1
|
Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem 2024; 153:107895. [PMID: 39454499 DOI: 10.1016/j.bioorg.2024.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In recent years, an increasing amount of work has been carried out regarding the study of the etiopathology of Alzheimer's Disease (AD). This neurodegenerative disease is characterized by several organic and molecular correlates, which paint a complex picture that also reflects the historic challenge faced by the worldwide scientific community in finding an effective cure for it. In this paper, we describe the synthesis of novel rivastigmine derivatives and their characterization as wide-spectrum enzyme (AChE, BChE, FAAH, MAO-A and MAO-B) inhibitors with potential application in the therapy of AD following the paradigm of multi-target design. 5 (ROS151) and 23 show similar inhibitory profile compared to donepezil on cholinesterases, and ca. two hundred twenty-three and eighty-seven times more active than rivastigmine on AChE. Moreover, ROS151 was found to be a potential metal chelator. Compounds 6 and 8 are very interesting and original multi-functional promising hybrids, with comparable potency on distinct panels of enzymes. All these promising rivastigmine-like hybrids were assayed for their pharmacokinetic properties by using different bio-analytical techniques, showing interesting applicability profiles. Moreover, cytotoxicity assays displayed a safety profile on three different cell lines.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, 70010, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
2
|
Carrieri A, Barbarossa A, de Candia M, Samarelli F, Damiano Altomare C, Czarnota-Łydka K, Sudoł-Tałaj S, Latacz G, Handzlik J, Brunetti L, Piemontese L, Limongelli F, Lentini G, Carocci A. Chiral pyrrolidines as multipotent agents in Alzheimer and neurodegenerative diseases. Bioorg Med Chem 2024; 110:117829. [PMID: 39002183 DOI: 10.1016/j.bmc.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
In pharmaceutical science and drug design the versatility of the pyrrolidine scaffold relating to spatial arrangement, synthetic accessibility and pharmacological profile is a largely explored and most likely interesting one. Nonetheless, few evidences suggest the pivotal role of pyrrolidine as scaffold for multipotent agents in neurodegenerative diseases. We then challenged the enrolling in the field of Alzheimer disease of so far not ravelled targets of this chemical cliché with a structure based and computer-aided design strategy focusing on multi-target action, versatile synthesis as well as pharmacological safeness. To achieve these hits, ten enantiomeric pairs of compounds were obtained and tested, and the biological data will be here presented and discussed. Among the novel compounds, coumarin and sesamol scaffolds containing analogues resulted promising perspectives.
Collapse
Affiliation(s)
- Antonio Carrieri
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy.
| | - Alexia Barbarossa
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Modesto de Candia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Francesco Samarelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Leonardo Brunetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Luca Piemontese
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Francesco Limongelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Giovanni Lentini
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Shen M, Li M, Yu J. Pd-catalyzed three-component [2 + 2 + 1] cycloamination toward carbazoles. Org Biomol Chem 2024; 22:3268-3272. [PMID: 38568713 DOI: 10.1039/d4ob00356j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Conventional approaches using hydroxylamine derivatives as single nitrogen sources for the preparation of N-heterocyclic molecules rely on two chemical processes involving sequential nucleophilic and electrophilic C-N bond formations. Herein, we report a novel Suzuki reaction/C-H activation/amination sequence for building a myriad of carbazoles in a single transformation using bifunctional secondary hydroxylamines. It is noteworthy that the synthetic utility of this methodology is highlighted by the total synthesis of clausine V and glycoborine by incorporating the title [2 + 2 + 1] cycloamination as the key step. Control experiments were performed to gain a better understanding of the reaction mechanism.
Collapse
Affiliation(s)
- Mingzhu Shen
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| | - Min Li
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| | - Jingxun Yu
- College of Chemistry & Materials Science, Northwest University, 1 Xue Fu Avenue, Chang'an Zone, Xi'an 710127, China.
| |
Collapse
|
4
|
Zeng W, Han C, Mohammed S, Li S, Song Y, Sun F, Du Y. Indole-containing pharmaceuticals: targets, pharmacological activities, and SAR studies. RSC Med Chem 2024; 15:788-808. [PMID: 38516587 PMCID: PMC10953485 DOI: 10.1039/d3md00677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/23/2024] Open
Abstract
Indole is a prestigious heterocyclic skeleton widely found in both naturally-occurring and biologically-active compounds. Pharmaceutical agents containing an indole skeleton in their framework possess a wide range of pharmacological properties, including antiviral, antitumor, analgesic, and other therapeutic activities, and many indole-containing drugs have been proven to have excellent pharmacokinetic and pharmacological effects. Over the past few decades, the FDA has approved over 40 indole-containing drugs for the treatment of various clinical conditions, and the development of indole-related drugs has attracted significant attention from medicinal chemists. This review aims to provide an overview of all the approved drugs that contain an indole nucleus, focusing on their targets, pharmacological activities, and SAR studies.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Chi Han
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Sarah Mohammed
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Shanshan Li
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| | - Yixuan Song
- Department of Chemical Engineering & Biotechnology, University of Cambridge CB2 3RA Cambridge UK
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology & College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University Tianjin 300072 China
| |
Collapse
|
5
|
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition. Int J Mol Sci 2022; 23:ijms232415502. [PMID: 36555144 PMCID: PMC9779292 DOI: 10.3390/ijms232415502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation.
Collapse
|
6
|
Carocci A, Barbarossa A, Leuci R, Carrieri A, Brunetti L, Laghezza A, Catto M, Limongelli F, Chaves S, Tortorella P, Altomare CD, Santos MA, Loiodice F, Piemontese L. Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11091631. [PMID: 36139705 PMCID: PMC9495854 DOI: 10.3390/antiox11091631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter the course of the disease. Among other pathological factors, oxidative stress has emerged as an important factor in AD that could affect several pathways involved in the onset and progression of the pathology. Herein, we propose a new series of hybrid molecules obtained by linking a phenothiazine moiety, known for its antioxidant properties, with N-benzylpiperidine or N-benzylpiperazine fragments, mimicking the core substructure of DPZ. The investigation of the resulting hybrids showed, in addition to their antioxidant properties, their activity against some AD-related targets, such as the inhibition of cholinesterases (both AChE and BChE) and in vitro Aβ1-40 aggregation, as well as the inhibition of the innovative target fatty acid amide hydrolase (FAAH). Furthermore, the drug-likeness properties of these compounds were assessed using cheminformatic tools. Compounds 11d and 12d showed the most interesting multi-target profiles, with all the assayed activities in the low micromolar range. In silico docking calculations supported the obtained results. Compound 13, on the other hand, while inactive in the DPPH assay, showed the best results in the in vitro antioxidant cell assays conducted on both HepG2 and SHSY-5Y cell lines. These results, paired with the low or absent cytotoxicity of these compounds at tested concentrations, allow us to aim our future research at the study of novel and effective drugs and pro-drugs with similar structural characteristics.
Collapse
Affiliation(s)
- Alessia Carocci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (A.C.); (L.P.)
| | - Alexia Barbarossa
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Rosalba Leuci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Marco Catto
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Limongelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Paolo Tortorella
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Maria Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Fulvio Loiodice
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (A.C.); (L.P.)
| |
Collapse
|
7
|
Brunetti L, Leuci R, Carrieri A, Catto M, Occhineri S, Vinci G, Gambacorta L, Baltrukevich H, Chaves S, Laghezza A, Altomare CD, Tortorella P, Santos MA, Loiodice F, Piemontese L. Structure-based design of novel donepezil-like hybrids for a multi-target approach to the therapy of Alzheimer's disease. Eur J Med Chem 2022; 237:114358. [DOI: 10.1016/j.ejmech.2022.114358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 12/26/2022]
|
8
|
Leuci R, Brunetti L, Laghezza A, Piemontese L, Carrieri A, Pisani L, Tortorella P, Catto M, Loiodice F. A New Series of Aryloxyacetic Acids Endowed with Multi-Target Activity towards Peroxisome Proliferator-Activated Receptors (PPARs), Fatty Acid Amide Hydrolase (FAAH), and Acetylcholinesterase (AChE). Molecules 2022; 27:molecules27030958. [PMID: 35164223 PMCID: PMC8839882 DOI: 10.3390/molecules27030958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
A new series of aryloxyacetic acids was prepared and tested as peroxisome proliferator-activated receptors (PPARs) agonists and fatty acid amide hydrolase (FAAH) inhibitors. Some compounds exhibited an interesting dual activity that has been recently proposed as a new potential therapeutic strategy for the treatment of Alzheimer’s disease (AD). AD is a multifactorial pathology, hence multi-target agents are currently one of the main lines of research for the therapy and prevention of this disease. Given that cholinesterases represent one of the most common targets of recent research, we decided to also evaluate the effects of our compounds on the inhibition of these specific enzymes. Interestingly, two of these compounds, (S)-5 and 6, showed moderate activity against acetylcholinesterase (AChE) and even some activity, although at high concentration, against Aβ peptide aggregation, thus demonstrating, in agreement with the preliminary dockings carried out on the different targets, the feasibility of a simultaneous multi-target activity towards PPARs, FAAH, and AChE. As far as we know, these are the first examples of molecules endowed with this pharmacological profile that might represent a promising line of research for the identification of novel candidates for the treatment of AD.
Collapse
|
9
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
10
|
Dongdem JT, Helegbe GK, Opare-Asamoah K, Wezena CA, Ocloo A. Assessment of NSAIDs as potential inhibitors of the fatty acid amide hydrolase I (FAAH-1) using three different primary fatty acid amide substrates in vitro. BMC Pharmacol Toxicol 2022; 23:1. [PMID: 34983657 PMCID: PMC8725537 DOI: 10.1186/s40360-021-00539-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Background Pain relief remains a major subject of inadequately met need of patients. Therapeutic agents designed to treat pain and inflammation so far have low to moderate efficiencies with significant untoward side effects. FAAH-1 has been proposed as a promising target for the discovery of drugs to treat pain and inflammation without significant adverse effects. FAAH-1 is the primary enzyme accountable for the degradation of AEA and related fatty acid amides. Studies have revealed that the simultaneous inhibition of COX and FAAH-1 activities produce greater pharmacological efficiency with significantly lowered toxicity and ulcerogenic activity. Recently, the metabolism of endocannabinoids by COX-2 was suggested to be differentially regulated by NSAIDs. Methods We analysed the affinity of oleamide, arachidonamide and stearoylamide at the FAAH-1 in vitro and investigated the potency of selected NSAIDs on the hydrolysis of endocannabinoid-like molecules (oleamide, arachidonamide and stearoylamide) by FAAH-1 from rat liver. NSAIDs were initially screened at 500 μM after which those that exhibited greater potency were further analysed over a range of inhibitor concentrations. Results The substrate affinity of FAAH-1 obtained, increased in a rank order of oleamide < arachidonamide < stearoylamide with resultant Vmax values in a rank order of arachidonamide > oleamide > stearoylamide. The selected NSAIDs caused a concentration-dependent inhibition of FAAH-1 activity with sulindac, carprofen and meclofenamate exhibiting the greatest potency. Michaelis-Menten analysis suggested the mode of inhibition of FAAH-1 hydrolysis of both oleamide and arachidonamide by meclofenamate and indomethacin to be non-competitive in nature. Conclusion Our data therefore suggest potential for study of these compounds as combined FAAH-1-COX inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-021-00539-1.
Collapse
Affiliation(s)
- Julius T Dongdem
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale-Campus, Tamale, Ghana. .,School of Life Sciences, University of Nottingham Medical School, NG7 2UH, Nottinghamshire, UK.
| | - Gideon K Helegbe
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale-Campus, Tamale, Ghana
| | - Kwame Opare-Asamoah
- Department of Physiology and Biophysics, School of Medicine, University for Development Studies, Tamale-Campus, Tamale, Ghana
| | - Cletus A Wezena
- Department of Microbiology, Faculty of Bioscience, University for Development Studies, Nyankpala Campus, Tamale, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell and Molecular Biology University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
11
|
Zanfirescu A, Nitulescu G, Mihai DP, Nitulescu GM. Identifying FAAH Inhibitors as New Therapeutic Options for the Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals (Basel) 2021; 15:38. [PMID: 35056095 PMCID: PMC8781999 DOI: 10.3390/ph15010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic pain determines a substantial burden on individuals, employers, healthcare systems, and society. Most of the affected patients report dissatisfaction with currently available treatments. There are only a few and poor therapeutic options-some therapeutic agents are an outgrowth of drugs targeting acute pain, while others have several serious side effects. One of the primary degradative enzymes for endocannabinoids, fatty acid amide hydrolase (FAAH) attracted attention as a significant molecular target for developing new therapies for neuropsychiatric and neurological diseases, including chronic pain. Using chemical graph mining, quantitative structure-activity relationship (QSAR) modeling, and molecular docking techniques we developed a multi-step screening protocol to identify repurposable drugs as FAAH inhibitors. After screening the DrugBank database using our protocol, 273 structures were selected, with five already approved drugs, montelukast, repaglinide, revefenacin, raloxifene, and buclizine emerging as the most promising repurposable agents for treating chronic pain. Molecular docking studies indicated that the selected compounds interact with the enzyme mostly non-covalently (except for revefenacin) through shape complementarity to the large substrate-binding pocket in the active site. A molecular dynamics simulation was employed for montelukast and revealed stable interactions with the enzyme. The biological activity of the selected compounds should be further confirmed by employing in vitro and in vivo studies.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
12
|
Al-Otaibi JS, Mary YS, Mary YS, Yadav R. Structural and reactivity studies of pravadoline –An ionic liquid, with reference to its wavefunction-relative properties using DFT and MD simulation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Abstract
The endocannabinoids are lipid-derived messengers that play a diversity of regulatory roles in mammalian physiology. Dysfunctions in their activity have been implicated in various disease conditions, attracting attention to the endocannabinoid system as a possible source of therapeutic drugs. This signaling complex has three components: the endogenous ligands, anandamide and 2-arachidonoyl-sn-glycerol (2-AG); a set of enzymes and transporters that generate, eliminate, or modify such ligands; and selective cell surface receptors that mediate their biological actions. We provide an overview of endocannabinoid formation, deactivation, and biotransformation and outline the properties and therapeutic potential of pharmacological agents that interfere with those processes. We describe small-molecule inhibitors that target endocannabinoid-producing enzymes, carrier proteins that transport the endocannabinoids into cells, and intracellular endocannabinoid-metabolizing enzymes. We briefly discuss selected agents that simultaneously interfere with components of the endocannabinoid system and with other functionally related signaling pathways. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA; .,Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA;
| |
Collapse
|
14
|
Criscuolo E, De Sciscio ML, Fezza F, Maccarrone M. In Silico and In Vitro Analysis of Major Cannabis-Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules 2020; 26:molecules26010048. [PMID: 33374180 PMCID: PMC7795171 DOI: 10.3390/molecules26010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence suggests that enhancing the endocannabinoid (eCB) tone, in particular of anandamide (N-arachidonoylethanolamine, AEA), has therapeutic potential in many human diseases. Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme principally responsible for the degradation of AEA, and thus it represents a relevant target to increase signaling thereof. In recent years, different synthetic and natural compounds have been developed and tested on rat FAAH, but little is known of their effect on the human enzyme. Here, we sought to investigate six major cannabis-derived compounds to compare their action on rat and human FAAHs. To this aim, we combined an in silico analysis of their binding mode and affinity, with in vitro assays of their effect on enzyme activity. This integrated approach allowed to disclose differences in efficacy towards rat and human FAAHs, and to highlight the role of key residues involved in the inhibition of both enzymes. This study suggests that the therapeutic efficacy of compounds targeted towards FAAH should be always tested in vitro on both rat and human enzymes.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Correspondence: (F.F.); (M.M.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 54, 00143 Rome, Italy
- Correspondence: (F.F.); (M.M.)
| |
Collapse
|
15
|
Brunetti L, Carrieri A, Piemontese L, Tortorella P, Loiodice F, Laghezza A. Beyond the Canonical Endocannabinoid System. A Screening of PPAR Ligands as FAAH Inhibitors. Int J Mol Sci 2020; 21:ijms21197026. [PMID: 32987725 PMCID: PMC7582602 DOI: 10.3390/ijms21197026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, Peroxisome Proliferator-Activated Receptors (PPARs) have been connected to the endocannabinoid system. These nuclear receptors indeed mediate the effects of anandamide and similar substances such as oleoyl-ethanolamide and palmitoyl-ethanolamide. An increasing body of literature describing the interactions between the endocannabinoid system and PPARs has slowly but surely been accumulating over the past decade, and a multitarget approach involving these receptors and endocannabinoid degrading enzyme FAAH has been proposed for the treatment of inflammatory states, cancer, and Alzheimer’s disease. The lack of knowledge about compounds endowed with such an activity profile therefore led us to investigate a library of readily available, well-characterized PPAR agonists that we had synthesized over the years in order to find a plausible lead compound for further development. Moreover, we propose a rationalization of our results via a docking study, which sheds some light on the binding mode of these PPAR agonists to FAAH and opens the way for further research in this field.
Collapse
|
16
|
Tripathi RKP, Ayyannan SR. Exploration of dual fatty acid amide hydrolase and cholinesterase inhibitory potential of some 3‐hydroxy‐3‐phenacyloxindole analogs. Arch Pharm (Weinheim) 2020; 353:e2000036. [DOI: 10.1002/ardp.202000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Rati K. P. Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical SciencesAssam University (A Central University) Silchar Assam India
| | - Senthil R. Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of TechnologyBanaras Hindu University Varanasi Uttar Pradesh India
| |
Collapse
|
17
|
Haq I, Kilaru A. An endocannabinoid catabolic enzyme FAAH and its paralogs in an early land plant reveal evolutionary and functional relationship with eukaryotic orthologs. Sci Rep 2020; 10:3115. [PMID: 32080293 PMCID: PMC7033180 DOI: 10.1038/s41598-020-59948-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids were known to exist only among Animalia but recent report of their occurrence in early land plants prompted us to study its function and metabolism. In mammals, anandamide, as an endocannabinoid ligand, mediates several neurological and physiological processes, which are terminated by fatty acid amide hydrolase (FAAH). We identified nine orthologs of FAAH in the moss Physcomitrella patens (PpFAAH1 to PpFAAH9) with amidase signature and catalytic triad. The optimal amidase activity for PpFAAH1 was at 37 °C and pH 8.0, with higher specificity to anandamide. Further, the phylogeny and predicted structural analyses of the nine paralogs revealed that PpFAAH1 to PpFAAH4 were closely related to plant FAAH while PpFAAH6 to PpFAAH9 were to the rat FAAH, categorized based on the membrane binding cap, membrane access channel and substrate binding pocket. We also identified that a true 'dynamic paddle' that is responsible for tighter regulation of FAAH is recent in vertebrates and absent or not fully emerged in plants and non-vertebrates. These data reveal evolutionary and functional relationship among eukaryotic FAAH orthologs and features that contribute to versatility and tighter regulation of FAAH. Future studies will utilize FAAH mutants of moss to elucidate the role of anandamide in early land plants.
Collapse
Affiliation(s)
- Imdadul Haq
- Department of Biological Sciences and Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Aruna Kilaru
- Department of Biological Sciences and Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
18
|
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem 2019; 188:111953. [PMID: 31945644 DOI: 10.1016/j.ejmech.2019.111953] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an important enzyme creditworthy of hydrolyzing endocannabinoids and related-amidated signalling lipids, discovery of which has pioneered novel arena of pharmacological canvasses to unwrap its curative potency in various diseased circumstances. It presents contemporary basis for understanding molecules regulating and mediating inflammatory reactions, pain, anxiety, depression, and neurodegeneration. FAAH inhibitors form vital approach for discovery of therapeutic agents that are concerned with local elevation of endocannabinoids under certain stimuli, debarring adverse/unwanted secondary effects from global activation of cannabinoid receptors by exogenous cannabimimetics. During past decades, several molecules with excellent potency developed through tailor-made approaches entered into clinical trials, but none could reach market. Hence, hunt for novel, non-toxic and selective FAAH inhibitors are on horizon. This review summarizes present perception on FAAH in conjunction with its structure, mechanism of catalysis and biological functions. It also foregrounds recent development of molecules belonging to diverse chemical classes as potential FAAH inhibitors bobbing up from in-depth chemical, mechanistic and computational studies published since 2015-November 2019, focusing on their potency. This review will assist readers to obtain rationale on FAAH as potential target for addressing various disease conditions, acquiring significant knowledge on recently established inhibitor scaffolds and their development potentials. New technologies including MD-MM simulations and 3D-QSAR studies allow mechanistic characterization of enzyme. Assessment of in-vitro and in-vivo efficacy of existing FAAH inhibitors will facilitate researchers to design novel ligands utilizing modern drug design methods. The discussions will also impose precaution in decision making process, quashing possibility of late stage failure.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India; Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
19
|
Vanni S, Riccardi L, Palermo G, De Vivo M. Structure and Dynamics of the Acyl Chains in the Membrane Trafficking and Enzymatic Processing of Lipids. Acc Chem Res 2019; 52:3087-3096. [PMID: 31364837 DOI: 10.1021/acs.accounts.9b00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The regulatory chemical mechanisms of lipid trafficking and degradation are involved in many pathophysiological processes, being implicated in severe pain, inflammation, and cancer. In addition, the processing of lipids is also relevant for industrial and environmental applications. However, there is poor understanding of the chemical features that control lipid membrane trafficking and allow lipid-degrading enzymes to efficiently select and hydrolyze specific fatty acids from a complex cellular milieu of bioactive lipids. This is particularly true for lipid acyl chains, which have diverse structures that can critically affect the many complex reactions needed to elongate, desaturate, or transport fatty acids. Building upon our own contributions in this field, we will discuss how molecular simulations, integrated with experimental evidence, have revealed that the structure and dynamics of the lipid tail are actively involved in modulating membrane trafficking at cellular organelles, and enzymatic reactions at cell membranes. Further evidence comes from recent crystal structures of lipid receptors and remodeling enzymes. Taken together, these recent works have identified those structural features of the lipid acyl chain that are crucial for the regioselectivity and stereospecificity of essential desaturation reactions. In this context, we will first illustrate how atomistic and coarse-grained simulations have elucidated the structure-function relationships between the chemical composition of the lipid's acyl chains and the molecular properties of lipid bilayers. Particular emphasis will be given to the prominent chemical role of the number of double carbon-carbon bonds along the lipid acyl chain, that is, discriminating between saturated, monounsaturated, and polyunsaturated lipids. Different levels of saturation in fatty acid molecules dramatically influence the biophysical properties of lipid assemblies and their interaction with proteins. We will then discuss the processing of lipids by membrane-bound enzymes. Our focus will be on lipids such as anandamide and 2-arachidonoylglycerol. These are the main molecules that act as neurotransmitters in the endocannabinoid system. Specifically, recent findings indicate a crucial interplay between the level of saturation of the lipid tail, its energetically and sterically favored conformations, and the hydrophobic accessory cavities in lipid-degrading enzymes, which help form catalytically active conformations of the selected substrate. This Account will emphasize how the specific chemical structure of acyl chains affects the molecular mechanisms for modulating membrane trafficking and selective hydrolysis. The results examined here show that, by using molecular simulations to investigate lipid plasticity and substrate flexibility, researchers can enrich their interpretation of experimental results about the structure-function relationships of lipids. This could positively impact chemical and biological studies in the field and ultimately support protein engineering studies and structure-based drug discovery to target lipid-processing enzymes.
Collapse
Affiliation(s)
- Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside, California 92521, United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
20
|
Sabatucci A, Simonetti M, Tortolani D, Angelucci CB, Dainese E, Maccarrone M. Role of Steroids on the Membrane Binding Ability of Fatty Acid Amide Hydrolase. Cannabis Cannabinoid Res 2019; 4:42-50. [PMID: 30944869 PMCID: PMC6446164 DOI: 10.1089/can.2018.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that gets in contact with a lipophilic substrate in the lipid bilayer, and then cleaves it into water soluble products. FAAH plays a critical role in modulating in vivo content and biological activity of endocannabinoids (eCBs), and its function is affected by membrane lipids. Increasing evidence suggests that also steroids can modulate endocannabinoid signaling, both in the central nervous system and at the periphery. Methods: In this study, we interrogated the effect of six steroids with relevant biological activity (testosterone, hydrocortisone, estradiol, pregnenolone, progesterone, and cortisone) on the membrane binding ability of rat FAAH. The experimental data analysis obtained by Fluorescence Resonance Energy Transfer Spectroscopy was paralleled by computational docking analysis. Results: Our data revealed distinct effects of the different steroids on the interaction of rat FAAH with model membranes. Among them, pregnenolone was found to be the most effective in raising rat FAAH affinity for model membranes. A possible binding pocket for steroid molecules was identified by docking analysis in the membrane-embedded region of the enzyme; such a pocket could account for the observed increase of the membrane affinity in the presence of the tested molecules. Conclusions: Overall, the results point to steroids as new regulators of FAAH interaction with membranes, which may impact the biological activity of eCBs.
Collapse
Affiliation(s)
- Annalaura Sabatucci
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Monica Simonetti
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Daniel Tortolani
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Enrico Dainese
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.,European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy.,Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
21
|
Gouda AM, Almalki FA. Carprofen: a theoretical mechanistic study to investigate the impact of hydrophobic interactions of alkyl groups on modulation of COX-1/2 binding selectivity. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0335-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
|
23
|
Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: Synthesis and evaluation. Biomed Pharmacother 2018; 107:1611-1623. [DOI: 10.1016/j.biopha.2018.08.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
|
24
|
Wang Y, Lin W, Wu N, He X, Wang J, Feng Z, Xie XQ. An insight into paracetamol and its metabolites using molecular docking and molecular dynamics simulation. J Mol Model 2018; 24:243. [PMID: 30121710 PMCID: PMC6733030 DOI: 10.1007/s00894-018-3790-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Paracetamol is a relatively safe analgesia/antipyretic drug without the risks of addiction, dependence, tolerance, and withdrawal when used alone. However, when administrated in an opioid/paracetamol combination product, which often contains a large quantity of paracetamol, it can be potentially dangerous due to the risk of hepatotoxicity. Paracetamol is known to be metabolized into N-(4-hydroxyphenyl)-arachidonamide (AM404) via fatty acid amide hydrolase (FAAH) and into N-acetyl-p-benzoquinone imine (NAPQI) via cytochrome P450 (CYP) enzymes. However, the underlying mechanism of paracetamol is still unclear. In addition, paracetamol has the potential to interact with other drugs that are also involved with CYP family enzymes (inducer/inhibitor/substrate), an example being illicit drugs. In our present work, we looked into the relationship between paracetamol and its metabolites (AM404 and NAPQI) using molecular docking and molecular dynamics (MD) simulations. We first carried out a series of molecular docking studies between paracetamol/AM404/NAQPI and their reported targets, including CYP 2E1, FAAH, TRPA1, CB1, and TRPV1. Subsequently, we performed MD simulations and energy decomposition for CB1-AM404, TRPV1-AM404, and TRPV1-NAPQI for further investigation of the dynamics interactions. Finally, we summarized and discussed the reported drug-drug interactions between paracetamol and central nervous system drugs, especially illicit drugs. Overall, we are able to provide new insights into the structural and functional roles of paracetamol and its metabolites that can inform the potential prevention and treatment of paracetamol overdose. Graphical abstract Paracetamol and its metabolites.
Collapse
Affiliation(s)
- Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Effect Evaluation, Chongqing, 400054, China
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nan Wu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
25
|
MTLD, a Database of Multiple Target Ligands, the Updated Version. Molecules 2017; 22:molecules22091375. [PMID: 28878188 PMCID: PMC6151691 DOI: 10.3390/molecules22091375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/16/2022] Open
Abstract
Polypharmacology plays an important role in drug discovery and polypharmacology drug strategies provide a novel path in drug design. However, to develop a polypharmacology drug with the desired profile remains a challenge. Previously, we developed a free web-accessible database called Multiple Target Ligand Database (MTLD, www.mtdcadd.com). Herein, the MTLD database has been updated, containing 2444 Multiple Target Ligands (MTLs) that bind with 21,424 binding sites from 18,231 crystal structures. Of the MTLs, 304 entries are approved drugs, and 1911 entries are drug-like compounds. Also, we added new functions such as multiple conditional search and linkage visualization. Through querying the updated database, extremely useful information for the development of polypharmacology drugs may be provided.
Collapse
|
26
|
Sunduru N, Svensson M, Cipriano M, Marwaha S, Andersson CD, Svensson R, Fowler CJ, Elofsson M. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors. J Enzyme Inhib Med Chem 2017; 32:513-521. [PMID: 28114819 PMCID: PMC6009913 DOI: 10.1080/14756366.2016.1265520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.
Collapse
Affiliation(s)
- Naresh Sunduru
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | - Mona Svensson
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Mariateresa Cipriano
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Sania Marwaha
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | | | - Richard Svensson
- c Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling platform (UDOPP) , Uppsala University , Uppsala , Sweden
| | - Christopher J Fowler
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | | |
Collapse
|
27
|
Qiu Y, Ren J, Ke H, Zhang Y, Gao Q, Yang L, Lu C, Li Y. Design and synthesis of uracil urea derivatives as potent and selective fatty acid amide hydrolase inhibitors. RSC Adv 2017. [DOI: 10.1039/c7ra02237a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is one of the key enzymes involved in the biological degradation of endocannabinoids, especially anandamide.
Collapse
Affiliation(s)
- Yan Qiu
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Jie Ren
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Hongwei Ke
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
- College of Ocean and Earth Science
| | - Yang Zhang
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Qi Gao
- Medical College
- Xiamen University
- Xiamen
- P. R. China
| | - Longhe Yang
- Engineering Research Centre of Marine Biological Resource Comprehensive Utilization
- Third Institute of Oceanography
- State Oceanic Administration
- Xiamen 361102
- P. R. China
| | - Canzhong Lu
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
- Chinese Academy of Sciences
- P. R. China
| | - Yuhang Li
- Medical College
- Xiamen University
- Xiamen
- P. R. China
- Xiamen Institute of Rare-earth Materials
| |
Collapse
|
28
|
Thomas SM, Purmal A, Pollastri M, Mensa-Wilmot K. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Sci Rep 2016; 6:32083. [PMID: 27561392 PMCID: PMC5000474 DOI: 10.1038/srep32083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a "drug repurposing" approach, we tested anti-trypanosomal effects of carbazole-derived compounds called "Curaxins". In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of "mitotic slippage" or endoreplication observed in some other eukaryotes.
Collapse
Affiliation(s)
- Sarah M Thomas
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Andrei Purmal
- Cleveland BioLabs, Inc., Buffalo, New York 14203, USA
| | - Michael Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
29
|
Scarpelli R, Sasso O, Piomelli D. A Double Whammy: Targeting Both Fatty Acid Amide Hydrolase (FAAH) and Cyclooxygenase (COX) To Treat Pain and Inflammation. ChemMedChem 2016; 11:1242-51. [PMID: 26486424 PMCID: PMC4840092 DOI: 10.1002/cmdc.201500395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/10/2022]
Abstract
Pain states that arise from non-resolving inflammation, such as inflammatory bowel disease or arthritis, pose an unusually difficult challenge for therapy because of the complexity and heterogeneity of their underlying mechanisms. It has been suggested that key nodes linking interactive pathogenic pathways of non-resolving inflammation might offer novel targets for the treatment of inflammatory pain. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit the cyclooxygenase (COX)-mediated production of pain- and inflammation-inducing prostanoids, are a common first-line treatment for this condition, but their use is limited by mechanism-based side effects. The endogenous levels of anandamide, an endocannabinoid mediator with analgesic and tissue-protective functions, are regulated by fatty acid amide hydrolase (FAAH). This review outlines the pharmacological and chemical rationale for the simultaneous inhibition of COX and FAAH activities with designed multitarget agents. Preclinical studies indicate that such agents may combine superior anti-inflammatory efficacy with reduced toxicity.
Collapse
Affiliation(s)
- Rita Scarpelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Oscar Sasso
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
30
|
TRPV1-FAAH-COX: TheCouples Gamein Pain Treatment. ChemMedChem 2016; 11:1686-94. [DOI: 10.1002/cmdc.201600111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Indexed: 12/11/2022]
|
31
|
Fluorine nuclear magnetic resonance-based assay in living mammalian cells. Anal Biochem 2015; 495:52-9. [PMID: 26686030 DOI: 10.1016/j.ab.2015.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022]
Abstract
Nuclear magnetic resonance (NMR)-based screening has been recognized as a powerful approach for the identification and characterization of molecules interacting with pharmaceutical targets. Indeed, several NMR methods have been developed and successfully applied to many drug discovery projects. Whereas most of these approaches have targeted isolated biomolecular receptors, very few cases are reported with the screening performed in intact cells and cell extracts. Here we report the first successful application of the fluorine NMR-based assay n-FABS (n-fluorine atoms for biochemical screening) in living mammalian cells expressing the membrane protein fatty acid amide hydrolase (FAAH). This method allows the identification of both weak and potent inhibitors and the measurement of their potency in a physiological environment.
Collapse
|
32
|
Palermo G, Favia AD, Convertino M, De Vivo M. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition. ChemMedChem 2015; 11:1252-8. [PMID: 26593700 PMCID: PMC5063142 DOI: 10.1002/cmdc.201500507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/20/2022]
Abstract
The design of multitarget‐directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget‐directed ligand named ARN2508 (2‐[3‐fluoro‐4‐[3‐(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2‐arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti‐inflammatory agents that simultaneously act on FAAH and COX.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Angelo D Favia
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marino Convertino
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy. .,Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| |
Collapse
|
33
|
Interaction of the N-(3-Methylpyridin-2-yl)amide Derivatives of Flurbiprofen and Ibuprofen with FAAH: Enantiomeric Selectivity and Binding Mode. PLoS One 2015; 10:e0142711. [PMID: 26565710 PMCID: PMC4643906 DOI: 10.1371/journal.pone.0142711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023] Open
Abstract
Background Combined fatty acid amide hydrolase (FAAH) and cyclooxygenase (COX) inhibition is a promising approach for pain-relief. The Flu-AM1 and Ibu-AM5 derivatives of flurbiprofen and ibuprofen retain similar COX-inhibitory properties and are more potent inhibitors of FAAH than the parent compounds. However, little is known as to the nature of their interaction with FAAH, or to the importance of their chirality. This has been explored here. Methodology/Principal Findings FAAH inhibitory activity was measured in rat brain homogenates and in lysates expressing either wild-type or FAAHT488A-mutated enzyme. Molecular modelling was undertaken using both docking and molecular dynamics. The (R)- and (S)-enantiomers of Flu-AM1 inhibited rat FAAH with similar potencies (IC50 values of 0.74 and 0.99 μM, respectively), whereas the (S)-enantiomer of Ibu-AM5 (IC50 0.59 μM) was more potent than the (R)-enantiomer (IC50 5.7 μM). Multiple inhibition experiments indicated that both (R)-Flu-AM1 and (S)-Ibu-AM5 inhibited FAAH in a manner mutually exclusive to carprofen. Computational studies indicated that the binding site for the Flu-AM1 and Ibu-AM5 enantiomers was located between the acyl chain binding channel and the membrane access channel, in a site overlapping the carprofen binding site, and showed a binding mode in line with that proposed for carprofen and other non-covalent ligands. The potency of (R)-Flu-AM1 was lower towards lysates expressing FAAH mutated at the proposed carprofen binding area than in lysates expressing wild-type FAAH. Conclusions/Significance The study provides kinetic and structural evidence that the enantiomers of Flu-AM1 and Ibu-AM5 bind in the substrate channel of FAAH. This information will be useful in aiding the design of novel dual-action FAAH: COX inhibitors.
Collapse
|
34
|
Lodola A, Castelli R, Mor M, Rivara S. Fatty acid amide hydrolase inhibitors: a patent review (2009-2014). Expert Opin Ther Pat 2015; 25:1247-66. [PMID: 26413912 DOI: 10.1517/13543776.2015.1067683] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is a key enzyme responsible for the degradation of the endocannabinoid anandamide. FAAH inactivation is emerging as a strategy to treat several CNS and peripheral diseases, including inflammation and pain. The search for effective FAAH inhibitors has thus become a key focus in present drug discovery. AREAS COVERED Patents and patent applications published from 2009 to 2014 in which novel chemical classes are claimed to inhibit FAAH. EXPERT OPINION FAAH is a promising target for treating many disease conditions including pain, inflammation and mood disorders. In the last few years, remarkable efforts have been made to develop new FAAH inhibitors (either reversible and irreversible) characterized by excellent potency and selectivity, to complete the arsenal of tools for modulating FAAH activity. The failure of PF-04457845 in a Phase II study on osteoarthritis pain has not flattened the interest in FAAH inhibitors. New clinical trials on 'classical' FAAH inhibitors are now ongoing, and new strategies based on compounds with peculiar in vivo distribution (e.g., peripheral) or with multiple pharmacological activities (e.g., FAAH and COX) are under investigation and could boost the therapeutic potential of this class in the next future.
Collapse
Affiliation(s)
- Alessio Lodola
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Riccardo Castelli
- b 2 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| | - Marco Mor
- c 3 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy +39 0521 905059 ; +39 0521 905006 ;
| | - Silvia Rivara
- a 1 Università degli Studi di Parma, Dipartimento di Farmacia , Parco Area delle Scienze 27/A, Parma, Italy
| |
Collapse
|
35
|
Synthesis, biological evaluation and molecular docking studies of N-acylheteroaryl hydrazone derivatives as antioxidant and anti-inflammatory agents. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Palermo G, Bauer I, Campomanes P, Cavalli A, Armirotti A, Girotto S, Rothlisberger U, De Vivo M. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets. PLoS Comput Biol 2015; 11:e1004231. [PMID: 26111155 PMCID: PMC4481349 DOI: 10.1371/journal.pcbi.1004231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. We describe a new structural enzymatic framework to regulate substrate specificity in lipid-degrading enzymes such as fatty acid amide hydrolase (FAAH), a key enzyme for the endocannabinoid lipid signaling that hydrolyzes a variety of lipids, however with different catalytic rates. The identified novel mechanism and key features for lipid selection in FAAH are then analysed in the context of other relevant lipid-degrading enzymes. Through the integration of microsecond-long molecular dynamics simulations with mutagenesis and kinetic experiments, our study suggests that structural flexibility, gating residues and multiple cavities in one catalytic site are keys to lipid selection in the endocannabinoid system. Our results suggest that the structural framework proposed here could likely be a general enzymatic strategy of other lipid-degrading enzymes to select the preferred lipid substrate within a broad spectrum of biologically active lipids. This new, and likely general, structural framework for lipid selection in FAAH could therefore now encourage additional experimental verifications of the role of ligand and structural flexibility, as regulated by key gating residues at the boundaries of multiple cavities forming a single catalytic site, as observed in several other lipid-degrading enzymes.
Collapse
Affiliation(s)
- Giulia Palermo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
| | - Inga Bauer
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pablo Campomanes
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Armirotti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Genova, Italy
- * E-mail:
| |
Collapse
|
37
|
Crowe MS, Leishman E, Banks ML, Gujjar R, Mahadevan A, Bradshaw HB, Kinsey SG. Combined inhibition of monoacylglycerol lipase and cyclooxygenases synergistically reduces neuropathic pain in mice. Br J Pharmacol 2015; 172:1700-12. [PMID: 25393148 DOI: 10.1111/bph.13012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain is commonly treated with GABA analogues, steroids or non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit one or more COX isozymes but chronic COX inhibition paradoxically increases gastrointestinal inflammation and risk of unwanted cardiovascular events. The cannabinoids also have analgesic and anti-inflammatory properties and reduce neuropathic pain in animal models. The present study investigated the analgesic effects of inhibiting both monoacylglycerol lipase (MAGL) and COX enzymes, using low doses of both inhibitors. EXPERIMENTAL APPROACH Mice subjected to chronic constriction injury (CCI) were tested for mechanical and cold allodynia after administration of the MAGL inhibitor, JZL184, or the non-selective COX inhibitor diclofenac. Then, both drugs were co-administered at fixed dose proportions of 1:3, 1:1 and 3:1, based on their ED50 values. PGs, endocannabinoids and related lipids were quantified in lumbar spinal cord. KEY RESULTS Combining low doses of JZL184 and diclofenac synergistically attenuated mechanical allodynia and additively reduced cold allodynia. The cannabinoid CB1 receptor antagonist, rimonabant, but not the CB2 receptor antagonist, SR144528, blocked the analgesic effects of the JZL184 and diclofenac combination on mechanical allodynia, implying that CB1 receptors were primarily responsible for the anti-allodynia. Diclofenac alone and with JZL184 significantly reduced PGE2 and PGF2α in lumbar spinal cord tissue, whereas JZL184 alone caused significant increases in the endocannabinoid metabolite, N-arachidonoyl glycine. CONCLUSIONS AND IMPLICATIONS Combining COX and MAGL inhibition is a promising therapeutic approach for reducing neuropathic pain with minimal side effects.
Collapse
Affiliation(s)
- Molly S Crowe
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Palermo G, Campomanes P, Cavalli A, Rothlisberger U, De Vivo M. Anandamide Hydrolysis in FAAH Reveals a Dual Strategy for Efficient Enzyme-Assisted Amide Bond Cleavage via Nitrogen Inversion. J Phys Chem B 2014; 119:789-801. [DOI: 10.1021/jp5052276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Giulia Palermo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Andrea Cavalli
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Marco De Vivo
- Department
of Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
39
|
Palermo G, Rothlisberger U, Cavalli A, De Vivo M. Computational insights into function and inhibition of fatty acid amide hydrolase. Eur J Med Chem 2014; 91:15-26. [PMID: 25240419 DOI: 10.1016/j.ejmech.2014.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 01/11/2023]
Abstract
The Fatty Acid Amide Hydrolase (FAAH) enzyme is a membrane-bound serine hydrolase responsible for the deactivating hydrolysis of a family of naturally occurring fatty acid amides. FAAH is a critical enzyme of the endocannabinoid system, being mainly responsible for regulating the level of its main cannabinoid substrate anandamide. For this reason, pharmacological inhibition of FAAH, which increases the level of endogenous anandamide, is a promising strategy to cure a variety of diseases including pain, inflammation, and cancer. Much structural, mutagenesis, and kinetic data on FAAH has been generated over the last couple of decades. This has prompted several informative computational investigations to elucidate, at the atomic-level, mechanistic details on catalysis and inhibition of this pharmaceutically relevant enzyme. Here, we review how these computational studies - based on classical molecular dynamics, full quantum mechanics, and hybrid QM/MM methods - have clarified the binding and reactivity of some relevant substrates and inhibitors of FAAH. We also discuss the experimental implications of these computational insights, which have provided a thoughtful elucidation of the complex physical and chemical steps of the enzymatic mechanism of FAAH. Finally, we discuss how computations have been helpful for building structure-activity relationships of potent FAAH inhibitors.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy; Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andrea Cavalli
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Marco De Vivo
- Department of Drug Discovery and Development, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
40
|
Pang LY, Argyle SA, Kamida A, Morrison KO, Argyle DJ. The long-acting COX-2 inhibitor mavacoxib (Trocoxil™) has anti-proliferative and pro-apoptotic effects on canine cancer cell lines and cancer stem cells in vitro. BMC Vet Res 2014; 10:184. [PMID: 25190452 PMCID: PMC4172958 DOI: 10.1186/s12917-014-0184-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The NSAID mavacoxib (Trocoxcil™) is a recently described selective COX-2 inhibitor used for the management of inflammatory disease in dogs. It has a long plasma half-life, requiring less frequent dosing and supporting increased owner compliance in treating their dogs. Although the use of NSAIDs has been described in cancer treatment in dogs, there are no studies to date that have examined the utility of mavacoxib specifically. RESULTS In this study we compared the in vitro activity of a short-acting non-selective COX inhibitor (carprofen) with mavacoxib, on cancer cell and cancer stem cell survival. We demonstrate that mavacoxib has a direct cell killing effect on cancer cells, increases apoptosis in cancer cells in a manner that may be independent of caspase activity, and has an inhibitory effect on cell migration. Importantly, we demonstrate that cancer stem cells derived from osteosarcoma cell lines are sensitive to the cytotoxic effect of mavacoxib. CONCLUSIONS Both NSAIDs can inhibit cancer cell proliferation and induce apoptosis in vitro. Importantly, cancer stem cells derived from an osteosarcoma cell line are sensitive to the cytotoxic effect of mavacoxib. Our results suggest that mavacoxib has anti-tumour effects and that this in vitro anti-cancer activity warrants further study.
Collapse
|
41
|
Karlsson J, Fowler CJ. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen. PLoS One 2014; 9:e103589. [PMID: 25061885 PMCID: PMC4111603 DOI: 10.1371/journal.pone.0103589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/28/2014] [Indexed: 02/02/2023] Open
Abstract
Background In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. Methodology/Principal Findings COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. Conclusions/Significance It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.
Collapse
Affiliation(s)
- Jessica Karlsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- * E-mail:
| | | |
Collapse
|
42
|
Yin Z, Wang Y, Whittell L, Jergic S, Liu M, Harry E, Dixon N, Kelso M, Beck J, Oakley A. DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs. ACTA ACUST UNITED AC 2014; 21:481-487. [DOI: 10.1016/j.chembiol.2014.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
|
43
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
44
|
Abdelhamid HN, Wu HF. Monitoring metallofulfenamic–bovine serum albumin interactions: a novel method for metallodrug analysis. RSC Adv 2014. [DOI: 10.1039/c4ra07638a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new methodology for drug/metallodrug detection in an aqueous solution and their interactions with serum albumin are presented.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung, Taiwan
- Department of Chemistry
- Assuit University
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung, Taiwan
- School of Pharmacy
- College of Pharmacy
| |
Collapse
|
45
|
Veronesi M, Romeo E, Lambruschini C, Piomelli D, Bandiera T, Scarpelli R, Garau G, Dalvit C. Fluorine NMR-Based Screening on Cell Membrane Extracts. ChemMedChem 2013; 9:286-9. [DOI: 10.1002/cmdc.201300438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Indexed: 11/12/2022]
|
46
|
Patel JZ, Parkkari T, Laitinen T, Kaczor AA, Saario SM, Savinainen JR, Navia-Paldanius D, Cipriano M, Leppänen J, Koshevoy IO, Poso A, Fowler CJ, Laitinen JT, Nevalainen T. Chiral 1,3,4-oxadiazol-2-ones as highly selective FAAH inhibitors. J Med Chem 2013; 56:8484-96. [PMID: 24083878 DOI: 10.1021/jm400923s] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, identification of chiral 1,3,4-oxadiazol-2-ones as potent and selective FAAH inhibitors has been described. The separated enantiomers showed clear differences in the potency and selectivity toward both FAAH and MAGL. Additionally, the importance of the chirality on the inhibitory activity and selectivity was proven by the simplification approach by removing a methyl group at the 3-position of the 1,3,4-oxadiazol-2-one ring. The most potent compound of the series, the S-enantiomer of 3-(1-(4-isobutylphenyl)ethyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-327A, 51), inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM), whereas its corresponding R-enantiomer 52 showed only moderate inhibition toward hrFAAH (IC50 = 0.24 μM). In contrast to hrFAAH, R-enantiomer 52 was more potent in inhibiting the activity of hrMAGL compared to S-enantiomer 51 (IC50 = 4.0 μM and 16% inhibition at 10 μM, respectively). The FAAH selectivity of the compound 51 over the supposed main off-targets, MAGL and COX, was found to be >900-fold. In addition, activity-based protein profiling (ABPP) indicated high selectivity over other serine hydrolases. Finally, the selected S-enantiomers 51, 53, and 55 were shown to be tight binding, slowly reversible inhibitors of the hrFAAH.
Collapse
Affiliation(s)
- Jayendra Z Patel
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland , P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lambruschini C, Veronesi M, Romeo E, Garau G, Bandiera T, Piomelli D, Scarpelli R, Dalvit C. Development of fragment-based n-FABS NMR screening applied to the membrane enzyme FAAH. Chembiochem 2013; 14:1611-9. [PMID: 23918626 DOI: 10.1002/cbic.201300347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Indexed: 12/26/2022]
Abstract
Despite the recognized importance of membrane proteins as pharmaceutical targets, the reliable identification of fragment hits that are able to bind these proteins is still a major challenge. Among different ¹⁹F NMR spectroscopic methods, n-fluorine atoms for biochemical screening (n-FABS) is a highly sensitive technique that has been used efficiently for fragment screening, but its application for membrane enzymes has not been reported yet. Herein, we present the first successful application of n-FABS to the discovery of novel fragment hits, targeting the membrane-bound enzyme fatty acid amide hydrolase (FAAH), using a library of fluorinated fragments generated based on the different local environment of fluorine concept. The use of the recombinant fusion protein MBP-FAAH and the design of compound 11 as a suitable novel fluorinated substrate analogue allowed n-FABS screening to be efficiently performed using a very small amount of enzyme. Notably, we have identified 19 novel fragment hits that inhibit FAAH with a median effective concentration (IC₅₀) in the low mM-μM range. To the best of our knowledge, these results represent the first application of a ¹⁹F NMR fragment-based functional assay to a membrane protein.
Collapse
Affiliation(s)
- Chiara Lambruschini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy)
| | | | | | | | | | | | | | | |
Collapse
|