1
|
Schröder N, Bartalucci E, Wiegand T. Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More. Chemphyschem 2024; 25:e202400537. [PMID: 39129653 DOI: 10.1002/cphc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Indexed: 08/13/2024]
Abstract
Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.
Collapse
Affiliation(s)
- Nina Schröder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Pradhan BL, Lodhi L, Dey KK, Ghosh M. Analyzing atomic scale structural details and nuclear spin dynamics of four macrolide antibiotics: erythromycin, clarithromycin, azithromycin, and roxithromycin. RSC Adv 2024; 14:17733-17770. [PMID: 38832242 PMCID: PMC11145140 DOI: 10.1039/d4ra00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
The current investigation centers on elucidating the intricate molecular architecture and dynamic behavior of four macrolide antibiotics, specifically erythromycin, clarithromycin, azithromycin, and roxithromycin, through the application of sophisticated solid-state nuclear magnetic resonance (SSNMR) methodologies. We have measured the principal components of chemical shift anisotropy (CSA) parameters, and the site-specific spin-lattice relaxation time at carbon nuclei sites. To extract the principal components of CSA parameters, we have employed 13C 2DPASS CP-MAS SSNMR experiments at two different values of magic angle spinning (MAS) frequencies, namely 2 kHz and 600 Hz. Additionally, the spatial correlation between 13C and 1H nuclei has been investigated using 1H-13C frequency switched Lee-Goldburg heteronuclear correlation (FSLGHETCOR) experiment at a MAS frequency of 24 kHz. Our findings demonstrate that the incorporation of diverse functional groups, such as the ketone group and oxime group with the lactone ring, exerts notable influences on the structure and dynamics of the macrolide antibiotic. In particular, we have observed a significant decrease in the spin-lattice relaxation time of carbon nuclei residing on the lactone ring, desosamine, and cladinose in roxithromycin, compared to erythromycin. Overall, our findings provide detailed insight into the relationship between the structure and dynamics of macrolide antibiotics, which is eventually correlated with their biological activity. This knowledge can be utilized to develop new and more effective drugs by providing a rational basis for drug discovery and design.
Collapse
Affiliation(s)
- Bijay Laxmi Pradhan
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
- Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| | - Lekhan Lodhi
- Department of Zoology, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Krishna Kishor Dey
- Department of Physics, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| |
Collapse
|
3
|
Yan Z, Zhao P, Yan X, Zhang R. Using Abundant 1H Polarization to Enhance the Sensitivity of Solid-State NMR Spectroscopy. J Phys Chem Lett 2024; 15:1866-1878. [PMID: 38343090 DOI: 10.1021/acs.jpclett.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Peizhi Zhao
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Johann C, Wegner S, Althoff G, Struppe J. Automation in solid state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107554. [PMID: 37717302 DOI: 10.1016/j.jmr.2023.107554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Automation in solid state NMR (ssNMR) requires appropriate hardware, from rotor loading mechanisms over highly stable rf-transmitters and probe circuitry to automatic tuning and matching capabilities including automatic magic angle adjustment for ssNMR probes. While these hardware capabilities are highly desirable and are, to various degrees, provided by manufacturers, we focus herein on automating experiment setup using radio frequency (rf) fields, which are key parameters in solid state NMR experiments. Specifically, these include spinlock fields during cross polarization (CP), or rf-fields for homo- or heteronuclear spin recoupling or decoupling. Often, these fields have specific relationships to the magic angle spinning (MAS) frequency. Relying on a well-maintained spectrometer, the experiment setup shifts from traditionally required optimization of rf-power values for each element of an experiment sequence to automatically setting all parameters correctly without any need for optimization. The proposed approach allows executing an experiment by reading its rf-amplitude requirements based on the actual MAS rotation frequency just before starting data acquisition, while all other hardware-related parameters are automatically provided through global tables and scripts. Under modest MAS frequencies, no further rf-power optimization is required while providing optimal sensitivity of better than 90% of the optimal signal to noise. Any optional parameter optimization relates only to adjusting rf-nutation frequencies to the requirements of the sample and the sample rotation frequency rather than the spectrometer hardware. Fast MAS CP experiments with MAS frequencies above 40 kHz require a semi-automated setup by optimizing Hartmann-Hahn (HH) matched rf-fields that are synchronously varied relative to the MAS-frequency. This allows for a significant reduction of setup steps by up to one order of magnitude for such experiments, avoiding the traditional grid search for optimal CPMAS conditions. The approach presented here can also be applied to decoupling or recoupling sequences, requiring rotor synchronized rf-fields, reducing the setup to a few steps addressing the spin system's properties rather than the spectrometer hardware. Our approach permits automating all basic solid state NMR experiments for high throughput analytical tasks.
Collapse
Affiliation(s)
- Christof Johann
- Buker Biospin Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | | | - Gerhard Althoff
- Buker Biospin Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States.
| |
Collapse
|
5
|
Kobayashi T, Nishiyama Y, Pandey MK. Determination of the mutual orientation between proton CSA tensors mediated through band-selective 1H- 1H recoupling under fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101874. [PMID: 37216831 DOI: 10.1016/j.ssnmr.2023.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The mutual orientation of nuclear spin interaction tensors provides critical information on the conformation and arrangement of molecules in chemicals, materials, and biological systems at an atomic level. Proton is a ubiquitous and important element in a variety of substances, and its NMR is highly sensitive due to their virtually 100% natural abundance and large gyromagnetic ratio. Nevertheless, the measurement of mutual orientation between the 1H CSA tensors has remained largely untouched in the past due to strong 1H-1H homonuclear interactions in a dense network of protons. In this study, we have developed a proton-detected 3D 1H CSA/1H CSA/1H CS correlation method that utilizes three techniques to manage homonuclear interactions, namely fast magic-angle spinning, windowless C-symmetry-based CSA recoupling (windowless-ROCSA), and a band-selective 1H-1H polarization transfer. The asymmetric 1H CSA/1H CSA correlated powder patterns produced by the C-symmetry-based methods are highly sensitive to the sign and asymmetry parameter of the 1H CSA, and the Euler angle β as compared to the symmetric pattern obtained by the existing γ-encoded R-symmetry-based CSA/CSA correlation methods and allows a larger spectral area for data fitting. These features are beneficial for determining the mutual orientation between the nuclear spin interaction tensors with improved accuracy.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- U.S. DOE, Ames National Laboratory, Iowa State University, Ames, IA, 50011-3020, USA.
| | | | - Manoj Kumar Pandey
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
6
|
Sehrawat N, Nehra E, Kumar Rohilla K, Kobayashi T, Nishiyama Y, Kumar Pandey M. Determination of the relative orientation between 15N- 1H dipolar coupling and 1H chemical shift anisotropy tensors under fast MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 350:107428. [PMID: 37018911 DOI: 10.1016/j.jmr.2023.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
In this work, we have proposed a proton-detected three-dimensional (3D) 15N-1H dipolar coupling (DIP)/1H chemical shift anisotropy (CSA)/1H chemical shift (CS) correlation experiment to measure the relative orientation between the 15N-1H dipolar coupling and the 1H CSA tensors under fast magic angle spinning (MAS) solid-state NMR. In the 3D correlation experiment, the 15N-1H dipolar coupling and 1H CSA tensors are recoupled using our recently developed windowless C-symmetry-based C331-ROCSA (recoupling of chemical shift anisotropy) DIPSHIFT and C331-ROCSA pulse-based methods, respectively. The 2D 15N-1H DIP/1H CSA powder lineshapes extracted using the proposed 3D correlation method are shown to be sensitive to the sign and asymmetry of the 1H CSA tensor, a feature that allows the determination of the relative orientation between the two correlating tensors with improved accuracy. The experimental method developed in this study is demonstrated on a powdered U-15N L-Histidine.HCl·H2O sample.
Collapse
Affiliation(s)
- Neelam Sehrawat
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India
| | - Ekta Nehra
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India
| | | | - Takeshi Kobayashi
- U.S. DOE, Ames Laboratory, Iowa State University, Ames, IA 50011-3020, United States
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Manoj Kumar Pandey
- Indian Institute of Technology (IIT) Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
7
|
Atterberry BA, Wimmer E, Estes DP, Rossini AJ. Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107457. [PMID: 37163927 DOI: 10.1016/j.jmr.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Erik Wimmer
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Aaron J Rossini
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Porat-Dahlerbruch G, Polenova T. Simultaneous recoupling of chemical shift tensors of two nuclei by R-symmetry sequences. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107382. [PMID: 36716616 PMCID: PMC10023370 DOI: 10.1016/j.jmr.2023.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 05/18/2023]
Abstract
Chemical shift tensors (CSTs) are sensitive probes of structure and dynamics. R-symmetry pulse sequences (RNCSA) can efficiently recouple CSTs of varying magnitudes in magic angle spinning (MAS) NMR experiments, for a broad range of conditions and MAS frequencies. Herein, we introduce dual-channel R-symmetry pulse sequences for simultaneously recording CSTs of two different nuclei in a single experiment (DORNE-CSA). We demonstrate the performance of DORNE-CSA sequences for simultaneous measurement of 13C and 15N CSTs, on a U-13C,15N-labeled microcrystalline l-histidine. We show that the DORNE-CSA method is robust, provides accurate CST parameters, and takes only half of the measurement time compared to a pair of RNCSA experiments otherwise required for recording the CSTs of individual nuclei. DORNE-CSA approach is broadly applicable to a wide range of biological and inorganic systems.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
9
|
Southern SA, Liu DJ, Chatterjee P, Li Y, Perras FA. 1H chemical shift anisotropy: a high sensitivity solid-state NMR dynamics probe for surface studies? Phys Chem Chem Phys 2023; 25:5348-5360. [PMID: 36399032 DOI: 10.1039/d2cp04406d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dynamics play significant roles in chemistry and biochemistry-molecular motions impact both large- and small-scale chemical reactions in addition to biochemical processes. In many systems, including heterogeneous catalysts, the characterization of dynamics remains a challenge. The most common approaches involve the solid-state NMR measurement of anisotropic interactions, in particular 2H quadrupolar coupling and 1H-X dipolar coupling, which generally require isotope enrichment. Due to the high sensitivity of 1H NMR, 1H chemical shift anisotropy (CSA) is a particularly enticing, and underexplored, dynamics probe. We carried out 1H CSA and 1H-13C dipolar coupling measurements in a series of model supported complexes to understand how 1H CSA can be leveraged to gain dynamic information for heterogeneous catalysts. Mathematical descriptions are given for the dynamic averaging of the CSA tensor, and its dependence on orientation and asymmetry. The variability of the orientation of the tensor in the molecular frame, in addition to its magnitude and asymmetry, negatively impacts attempts to extract quantitative dynamic information. Nevertheless, 1H CSA measurements can reveal useful qualitative insights into the motions of a particularly dilute site, such as from a surface species.
Collapse
Affiliation(s)
- Scott A Southern
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50014, USA.
| | - Da-Jiang Liu
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50014, USA.
| | - Puranjan Chatterjee
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50014, USA. .,Department of Chemistry, Iowa State University, Ames, IA 50014, USA
| | - Yuting Li
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50014, USA.
| | - Frédéric A Perras
- Division of Chemical and Biological Sciences, Ames National Laboratory, Ames, IA 50014, USA.
| |
Collapse
|
10
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
11
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
12
|
Liang L, Ji Y, Chen K, Gao P, Zhao Z, Hou G. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chem Rev 2022; 122:9880-9942. [PMID: 35006680 DOI: 10.1021/acs.chemrev.1c00779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the development of NMR methodology and technology during the past decades, solid-state NMR (ssNMR) has become a particularly important tool for investigating structure and dynamics at atomic scale in biological systems, where the recoupling techniques play pivotal roles in modern high-resolution MAS NMR. In this review, following a brief introduction on the basic theory of recoupling in ssNMR, we highlight the recent advances in dipolar and chemical shift anisotropy recoupling methods, as well as their applications in structural determination and dynamical characterization at multiple time scales (i.e., fast-, intermediate-, and slow-motion). The performances of these prevalent recoupling techniques are compared and discussed in multiple aspects, together with the representative applications in biomolecules. Given the recent emerging advances in NMR technology, new challenges for recoupling methodology development and potential opportunities for biological systems are also discussed.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Zhenchao Zhao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
13
|
Kobayashi T, Perras FA, Nishiyama Y. Determination of the chemical shift tensor anisotropy and asymmetry of strongly dipolar coupled protons under fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 114:101743. [PMID: 34153880 DOI: 10.1016/j.ssnmr.2021.101743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Orientationally-dependent interactions such as dipolar coupling, quadrupolar coupling, and chemical shift anisotropy (CSA) contain a wealth of spatial information that can be used to elucidate molecular conformations and dynamics. To determine the sign of the chemical shift tensor anisotropy parameter (δaniso), both the |m| = 1 and |m| = 2 components of the CSA need to be symmetry allowed, while the recoupling of the |m| = 1 term is accompanied with the reintroduction of homonuclear dipolar coupling components. Therefore, previously suggested sequences which solely recouple the |m| = 2 term cannot determine the sign a 1H's δaniso in a densely-coupled network. In this study, we demonstrate the CSA recoupling of strongly dipolar coupled 1H spins using the Cnn1(9003601805400360180900) sequence. This pulse scheme recouples both the |m| = 1 and |m| = 2 CSA terms but the scaling factors for the homonuclear dipolar coupling terms are zeroed. Consequently, the sequence is sensitive to the sign of δaniso but is not influenced by homonuclear dipolar interactions.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- U.S. DOE, Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States.
| | - Frédéric A Perras
- U.S. DOE, Ames Laboratory, Iowa State University, Ames, IA, 50011-3020, United States
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan
| |
Collapse
|
14
|
Perras FA, Paterson AL, Kobayashi T. Phase-sensitive γ-encoded recoupling of heteronuclear dipolar interactions and 1H chemical shift anisotropy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 111:101712. [PMID: 33450713 DOI: 10.1016/j.ssnmr.2020.101712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of 1H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional 1H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.
Collapse
|
15
|
Lu X, Huang C, Li M, Skomski D, Xu W, Yu L, Byrn SR, Templeton AC, Su Y. Molecular Mechanism of Crystalline-to-Amorphous Conversion of Pharmaceutical Solids from 19F Magic Angle Spinning NMR. J Phys Chem B 2020; 124:5271-5283. [PMID: 32378905 DOI: 10.1021/acs.jpcb.0c02131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Crystalline and amorphous materials usually possess distinct physicochemical properties due to major variations in long-range and local molecular packings. Enhanced fundamental knowledge of the molecular details of crystalline-to-amorphous interconversions is necessary to correlate the intermolecular structure to material properties and functions. While crystal structures can be readily obtained by X-ray crystallography, the microstructure of amorphous materials has rarely been explored due to a lack of high-resolution techniques capable of probing local molecular structures. Moreover, there is increasing interest in understanding the molecular nature of amorphous solids in pharmaceutical sciences due to the widespread utilization of amorphous active pharmaceutical ingredients (APIs) in pharmaceutical development for solubility and bioavailability enhancement. In this study, we explore multidimensional 13C and 19F magic angle spinning (MAS) NMR spectroscopy to study the molecular packing of amorphous posaconazole (POSA) in conjunction with the crystalline counterpart. Utilizing methods integrating homonuclear and heteronuclear 1H, 13C, and 19F correlation spectroscopy and atomic 19F-to-13C distance measurements, we identified the major differences in molecular packing between crystalline and amorphous POSA. The intermolecular "head-to-head" interaction along the molecule's major axis, as well as the "head-to-tail" molecular packing perpendicular to the major axis in POSA crystals, was recapitulated by MAS NMR. Furthermore, critical intermolecular distances in the crystal lattice were determined. Most importantly, the head-to-tail contact of two neighboring molecules was found to be preserved in amorphous POSA, suggesting localized molecular order, whereas crucial interactions for head-to-head packing are absent in the amorphous form resulting in long-range disorder. Our study, likely one of the first documented examples, provides molecular-level structural details to understand the molecular mechanism of crystalline-to-amorphous conversion of fluorine-containing drug substances occurring in drug processing and development and establish a high-resolution experimental protocol for investigating amorphous materials.
Collapse
Affiliation(s)
- Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chengbin Huang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lian Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Stephen R Byrn
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Li M, Meng F, Tsutsumi Y, Amoureux JP, Xu W, Lu X, Zhang F, Su Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol Pharm 2020; 17:2196-2207. [DOI: 10.1021/acs.molpharmaceut.0c00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fan Meng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
- Bruker Biospin, 34 Rue de l’Industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa Japan
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Zhang R, Hong YL, Ravula T, Nishiyama Y, Ramamoorthy A. High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes enabled by fast MAS and high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106717. [PMID: 32240957 DOI: 10.1016/j.jmr.2020.106717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The advent of ultrahigh magnetic field and fast magic-angle-spinning (MAS) probe technology has led to dramatically enhanced spectral resolution and sensitivity in solid-state NMR spectroscopy. In particular, proton-based multidimensional solid-state NMR techniques have become feasible to investigate the structure and dynamics at atomic resolution, due to the increased chemical shift span and spectral resolution. Herein, the benefits of faster MAS and higher magnetic field are demonstrated on a self-assembled diphenylalanine (Phe-Phe) nanomaterial. Proton-detected 2D 1H/1H single-quantum/single-quantum (SQ/SQ) correlation, double-quantum/single-quantum (DQ/SQ) correlation, and 1H chemical shift anisotropy/chemical shift (CSA/CS) correlation spectra obtained at two different spinning speeds (60 and 100 kHz) and two different magnetic fields (600 and 900 MHz) are reported. The dramatic enhancement of proton spectral resolution achieved with the use of a 900 MHz magnetic field and 100 kHz MAS is remarkable and enabled the measurement of proton CSA tensors, which will be useful to better understand the self-assembled structures of Phe-Phe nanotubes. We also show through numerical simulations that the unaveraged proton-proton dipolar couplings can result in broadening of CSA lines, leading to inaccurate determination of CSA tensors of protons. Thus, our results clearly show the insufficiency of a 600 MHz magnetic field to resolve 1H spectra lines and the inability of a moderate spinning speed of 60 kHz to completely suppress 1H-1H dipolar couplings, which further justify the pursuit of ultrahigh magnetic field beyond 1 GHz and ultrafast MAS beyond 100 kHz.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - You-Lee Hong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, and AIST-Kyoto University Chemical Energy Material Open Innovation Laboratory (ChEM-OIL), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Thirupathi Ravula
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; NMR Science and Development Division, RIKEN SPring-8 Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
18
|
Zhang R, Duong NT, Nishiyama Y. Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:78-86. [PMID: 31146121 DOI: 10.1016/j.jmr.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) in solid state has gained significant attention in recent years due to the remarkable resolution and sensitivity enhancement afforded by ultrafast magic-angle-spinning (MAS). In spite of the substantial suppression of 1H-1H dipolar couplings, the proton spectral resolution is still poor compared to that of 13C or 15N NMR, rendering it challenging for the structural and conformational analysis of complex chemicals or biological solids. Herein, by utilizing the benefits of double-quantum (DQ) and triple-quantum (TQ) coherences, we propose a 3D single-channel pulse sequence that correlates proton triple-quantum/double-quantum/single-quantum (TQ/DQ/SQ) chemical shifts. In addition to the two-spin proximity information, this 3D TQ/DQ/SQ pulse sequence enables more reliable extraction of three-spin proximity information compared to the regular 2D TQ/SQ correlation experiment, which could aid in revealing the proton network in solids. Furthermore, the TQ/DQ slice taken at a specific SQ chemical shift only reveals the local correlations to the corresponding SQ chemical shift, and thus it enables accurate assignments of the proton peaks along the TQ and DQ dimensions and simplifies the interpretation of proton spectra especially for dense proton networks. The high performance of this 3D pulse sequence is well demonstrated on small compounds, L-alanine and a tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (MLF). We expect that this new methodology can inspire the development of multidimensional solid-state NMR pulse sequences using the merits of TQ and DQ coherences and enable high-throughput investigations of complex solids using abundant protons.
Collapse
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
19
|
Pandey MK, Damron JT, Ramamoorthy A, Nishiyama Y. Proton-detected 3D 1H anisotropic/ 14N/ 1H isotropic chemical shifts correlation NMR under fast magic angle spinning on solid samples without isotopic enrichment. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 97:40-45. [PMID: 30623800 DOI: 10.1016/j.ssnmr.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The chemical shift anisotropy (CSA) interaction of a nucleus is an important indicator of the local electronic environment particularly for the contributions arising from hydrogen (H)-bonding, electrostatic and π-π interactions. CSAs of protons bonded to nitrogen atoms are of significant interest due to their common role as H-bonding partners in many chemical, pharmaceutical and biological systems. Although very fast (∼100 kHz) magic angle sample spinning (MAS) experiments have enabled the measurement of proton CSAs directly from solids, due to a narrow chemical shift (CS) distribution, overlapping NH proton resonances are common and necessitate the introduction of an additional frequency dimension to the regular 2D 1H CSA/1H CS correlation method to achieve sufficient resolution. While this can be accomplished by using the isotropic shift frequency of 14N or 15N nuclei, the use of the naturally-abundant 14N nucleus avoids 15N isotopic labeling and therefore would be useful for a variety of solids. To this end, we propose a proton-detected 3D 1H CSA/14N/1H CS correlation method under fast MAS (90 kHz) to determine the CSA tensors of NH protons in samples without isotopic enrichment. Our experimental results demonstrate that the proposed 3D NMR experiment is capable of resolving the overlapping 1H resonances of amide (NH) groups through the 14N isotropic shift frequency dimension and enables the accurate measurement of site-specific 1H CSAs directly from powder samples under fast MAS conditions. In addition to the 3D 1H CSA/14N/1H CS experiment, an approach employing 14N-edited 2D 1H CSA/1H CS experiment is also demonstrated as an additional means to address spectral overlap of NH resonances with aliphatic and other proton resonances in solids.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Indian Institute of Technology Ropar, Nangal Road, Rupnagar, 140001, Punjab, India.
| | - Joshua T Damron
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA; Biophysics Program, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan.
| |
Collapse
|
20
|
Liang L, Hou G, Bao X. Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 93:16-28. [PMID: 29803915 DOI: 10.1016/j.ssnmr.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Proton chemical shift anisotropy (CSA) is significantly important as it provides the information of the dynamics and local environmental structure of the proton. The measurement of proton CSA keeps drawing the attention of NMR researchers, and great efforts have been expended. In the early years, measuring proton CSA in solid-state NMR, especially with the strong 1H-1H dipolar network, was hampered by ineffective decoupling or selectively recoupling techniques, and the applications were only limited to those with sparse proton sites or single crystals. Till the latest decades, the dramatic progress on NMR methodology and magic-angle spinning (MAS) technology enable accurate detection of proton CSA in complicated powder samples even proteins. In this review, following a brief description of the measurement of proton CSA in solution and LCs NMR, a retrospect of the experimental development of proton CSA measurement in solid state NMR is presented, from the continuous wave (CW) and multiple pulse sequences for static solid samples, to combined rotation and multiple pulse spectroscopy (CRAMPS), then to the latest methods including rotary resonance, CSA amplification and R-symmetry pulse sequences under MAS conditions.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
21
|
Paramasivam S, Gronenborn AM, Polenova T. Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 92:1-6. [PMID: 29579703 PMCID: PMC6261280 DOI: 10.1016/j.ssnmr.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/16/2023]
Abstract
Chemical shift tensors (CSTs) are an exquisite probe of local geometric and electronic structure. 15N CST are very sensitive to hydrogen bonding, yet they have been reported for very few proteins to date. Here we present experimental results and statistical analysis of backbone amide 15N CSTs for 100 residues of four proteins, two E. coli thioredoxin reassemblies (1-73-(U-13C,15N)/74-108-(U-15N) and 1-73-(U-15N)/74-108-(U-13C,15N)), dynein light chain 8 LC8, and CAP-Gly domain of the mammalian dynactin. The 15N CSTs were measured by a symmetry-based CSA recoupling method, ROCSA. Our results show that the principal component δ11 is very sensitive to the presence of hydrogen bonding interactions due to its unique orientation in the molecular frame. The downfield chemical shift change of backbone amide nitrogen nuclei with increasing hydrogen bond strength is manifested in the negative correlation of the principal components with hydrogen bond distance for both α-helical and β-sheet secondary structure elements. Our findings highlight the potential for the use of 15N CSTs in protein structure refinement.
Collapse
Affiliation(s)
- Sivakumar Paramasivam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
22
|
Matlahov I, van der Wel PCA. Hidden motions and motion-induced invisibility: Dynamics-based spectral editing in solid-state NMR. Methods 2018; 148:123-135. [PMID: 29702226 DOI: 10.1016/j.ymeth.2018.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy enables the structural characterization of a diverse array of biological assemblies that include amyloid fibrils, non-amyloid aggregates, membrane-associated proteins and viral capsids. Such biological samples feature functionally relevant molecular dynamics, which often affect different parts of the sample in different ways. Solid-state NMR experiments' sensitivity to dynamics represents a double-edged sword. On the one hand, it offers a chance to measure dynamics in great detail. On the other hand, certain types of motion lead to signal loss and experimental inefficiencies that at first glance interfere with the application of ssNMR to overly dynamic proteins. Dynamics-based spectral editing (DYSE) ssNMR methods leverage motion-dependent signal losses to simplify spectra and enable the study of sub-structures with particular motional properties.
Collapse
Affiliation(s)
- Irina Matlahov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
23
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
24
|
Quinn CM, Wang M, Polenova T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 2018; 1688:1-35. [PMID: 29151202 PMCID: PMC6217836 DOI: 10.1007/978-1-4939-7386-6_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
As a result of profound gains in sensitivity and resolution afforded by ultrahigh magnetic fields, transformative applications in the fields of structural biology and materials science are being realized. The development of dual low temperature superconducting (LTS)/high-temperature superconducting (HTS) magnets has enabled the achievement of magnetic fields above 1 GHz (23.5 T), which will open doors to an unprecedented new range of applications. In this contribution, we discuss the promise of ultrahigh field magnetic resonance. We highlight several methodological developments pertinent at high-magnetic fields including measurement of 1H-1H distances and 1H chemical shift anisotropy in the solid state as well as studies of quadrupolar nuclei such as 17O. Higher magnetic fields have advanced heteronuclear detection in solution NMR, valuable for applications including metabolomics and disordered proteins, as well as expanded use of proton detection in the solid state in conjunction with ultrafast magic angle spinning. We also present several recent applications to structural studies of the AP205 bacteriophage, the M2 channel from Influenza A, and biomaterials such as human bone. Gains in sensitivity and resolution from increased field strengths will enable advanced applications of NMR spectroscopy including in vivo studies of whole cells and intact virions.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
25
|
Gupta R, Polenova T. Magic angle spinning NMR spectroscopy guided atomistic characterization of structure and dynamics in HIV-1 protein assemblies. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Ge Y, Hung I, Liu X, Liu M, Gan Z, Li C. Measurement of amide proton chemical shift anisotropy in perdeuterated proteins using CSA amplification. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:33-38. [PMID: 28957683 DOI: 10.1016/j.jmr.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Measuring 1H chemical shift anisotropy (CSA) is useful for probing proton environments and dynamics but remains a challenge due to strong homonuclear interaction and relatively small shift anisotropy, especially in proteins with multiple proton sites. Here the extended chemical shift anisotropy amplification (xCSA) method is applied for amide proton CSA measurement in uniformly 2H enriched proteins under fast magic angle spinning. The xCSA method is capable of distinguishing the sign of the CSA asymmetry parameter, complimenting other multiple-pulse recoupling methods. A three-dimensional xCSA experiment is demonstrated for measuring the proton CSA of amide sites in aGB1 protein sample and the possible correlation of amide proton CSA with protein secondary structure is discussed.
Collapse
Affiliation(s)
- Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
27
|
Struppe J, Quinn CM, Lu M, Wang M, Hou G, Lu X, Kraus J, Andreas LB, Stanek J, Lalli D, Lesage A, Pintacuda G, Maas W, Gronenborn AM, Polenova T. Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:117-125. [PMID: 28732673 PMCID: PMC5824719 DOI: 10.1016/j.ssnmr.2017.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 05/20/2023]
Abstract
The recent breakthroughs in NMR probe technologies resulted in the development of MAS NMR probes with rotation frequencies exceeding 100 kHz. Herein, we explore dramatic increases in sensitivity and resolution observed at MAS frequencies of 110-111 kHz in a novel 0.7 mm HCND probe that enable structural analysis of fully protonated biological systems. Proton- detected 2D and 3D correlation spectroscopy under such conditions requires only 0.1-0.5 mg of sample and a fraction of time compared to conventional 13C-detected experiments. We discuss the performance of several proton- and heteronuclear- (13C-,15N-) based correlation experiments in terms of sensitivity and resolution, using a model microcrystalline fMLF tripeptide. We demonstrate the applications of ultrafast MAS to a large, fully protonated protein assembly of the 231-residue HIV-1 CA capsid protein. Resonance assignments of protons and heteronuclei, as well as 1H-15N dipolar and 1HN CSA tensors are readily obtained from the high sensitivity and resolution proton-detected 3D experiments. The approach demonstrated here is expected to enable the determination of atomic-resolution structures of large protein assemblies, inaccessible by current methodologies.
Collapse
Affiliation(s)
- Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
28
|
Miah HK, Cresswell R, Iuga D, Titman JJ. 1H CSA parameters by ultrafast MAS NMR: Measurement and applications to structure refinement. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:67-72. [PMID: 28216036 DOI: 10.1016/j.ssnmr.2017.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 05/27/2023]
Abstract
A 1H anisotropic-isotropic chemical shift correlation experiment which employs symmetry-based recoupling sequences to reintroduce the chemical shift anisotropy in ν1 and ultrafast MAS to resolve 1H sites in ν2 is described. This experiment is used to measure 1H shift parameters for L-ascorbic acid, a compound with a relatively complex hydrogen-bonding network in the solid. The 1H CSAs of hydrogen-bonded sites with resolved isotropic shifts can be extracted directly from the recoupled lineshapes. In combination with DFT calculations, hydrogen positions in crystal structures obtained from X-ray and neutron diffraction are refined by comparison with simulations of the full two-dimensional NMR spectrum. The improved resolution afforded by the second dimension allows even unresolved hydrogen-bonded sites 1H to be assigned and their shift parameters to be obtained.
Collapse
Affiliation(s)
- Habeeba K Miah
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Rosalie Cresswell
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Dinu Iuga
- UK 850 MHz Solid-state NMR Facility, Department of Physics, Millburn House, University of Warwick, Coventry CV4 7AL, UK
| | - Jeremy J Titman
- UK 850 MHz Solid-state NMR Facility, Department of Physics, Millburn House, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
29
|
Zhang R, Duong NT, Nishiyama Y, Ramamoorthy A. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning. J Phys Chem B 2017; 121:5944-5952. [DOI: 10.1021/acs.jpcb.7b03480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rongchun Zhang
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Nghia Tuan Duong
- RIKEN
CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN
CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- JEOL Resonance Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
30
|
Quinn CM, Polenova T. Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 2017; 50:e1. [PMID: 28093096 PMCID: PMC5483179 DOI: 10.1017/s0033583516000159] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast MAS, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as human immunodeficiency virus 1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology.
Collapse
Affiliation(s)
- Caitlin M. Quinn
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19711; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA 15306
| |
Collapse
|
31
|
Zhang H, Hou G, Lu M, Ahn J, Byeon IJL, Langmead CJ, Perilla JR, Hung I, Gor’kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T. HIV-1 Capsid Function Is Regulated by Dynamics: Quantitative Atomic-Resolution Insights by Integrating Magic-Angle-Spinning NMR, QM/MM, and MD. J Am Chem Soc 2016; 138:14066-14075. [PMID: 27701859 PMCID: PMC5380593 DOI: 10.1021/jacs.6b08744] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 CA capsid protein possesses intrinsic conformational flexibility, which is essential for its assembly into conical capsids and interactions with host factors. CA is dynamic in the assembled capsid, and residues in functionally important regions of the protein undergo motions spanning many decades of time scales. Chemical shift anisotropy (CSA) tensors, recorded in magic-angle-spinning NMR experiments, provide direct residue-specific probes of motions on nano- to microsecond time scales. We combined NMR, MD, and density-functional-theory calculations, to gain quantitative understanding of internal backbone dynamics in CA assemblies, and we found that the dynamically averaged 15N CSA tensors calculated by this joined protocol are in remarkable agreement with experiment. Thus, quantitative atomic-level understanding of the relationships between CSA tensors, local backbone structure, and motions in CA assemblies is achieved, demonstrating the power of integrating NMR experimental data and theory for characterizing atomic-resolution dynamics in biological systems.
Collapse
Affiliation(s)
- Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Jinwoo Ahn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Christopher J. Langmead
- Computer Science Department, Carnegie Mellon University, Gates Hillman Center, 5000 Forbes Avenue, Pittsburgh, PA, United States
| | - Juan R. Perilla
- Department of Physics and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States
| | - Peter L. Gor’kov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States
| | - William W. Brey
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, United States
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854-8087, United States
| | - Klaus Schulten
- Department of Physics and Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States
| |
Collapse
|
32
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
33
|
Pandey MK, Yarava JR, Zhang R, Ramamoorthy A, Nishiyama Y. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 76-77:1-6. [PMID: 27017575 PMCID: PMC4903906 DOI: 10.1016/j.ssnmr.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 05/15/2023]
Abstract
Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
34
|
Lu X, Zhang H, Lu M, Vega AJ, Hou G, Polenova T. Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 2016; 18:4035-44. [PMID: 26776070 DOI: 10.1039/c5cp07818k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental characterization of one-bond heteronuclear dipolar couplings is essential for structural and dynamics characterization of molecules by solid-state NMR. Accurate measurement of heteronuclear dipolar tensor parameters in magic-angle spinning NMR requires that the recoupling sequences efficiently reintroduce the desired heteronuclear dipolar coupling term, fully suppress other interactions (such as chemical shift anisotropy and homonuclear dipolar couplings), and be insensitive to experimental imperfections, such as radio frequency (rf) field mismatch. In this study, we demonstrate that the introduction of window delays into the basic elements of a phase-alternating R-symmetry (PARS) sequence results in a greatly improved protocol, termed windowed PARS (wPARS), which yields clean dipolar lineshapes that are unaffected by other spin interactions and are largely insensitive to experimental imperfections. Higher dipolar scaling factors can be attained in this technique with respect to PARS, which is particularly useful for the measurement of relatively small dipolar couplings. The advantages of wPARS are verified experimentally on model molecules N-acetyl-valine (NAV) and a tripeptide Met-Leu-Phe (MLF). The incorporation of wPARS into 3D heteronuclear or homonuclear correlation experiments permits accurate site-specific determination of dipolar tensors in proteins, as demonstrated on dynein light chain 8 (LC8). Through 3D wPARS recoupling based spectroscopy we have determined both backbone and side chain dipolar tensors in LC8 in a residue-resolved manner. We discuss these in the context of conformational dynamics of LC8. We have addressed the effect of paramagnetic relaxant Cu(ii)-EDTA doping on the dipolar coupling parameters in LC8 and observed no significant differences with respect to the neat sample permitting fast data collection. Our results indicate that wPARS is advantageous with respect to the windowless version of the sequence and is applicable to a broad range of systems including but not limited to biomolecules.
Collapse
Affiliation(s)
- Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Pandey MK, Nishiyama Y. Determination of NH proton chemical shift anisotropy with (14)N-(1)H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:133-40. [PMID: 26580062 DOI: 10.1016/j.jmr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 05/27/2023]
Abstract
The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to (14)N nuclei (I=1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of (14)N-(1)H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large (14)N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance (14)N-(1)H decoupling with rf field strength ∼30 times weaker than the (14)N quadrupolar coupling during (1)H CSA recoupling under ultrafast MAS (90kHz) results in CSA lineshapes that are free from any distortions from recoupled (14)N-(1)H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant l-Histidine HCl·H2O sample.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
36
|
Gupta R, Hou G, Polenova T, Vega AJ. RF inhomogeneity and how it controls CPMAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:17-26. [PMID: 26422256 PMCID: PMC4674349 DOI: 10.1016/j.ssnmr.2015.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 05/09/2023]
Abstract
In this report we discuss the effect of radiofrequency field (RF) inhomogeneity on cross-polarization (CP) under magic-angle spinning (MAS) by reviewing the dependence of the CP-detected signal intensity as a function of the position in the sample space. We introduce a power-function model to quantify the position-dependent RF-amplitude profile. The applicability of this model is experimentally verified by nutation spectra obtained by direct signal detection, as well as by CPMAS signal detection, in two commercial MAS probes with different degrees of RF inhomogeneity. A conclusion is that substantial sections of a totally filled rotor, even in a probe with rather good homogeneity, do not contribute at all to the detected spectra. The consequence is that in CPMAS-based recoupling experiments, such as the CP-with-variable-contact-time (CPVC), spatial selectivity of the Hartmann-Hahn matching condition overcomes complications that could be caused by RF inhomogeneity permitting determination of accurate spectral parameters even in cases with high inhomogeneity.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
37
|
Hou G, Lu X, Vega AJ, Polenova T. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy. J Chem Phys 2015; 141:104202. [PMID: 25217909 DOI: 10.1063/1.4894226] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X = (13)C, (15)N, (31)P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the (1)H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the (1)H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from (1)H chemical shift anisotropy, while keeping the (1)H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [(15)N]-N-acetyl-valine and [U-(13)C,(15)N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate (1)H-(15)N dipolar couplings in the context of 3D experiments is presented on U-(13)C,(15)N-enriched dynein light chain protein LC8.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, USA
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, USA
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
38
|
Martini F, Miah HK, Iuga D, Geppi M, Titman JJ. Measuring (19)F shift anisotropies and (1)H-(19)F dipolar interactions with ultrafast MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:102-107. [PMID: 26318626 DOI: 10.1016/j.jmr.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
A new (19)F anisotropic-isotropic shift correlation experiment is described that operates with ultrafast MAS, resulting in good resolution of isotropic (19)F shifts in the detection dimension. The new experiment makes use of a recoupling sequence designed using symmetry principles that reintroduces the (19)F chemical shift anisotropy in the indirect dimension. The situations in which the new experiment is appropriate are discussed, and the (19)F shift anisotropy parameters in poly(difluoroethylene) (PVDF) are measured. In addition, similar recoupling sequences are shown to be effective for measuring (1)H-(19)F distances via the heteronuclear dipolar interaction. This is demonstrated by application to a recently synthesized zirconium phosphonate material that contains one-dimensional chains linked by H-F hydrogen bonds.
Collapse
Affiliation(s)
- Francesca Martini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 3, 56124 Pisa, Italy
| | - Habeeba K Miah
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Dinu Iuga
- UK 850 MHz Solid-state NMR Facility, Department of Physics, Millburn House, University of Warwick, Coventry CV4 7AL, UK
| | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 3, 56124 Pisa, Italy
| | - Jeremy J Titman
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
39
|
Pandey MK, Nishiyama Y. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:15-20. [PMID: 26065628 DOI: 10.1016/j.ssnmr.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
40
|
Pichumani K, George G, Hebbar S, Chatterjee B, Raghothama S. Effects of hydrogen bonding on amide-proton chemical shift anisotropy in a proline-containing model peptide. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
42
|
Suiter CL, Quinn CM, Lu M, Hou G, Zhang H, Polenova T. MAS NMR of HIV-1 protein assemblies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:10-22. [PMID: 25797001 PMCID: PMC4432874 DOI: 10.1016/j.jmr.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.
Collapse
Affiliation(s)
- Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
43
|
Pandey MK, Malon M, Ramamoorthy A, Nishiyama Y. Composite-180° pulse-based symmetry sequences to recouple proton chemical shift anisotropy tensors under ultrafast MAS solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 250:45-54. [PMID: 25497846 PMCID: PMC4301976 DOI: 10.1016/j.jmr.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
There is considerable interest in the measurement of proton ((1)H) chemical shift anisotropy (CSA) tensors to obtain deeper insights into H-bonding interactions which find numerous applications in chemical and biological systems. However, the presence of strong (1)H/(1)H dipolar interaction makes it difficult to determine small size (1)H CSAs from the homogeneously broadened NMR spectra. Previously reported pulse sequences for (1)H CSA recoupling are prone to the effects of radio frequency field (B1) inhomogeneity. In the present work we have carried out a systematic study using both numerical and experimental approaches to evaluate γ-encoded radio frequency (RF) pulse sequences based on R-symmetries that recouple (1)H CSA in the indirect dimension of a 2D (1)H/(1)H anisotropic/isotropic chemical shift correlation experiment under ultrafast magic angle spinning (MAS) frequencies. The spectral resolution and sensitivity can be significantly improved in both frequency dimensions of the 2D (1)H/(1)H correlation spectrum without decoupling (1)H/(1)H dipolar couplings but by using ultrafast MAS rates up to 70 kHz. We successfully demonstrate that with a reasonable RF field requirement (<200 kHz) a set of symmetry-based recoupling sequences, with a series of phase-alternating 270°0-90°180 composite-180° pulses, are more robust in combating B1 inhomogeneity effects. In addition, our results show that the new pulse sequences render remarkable (1)H CSA recoupling efficiency and undistorted CSA lineshapes. Experimental results on citric acid and malonic acid comparing the efficiencies of these newly developed pulse sequences with that of previously reported CSA recoupling pulse sequences are also reported under ultrafast MAS conditions.
Collapse
Affiliation(s)
| | - Michal Malon
- CLST NMR Facility, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- CLST NMR Facility, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
44
|
Guo C, Hou G, Lu X, O’Hare B, Struppe J, Polenova T. Fast magic angle spinning NMR with heteronucleus detection for resonance assignments and structural characterization of fully protonated proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 60:219-229. [PMID: 25381566 PMCID: PMC4282927 DOI: 10.1007/s10858-014-9870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
Heteronucleus-detected dipolar based correlation spectroscopy is established for assignments of ¹H, ¹³C, and ¹⁵N resonances and structural analysis in fully protonated proteins. We demonstrate that ¹³C detected 3D experiments are highly efficient and permit assignments of the majority of backbone resonances, as shown in an 89-residue dynein light chain 8, LC8 protein. With these experiments, we have resolved many ambiguities that were persistent in our previous studies using moderate MAS frequencies and lacking the ¹H dimension. The availability of ¹H isotropic chemical shifts measured with the heteronucleus-detected fast-MAS experiments presented here is essential for the accurate determination of the ¹H CSA tensors, which provide very useful structural probe. Finally, our results indicate that ¹³C detection in fast-MAS HETCOR experiments may be advantageous compared with ¹H detection as it yields datasets of significantly higher resolution in the ¹³C dimension than the ¹H detected HETCOR versions.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Bernie O’Hare
- Bruker Biospin Corp., Billerica, MA 01821, United States
| | - Jochem Struppe
- Bruker Biospin Corp., Billerica, MA 01821, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
45
|
Yan S, Zhang H, Hou G, Ahmed S, Williams JC, Polenova T. Internal dynamics of dynactin CAP-Gly is regulated by microtubules and plus end tracking protein EB1. J Biol Chem 2014; 290:1607-22. [PMID: 25451937 DOI: 10.1074/jbc.m114.603118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules.
Collapse
Affiliation(s)
- Si Yan
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Huilan Zhang
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Guangjin Hou
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Shubbir Ahmed
- the Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John C Williams
- the Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Tatyana Polenova
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| |
Collapse
|
46
|
Hoop CL, Lin HK, Kar K, Hou Z, Poirier MA, Wetzel R, van der Wel PCA. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Biochemistry 2014; 53:6653-66. [PMID: 25280367 PMCID: PMC4211650 DOI: 10.1021/bi501010q] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
In Huntington’s disease, expansion
of a polyglutamine (polyQ)
domain in the huntingtin (htt) protein leads to misfolding and aggregation.
There is much interest in the molecular features that distinguish
monomeric, oligomeric, and fibrillar species that populate the aggregation
pathway and likely differ in cytotoxicity. The mechanism and rate
of aggregation are greatly affected by the domains flanking the polyQ
segment within exon 1 of htt. A “protective” C-terminal
proline-rich flanking domain inhibits aggregation by inducing polyproline
II structure (PPII) within an extended portion of polyQ. The N-terminal
flanking segment (httNT) adopts an α-helical structure
as it drives aggregation, helps stabilize oligomers and fibrils, and
is seemingly integral to their supramolecular assembly. Via solid-state
nuclear magnetic resonance (ssNMR), we probe how, in the mature fibrils,
the htt flanking domains impact the polyQ domain and in particular
the localization of the β-structured amyloid core. Using residue-specific
and uniformly labeled samples, we find that the amyloid core occupies
most of the polyQ domain but ends just prior to the prolines. We probe
the structural and dynamical features of the remarkably abrupt β-sheet
to PPII transition and discuss the potential connections to certain
htt-binding proteins. We also examine the httNT α-helix
outside the polyQ amyloid core. Despite its presumed structural and
demonstrated stabilizing roles in the fibrils, quantitative ssNMR
measurements of residue-specific dynamics show that it undergoes distinct
solvent-coupled motion. This dynamical feature seems reminiscent of
molten-globule-like α-helix-rich features attributed to the
nonfibrillar oligomeric species of various amyloidogenic proteins.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Structural Biology, University of Pittsburgh School of Medicine , Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Das BB, Zhang H, Opella SJ. Dipolar Assisted Assignment Protocol (DAAP) for MAS solid-state NMR of rotationally aligned membrane proteins in phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:224-32. [PMID: 24698983 PMCID: PMC4043445 DOI: 10.1016/j.jmr.2014.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 05/15/2023]
Abstract
A method for making resonance assignments in magic angle spinning solid-state NMR spectra of membrane proteins that utilizes the range of heteronuclear dipolar coupling frequencies in combination with conventional chemical shift based assignment methods is demonstrated. The Dipolar Assisted Assignment Protocol (DAAP) takes advantage of the rotational alignment of the membrane proteins in liquid crystalline phospholipid bilayers. Improved resolution is obtained by combining the magnetically inequivalent heteronuclear dipolar frequencies with isotropic chemical shift frequencies. Spectra with both dipolar and chemical shift frequency axes assist with resonance assignments. DAAP can be readily extended to three- and four-dimensional experiments and to include both backbone and side chain sites in proteins.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, United States
| | - Hua Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, United States.
| |
Collapse
|
48
|
Murray DT, Hung I, Cross TA. Assignment of oriented sample NMR resonances from a three transmembrane helix protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:34-44. [PMID: 24509383 PMCID: PMC3980497 DOI: 10.1016/j.jmr.2013.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Oriented sample solid state NMR techniques have been routinely employed to determine the structures of membrane proteins with one or two transmembrane helices. For larger proteins the technique has been limited by spectral resolution and lack of assignment strategies. Here, a strategy for resonance assignment is devised and applied to a three transmembrane helix protein. Sequence specific assignments for all labeled transmembrane amino acid sites are obtained, which provide a set of orientational restraints and helix orientations in the bilayer. Our experiments expand the utility of solid state NMR in membrane protein structure characterization to three transmembrane helix proteins and represent a straightforward strategy for routinely characterizing multiple transmembrane helix protein structures.
Collapse
Affiliation(s)
- D T Murray
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - I Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - T A Cross
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Hou G, Gupta R, Polenova T, Vega AJ. A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids. Isr J Chem 2014; 54:171-183. [PMID: 25484446 DOI: 10.1002/ijch.201300099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of 1H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN-symmetry based experiments, from which the principal components of the 1H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of 1H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U-13C,15N-labeled histdine demonstrating that 1H chemical shift tensors can be reliably determined for the 1H15N and 1H13C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental 1H(C) and 1H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States ; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander J Vega
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
50
|
Haller JD, Schanda P. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. JOURNAL OF BIOMOLECULAR NMR 2013; 57:263-80. [PMID: 24105432 PMCID: PMC3840295 DOI: 10.1007/s10858-013-9787-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 05/21/2023]
Abstract
Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps-μs motions in proteins by solid-state NMR.
Collapse
Affiliation(s)
- Jens D. Haller
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027 Grenoble, France
- CEA, DSV, IBS, 38027 Grenoble, France
- CNRS, IBS, 38027 Grenoble, France
| | - Paul Schanda
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027 Grenoble, France
- CEA, DSV, IBS, 38027 Grenoble, France
- CNRS, IBS, 38027 Grenoble, France
| |
Collapse
|