530 PMCID: PMC4715718 DOI: 10.1002/chem.201503942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/31/2023]
Abstract
Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd(3+) -based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the (1) H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R(2) =0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4-dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that (1) H NMR shifts for CEST agents-charged species-can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.
Collapse
Affiliation(s)
- Jikun Li
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Xinxin Feng
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Wei Zhu
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Nikita Oskolkov
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA)
| | - Tianhui Zhou
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Boo Kyung Kim
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Noman Baig
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA)
| | - Michael T McMahon
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 991 N. Broadway Baltimore, Maryland 21287 (USA).
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21287 (USA).
| | - Eric Oldfield
- Department of Chemistry University of Illinois at Urbana Champaign, 600 South Mathews Urbana, IL 61801 (USA).
| |
Collapse
|
45
|
Blahut J, Hermann P, Gálisová A, Herynek V, Císařová I, Tošner Z, Kotek J. Nickel(ii) complexes of N-CH2CF3 cyclam derivatives as contrast agents for 19F magnetic resonance imaging. Dalton Trans 2016; 45:474-8. [DOI: 10.1039/c5dt04138d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel(ii) complexes of N,N′′-2,2,2-trifluoroethyl cyclam derivatives show significant 19F NMR relaxation rate enhancement useful for 19F MRI imaging.
Collapse
Affiliation(s)
- Jan Blahut
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University (Univerzita Karlova)
- 128 43 Prague 2
- Czech Republic
| | - Petr Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University (Univerzita Karlova)
- 128 43 Prague 2
- Czech Republic
| | - Andrea Gálisová
- Department of Radiodiagnostic and Interventional Radiology
- Magnetic Resonance Unit
- Institute for Clinical and Experimental Medicine
- Prague 4
- 140 21 Czech Republic
| | - Vít Herynek
- Department of Radiodiagnostic and Interventional Radiology
- Magnetic Resonance Unit
- Institute for Clinical and Experimental Medicine
- Prague 4
- 140 21 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University (Univerzita Karlova)
- 128 43 Prague 2
- Czech Republic
| | - Zdeněk Tošner
- NMR Laboratory
- Faculty of Science
- Charles University (Univerzita Karlova)
- 128 43 Prague 2
- Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University (Univerzita Karlova)
- 128 43 Prague 2
- Czech Republic
| |
Collapse
|
46
|
Krchová T, Gálisová A, Jirák D, Hermann P, Kotek J. Ln(iii)-complexes of a DOTA analogue with an ethylenediamine pendant arm as pH-responsive PARACEST contrast agents. Dalton Trans 2016; 45:3486-96. [DOI: 10.1039/c5dt04443j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New contrast agents useful for pH determination (in the biologically relevant pH range) by Magnetic Resonance Imaging (MRI) using magnetization transfer ratio approach are presented.
Collapse
Affiliation(s)
- T. Krchová
- Department of Inorganic Chemistry
- Faculty of Science
- Universita Karlova (Charles University)
- 128 43 Prague 2
- Czech Republic
| | - A. Gálisová
- Department of Radiodiagnostic and Interventional Radiology
- Magnetic Resonance Unit
- Institute for Clinical and Experimental Medicine
- Prague 4
- Czech Republic
| | - D. Jirák
- Department of Radiodiagnostic and Interventional Radiology
- Magnetic Resonance Unit
- Institute for Clinical and Experimental Medicine
- Prague 4
- Czech Republic
| | - P. Hermann
- Department of Inorganic Chemistry
- Faculty of Science
- Universita Karlova (Charles University)
- 128 43 Prague 2
- Czech Republic
| | - J. Kotek
- Department of Inorganic Chemistry
- Faculty of Science
- Universita Karlova (Charles University)
- 128 43 Prague 2
- Czech Republic
| |
Collapse
|
47
|
Olatunde AO, Bond CJ, Dorazio SJ, Cox JM, Benedict JB, Daddario MD, Spernyak JA, Morrow JR. Six, Seven or Eight Coordinate Fe(II) , Co(II) or Ni(II) Complexes of Amide-Appended Tetraazamacrocycles for ParaCEST Thermometry. Chemistry 2015; 21:18290-300. [PMID: 26494320 PMCID: PMC4679426 DOI: 10.1002/chem.201503125] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/26/2022]
Abstract
Fe(II) , Co(II) and Ni(II) complexes of two tetraazamacrocycles (1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (L1) and 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (L2) show promise as paraCEST agents for registration of temperature (paraCEST=paramagnetic chemical exchange saturation transfer). The Fe(II) , Co(II) and Ni(II) complexes of L1 show up to four CEST peaks shifted ≤112 ppm, whereas analogous complexes of L2 show only a single CEST peak at ≤69 ppm. Comparison of the temperature coefficients (CT ) of the CEST peaks of [Co(L2)](2+) , [Fe(L2)](2+) , [Ni(L1)](2+) and [Co(L1)](2+) showed that a CEST peak of [Co(L1)](2+) gave the largest CT (-0.66 ppm (o) C(-1) at 4.7 T). NMR spectral and CEST properties of these complexes correspond to coordination complex symmetry as shown by structural data. The [Ni(L1)](2+) and [Co(L1)](2+) complexes have a six-coordinate metal ion bound to the 1-, 4-amide oxygen atoms and four nitrogen atoms of the tetraazamacrocycle. The [Fe(L2)](2+) complex has an unusual eight-coordinate Fe(II) bound to four amide oxygen atoms and four macrocyclic nitrogen atoms. For [Co(L2)](2+) , one structure has seven-coordinate Co(II) with three bound amide pendents and a second structure has a six-coordinate Co(II) with two bound amide pendents.
Collapse
Affiliation(s)
- Abiola O Olatunde
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Christopher J Bond
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Sarina J Dorazio
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Jordan M Cox
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Jason B Benedict
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA)
| | - Michael D Daddario
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263 (USA)
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263 (USA)
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260-3000 (USA).
| |
Collapse
|
48
|
Kuda-Wedagedara ANW, Allen MJ. Enhancing magnetic resonance imaging with contrast agents for ultra-high field strengths. Analyst 2015; 139:4401-10. [PMID: 25054827 DOI: 10.1039/c4an00990h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contrast agents are diagnostic tools that often complement magnetic resonance imaging. At ultra-high field strengths (≥7 T), magnetic resonance imaging is capable of generating desirable high signal-to-noise ratios, but clinically available contrast agents are less effective at ultra-high field strengths relative to lower fields. This gap in effectiveness demands the development of contrast agents for ultra-high field strengths. In this minireview, we summarize contrast agents reported during the last three years that focused on ultra-high field strengths.
Collapse
|
49
|
Suchý M, Milne M, Elmehriki AAH, McVicar N, Li AX, Bartha R, Hudson RHE. Introduction of Peripheral Carboxylates to Decrease the Charge on Tm3+ DOTAM-Alkyl Complexes: Implications for Detection Sensitivity and in Vivo Toxicity of PARACEST MRI Contrast Agents. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojmír Suchý
- Department
of Chemistry, The University of Western Ontario, Chemistry Building, London, Ontario N6A 5B7, Canada
- Department
of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Mark Milne
- Department
of Chemistry, The University of Western Ontario, Chemistry Building, London, Ontario N6A 5B7, Canada
| | - Adam A. H. Elmehriki
- Department
of Chemistry, The University of Western Ontario, Chemistry Building, London, Ontario N6A 5B7, Canada
| | - Nevin McVicar
- Department
of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Alex X. Li
- Department
of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Robert Bartha
- Department
of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Robert H. E. Hudson
- Department
of Chemistry, The University of Western Ontario, Chemistry Building, London, Ontario N6A 5B7, Canada
- Centre
for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
50
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|