1
|
He GQ, Li H, Liu J, Hu YL, Liu Y, Wang ZL, Jiang P. Recent Progress in Implantable Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312530. [PMID: 38376369 DOI: 10.1002/adma.202312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Indexed: 02/21/2024]
Abstract
In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.
Collapse
Affiliation(s)
- Guang-Qin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Junyi Liu
- Albany Medical College, New York, 12208, USA
| | - Yu-Lin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
2
|
Lu L, Zhao H, Lu Y, Zhang Y, Wang X, Fan C, Li Z, Wu Z. Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications. Adv Healthc Mater 2024; 13:e2400414. [PMID: 38412402 DOI: 10.1002/adhm.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.
Collapse
Affiliation(s)
- Lu Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongqiao Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yucong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxuan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengjuan Fan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zesheng Li
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguang Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
3
|
Wang B, Zhao Y, Li Y, Yao J, Wu S, Miu G, Chu C. NIR-responsive magnesium phosphate cement loaded with simvastatin-nanoparticles with biocompatibility and osteogenesis ability. RSC Adv 2024; 14:13958-13971. [PMID: 38686291 PMCID: PMC11056825 DOI: 10.1039/d4ra01079e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The insufficient osteogenesis of magnesium phosphate cement (MPC) limits its biomedical application. It is of great significance to develop a bioactive MPC with osteogenic performance. In this study, an injectable MPC was reinforced by the incorporation of a near infrared (NIR)-responsive nanocontainer, which was based on simvastatin (SIM)-loaded mesoporous silica nanoparticles (MSNs) modified with a polydopamine (PDA) bilayer, named SMP. In addition, chitosan (CHI) was introduced into MPC (K-struvite) to enhance its mechanical properties and cytocompatibility. The results showed that nanocontainer-incorporated MPC possessed a prolonged setting time, almost neutral pH, excellent injectability, and enhanced compressive strength. Immersion tests indicated that SMP-CHI MPC could suppress rapid degradation. Based on its physicochemical features, the SMP-CHI MPC had good biocompatibility and osteogenesis properties, as shown via in vitro and in vivo experiments. These findings can provide a simple way to produce a multifunctional MPC with improved osteogenesis for further orthopedic applications.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Rudong People's Hospital Nantong 226400 Jiangsu China
- Affiliated Rudong Hospital of Xinglin College, Nantong University 226007 Jiangsu China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University Nanjing 211189 China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University Nanjing 211189 China
| | - Yangyang Li
- School of Materials Science and Engineering, Southeast University Nanjing 211189 China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University Nanjing 211189 China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University Nanjing 211189 China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University Nanjing 211189 China
| | - Shunjie Wu
- Department of Orthopedics, Rudong People's Hospital Nantong 226400 Jiangsu China
- Affiliated Rudong Hospital of Xinglin College, Nantong University 226007 Jiangsu China
| | - Guoping Miu
- Department of Orthopedics, Rudong People's Hospital Nantong 226400 Jiangsu China
- Affiliated Rudong Hospital of Xinglin College, Nantong University 226007 Jiangsu China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University Nanjing 211189 China
- Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University Nanjing 211189 China
| |
Collapse
|
4
|
Guidi L, Cascone MG, Rosellini E. Light-responsive polymeric nanoparticles for retinal drug delivery: design cues, challenges and future perspectives. Heliyon 2024; 10:e26616. [PMID: 38434257 PMCID: PMC10906429 DOI: 10.1016/j.heliyon.2024.e26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
A multitude of sight-threatening retinal diseases, affecting hundreds of millions around the globe, lack effective pharmacological treatments due to ocular barriers and common drug delivery limitations. Polymeric nanoparticles (PNPs) are versatile drug carriers with sustained drug release profiles and tunable physicochemical properties which have been explored for ocular drug delivery to both anterior and posterior ocular tissues. PNPs can incorporate a wide range of drugs and overcome the challenges of conventional retinal drug delivery. Moreover, PNPs can be engineered to respond to specific stimuli such as ultraviolet, visible, or near-infrared light, and allow precise spatiotemporal control of the drug release, enabling tailored treatment regimens and reducing the number of required administrations. The objective of this study is to emphasize the therapeutic potential of light-triggered drug-loaded polymeric nanoparticles to treat retinal diseases through an exploration of ocular pathologies, challenges in drug delivery, current production methodologies and recent applications. Despite challenges, light-responsive PNPs hold the promise of substantially enhancing the treatment landscape for ocular diseases, aiming for an improved quality of life for patients.
Collapse
Affiliation(s)
- Lorenzo Guidi
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
5
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
6
|
A H, Sofini SPS, Balasubramanian D, Girigoswami A, Girigoswami K. Biomedical applications of natural and synthetic polymer based nanocomposites. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:269-294. [PMID: 37962432 DOI: 10.1080/09205063.2023.2283910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 11/15/2023]
Abstract
Various nanomaterials have been studied for their biomedical application in recent years. Among them, nanocomposites have a prominent medical application in the prevention, diagnosis, and treatment of various diseases. Nanocomposites are made up of polymeric matrix layers composed of synthetic or natural polymers like chitosan, polyethylene glycol, etc. Polymer nanocomposites are inorganic nanoparticles dispersed in a polymer matrix. There are two types of polymeric nanocomposites which include natural and synthetic polymer nanocomposites. These nanocomposites have various biomedical applications, such as medical implants, wound healing, wound dressing, bone repair and replacement, and dental filling. Polymeric nanocomposites have a wide range of biomedical applications due to their high stability, non-immunogenic nature, sustained drug delivery, non-toxic, and can escape reticuloendothelial system uptake along with drug bioavailability improvement. In this review, we have discussed various types of natural and synthetic polymer nanocomposites and their biomedical applications.
Collapse
Affiliation(s)
- Harini A
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sharon P S Sofini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Deepika Balasubramanian
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
7
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhao C, Pan B, Wang T, Yang H, Vance D, Li X, Zhao H, Hu X, Yang T, Chen Z, Hao L, Liu T, Wang Y. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023; 15:2729. [PMID: 38140070 PMCID: PMC10747500 DOI: 10.3390/pharmaceutics15122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.
Collapse
Affiliation(s)
- Chenyu Zhao
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Boyue Pan
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Tianlin Wang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - David Vance
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Xinru Hu
- The 1st Clinical Department, China Medical University, Shenyang 110122, China;
| | - Tianchang Yang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Zihao Chen
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Ting Liu
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Yang Wang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Prange CJ, Hu X, Tang L. Smart chemistry for traceless release of anticancer therapeutics. Biomaterials 2023; 303:122353. [PMID: 37925794 DOI: 10.1016/j.biomaterials.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
In the design of delivery strategies for anticancer therapeutics, the controlled release of intact cargo at the destined tumor and metastasis locations is of particular importance. To this end, stimuli-responsive chemical linkers have been extensively investigated owing to their ability to respond to tumor-specific physiological stimuli, such as lowered pH, altered redox conditions, increased radical oxygen species and pathological enzymatic activities. To prevent premature action and off-target effects, anticancer therapeutics are chemically modified to be transiently inactivated, a strategy known as prodrug development. Prodrugs are reactivated upon stimuli-dependent release at the sites of interest. As most drugs and therapeutic proteins have the optimal activity when released from carriers in their native and original forms, traceless release mechanisms are increasingly investigated. In this review, we summarize the chemical toolkit for developing innovative traceless prodrug strategies for stimuli-responsive drug delivery and discuss the applications of these chemical modifications in anticancer treatment including cancer immunotherapy.
Collapse
Affiliation(s)
- Céline Jasmin Prange
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland
| | - Xile Hu
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Materials Science & Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
10
|
Li W, Wang Z, Jiang L, Feng M, Fan X, Fan H, Xiang J. A Facile Synthetic Approach to UV-Degradable Hydrogels. Polymers (Basel) 2023; 15:3762. [PMID: 37765614 PMCID: PMC10535451 DOI: 10.3390/polym15183762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Light-degradable hydrogels have a wide range of application prospects in the field of biomedicine. However, the provision of a facile synthetic approach to light-degradable hydrogels under mild conditions remains a challenge for researchers. To surmount this challenge, a facile synthetic approach to UV-degradable hydrogels is demonstrated in this manuscript. Initially, an UV-degradable crosslinker (UVDC) having o-nitrobenzyl ester groups was synthesized in a single step through the employment of the Passerini three-component reaction (P-3CR). Both 1H NMR and MS spectra indicated the successful synthesis of high-purity UVDC, and it was experimentally demonstrated that the synthesized UVDC was capable of degradation under 368 nm light. Furthermore, this UVDC was mixed with 8-arm PEG-thiol (sPEG20k-(SH)8) to promptly yield an UV-degradable hydrogel through a click reaction. The SEM image of the fabricated hydrogel exhibits the favorable crosslinking network of the hydrogel, proving the successful synthesis of the hydrogel. After continuous 368 nm irradiation, the hydrogel showed an obvious gel-sol transition, which demonstrates that the hydrogel possesses a desirable UV-degradable property. In summary, by utilizing solely a two-step reaction devoid of catalysts and hazardous raw materials, UV-degradable hydrogels can be obtained under ambient conditions, which greatly reduces the difficulty of synthesizing light-degradable hydrogels. This work extends the synthetic toolbox for light-degradable hydrogels, enabling their accelerated development.
Collapse
Affiliation(s)
- Wan Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| | - Zhonghui Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| | - Le Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| | - Menghua Feng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| | - Xinnian Fan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu 610041, China
- China Blue-Star Chengrand Co., Ltd., Chengdu 610041, China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| | - Jun Xiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.L.); (Z.W.); (L.J.); (M.F.); (H.F.)
| |
Collapse
|
11
|
Yan BY, Cao ZK, Hui C, Sun TC, Xu L, Ramakrishna S, Yang M, Long YZ, Zhang J. MXene@Hydrogel composite nanofibers with the photo-stimulus response and optical monitoring functions for on-demand drug release. J Colloid Interface Sci 2023; 648:963-971. [PMID: 37331077 DOI: 10.1016/j.jcis.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The photo-stimulus response has the advantage of non-invasiveness, which could be used to control the "on" and "off" of drug release achieving on-demand release. Herein, we design a heating electrospray during electrospinning to prepare photo-stimulus response composite nanofibers consisting of MXene@Hydrogel. This heating electrospray enables to spray MXene@Hydrogel during the electrospinning process, and the hydrogel is uniformly distributed which cannot be achieved by the traditional soaking method. In addition, this heating electrospray can also overcome the difficulty that hydrogels are hard to be uniformly distributed in the inner fiber membrane.The "on" and "off" state of drug release could be controlled by light. Not only near infrared (NIR) light but also sunlight could trigger the drug release, which could benefit outdoor use when cannot find NIR light. Evidence by hydrogen bond has been formed between MXene and Hydrogel, the mechanical property of MXene@Hydrogel composite nanofibers is significantly enhanced, which is conducive to the application of human joints and other parts that need to move. These nanofibers also possess fluorescence property, which is further used to real-time monitor the in-vivo drug release. No matter the fast or slow release, this nanofiber can achieve sensitive detection, which is superior to the current absorbance spectrum method.
Collapse
Affiliation(s)
- Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Min Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| |
Collapse
|
12
|
Xu Z, Wu Z, Yuan M, Chen Y, Ge W, Xu Q. Versatile magnetic hydrogel soft capsule microrobots for targeted delivery. iScience 2023; 26:106727. [PMID: 37216105 PMCID: PMC10192936 DOI: 10.1016/j.isci.2023.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/16/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Maintaining the completeness of cargo and achieving on-demand cargo release during long navigations in complex environments of the internal human body is crucial. Herein, we report a novel design of magnetic hydrogel soft capsule microrobots, which can be physically disintegrated to release microrobot swarms and diverse cargoes with almost no loss. CaCl2 solution and magnetic powders are utilized to produce suspension droplets, which are put into sodium alginate solution to generate magnetic hydrogel membranes for enclosing microrobot swarms and cargos. Low-density rotating magnetic fields drive the microrobots. Strong gradient magnetic fields break the mechanical structure of the hydrogel shell to implement on-demand release. Under the guidance of ultrasound imaging, the microrobot is remotely controlled in acidic or alkaline environments, similar to those in the human digestion system. The proposed capsule microrobots provide a promising solution for targeted cargo delivery in the internal human body.
Collapse
Affiliation(s)
- Zichen Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Zehao Wu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Yuanhe Chen
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
13
|
Wang H, Fu H, Fu Y, Jiang L, Wang L, Tong H, Xie Z, Huang P, Sun M. Knowledge mapping concerning applications of nanocomposite hydrogels for drug delivery: A bibliometric and visualized study (2003-2022). Front Bioeng Biotechnol 2023; 10:1099616. [PMID: 36686234 PMCID: PMC9852897 DOI: 10.3389/fbioe.2022.1099616] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Nanocomposite Hydrogels (NHs) are 3D molecular networks formed by physically or covalently crosslinking polymer with nanoparticles or nanostructures, which are particularly suitable for serving as carriers for drug delivery systems. Many articles pertaining to the applications of Nanocomposite Hydrogels for drug delivery have been published, however, the use of bibliometric and visualized analysis in this area remains unstudied. The purpose of this bibliometric study intended to comprehensively analyze the knowledge domain, research hotspots and frontiers associated with the applications of Nanocomposite Hydrogels for drug delivery. Methods: We identified and retrieved the publications concerning the applications of NHs for drug delivery between 2003 and 2022 from Web of Science Core Collection Bibliometric and visualized analysis was utilized in this investigative study. Results: 631 articles meeting the inclusion criteria were identified and retrieved from WoSCC. Among those, 2,233 authors worldwide contributed in the studies, accompanied by an average annual article increase of 24.67%. The articles were co-authored by 764 institutions from 52 countries/regions, and China published the most, followed by Iran and the United States. Five institutions published more than 40 papers, namely Univ Tabriz (n = 79), Tabriz Univ Med Sci (n = 70), Islamic Azad Univ (n = 49), Payame Noor Univ (n = 42) and Texas A&M Univ (n = 41). The articles were published in 198 journals, among which the International Journal of Biological Macromolecules (n = 53) published the most articles, followed by Carbohydrate Polymers (n = 24) and ACS Applied Materials and Interfaces (n = 22). The top three journals most locally cited were Carbohydrate Polymers, Biomaterials and Advanced materials. The most productive author was Namazi H (29 articles), followed by Bardajee G (15 articles) and Zhang J (11 articles) and the researchers who worked closely with other ones usually published more papers. "Doxorubicin," "antibacterial" and "responsive hydrogels" represent the current research hotspots in this field and "cancer therapy" was a rising research topic in recent years. "(cancer) therapeutics" and "bioadhesive" represent the current research frontiers. Conclusion: This bibliometric and visualized analysis offered an investigative study and comprehensive understanding of publications regarding the applications of Nanocomposite Hydrogels for drug delivery from 2003 to 2022. The outcome of this study would provide insights for researchers in the field of Nanocomposite Hydrogels applications for drug delivery.
Collapse
Affiliation(s)
- Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Hongxun Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Yefan Fu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zuoxu Xie
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Peng Huang
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China,*Correspondence: Peng Huang, ; Meiyan Sun,
| |
Collapse
|
14
|
Yu Y, Yu T, Wang X, Liu D. Functional Hydrogels and Their Applications in Craniomaxillofacial Bone Regeneration. Pharmaceutics 2022; 15:pharmaceutics15010150. [PMID: 36678779 PMCID: PMC9864650 DOI: 10.3390/pharmaceutics15010150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Craniomaxillofacial bone defects are characterized by an irregular shape, bacterial and inflammatory environment, aesthetic requirements, and the need for the functional recovery of oral-maxillofacial areas. Conventional clinical treatments are currently unable to achieve high-quality craniomaxillofacial bone regeneration. Hydrogels are a class of multifunctional platforms made of polymers cross-linked with high water content, good biocompatibility, and adjustable physicochemical properties for the intelligent delivery of goods. These characteristics make hydrogel systems a bright prospect for clinical applications in craniomaxillofacial bone. In this review, we briefly demonstrate the properties of hydrogel systems that can come into effect in the field of bone regeneration. In addition, we summarize the hydrogel systems that have been developed for craniomaxillofacial bone regeneration in recent years. Finally, we also discuss the prospects in the field of craniomaxillofacial bone tissue engineering; these discussions can serve as an inspiration for future hydrogel design.
Collapse
Affiliation(s)
- Yi Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (X.W.); (D.L.)
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
- National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
- Correspondence: (X.W.); (D.L.)
| |
Collapse
|
15
|
Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022; 10:1075670. [PMID: 36588951 PMCID: PMC9800804 DOI: 10.3389/fbioe.2022.1075670] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Light is an easy acquired, effective and non-invasive external stimulus with great flexibility and focusability. Thus, light responsive hydrogels are of particular interests to researchers in developing accurate and controlled drug delivery systems. Light responsive hydrogels are obtained by incorporating photosensitive moieties into their polymeric structures. Drug release can be realized through three major mechanisms: photoisomerization, photochemical reaction and photothermal reaction. Recent advances in material science have resulted in great development of photosensitizers, such as rare metal nanostructures and black phosphorus nanoparticles, in order to respond to a variety of light sources. Hydrogels incorporated with photosensitizers are crucial for clinical applications, and the use of ultraviolet and near-infrared light as well as up-conversion nanoparticles has greatly increased the therapeutic effects. Existing light responsive drug delivery systems have been utilized in delivering drugs, proteins and genes for chemotherapy, immunotherapy, photodynamic therapy, gene therapy, wound healing and other applications. Principles associated with site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient compliance and convenience. In view of the importance of this field, we review current development, challenges and future perspectives of light responsive hydrogels for controlled drug delivery.
Collapse
|
16
|
Karami P, Rana VK, Zhang Q, Boniface A, Guo Y, Moser C, Pioletti DP. NIR Light-Mediated Photocuring of Adhesive Hydrogels for Noninvasive Tissue Repair via Upconversion Optogenesis. Biomacromolecules 2022; 23:5007-5017. [PMID: 36379034 DOI: 10.1021/acs.biomac.2c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The surgical treatments of injured soft tissues lead to further injury due to the use of sutures or the surgical routes, which need to be large enough to insert biomaterials for repair. In contrast, the use of low viscosity photopolymerizable hydrogels that can be inserted with thin needles represents a less traumatic treatment and would therefore reduce the severity of iatrogenic injury. However, the delivery of light to solidify the inserted hydrogel precursor requires a direct access to it, which is mostly invasive. To circumvent this limitation, we investigate the approach of curing the hydrogel located behind biological tissues by sending near-infrared (NIR) light through the latter, as this spectral region has the largest transmittance in biological tissues. Upconverting nanoparticles (UCNPs) are incorporated in the hydrogel precursor to convert NIR transmitted through the tissues into blue light to trigger the photopolymerization. We investigated the photopolymerization process of an adhesive hydrogel placed behind a soft tissue. Bulk polymerization was achieved with local radiation of the adhesive hydrogel through a focused light system. Thus, unlike the common methods for uniform illumination, adhesion formation was achieved with local micrometer-sized radiation of the bulky hydrogel through a gradient photopolymerization phenomenon. Nanoindentation and upright microscope analysis confirmed that the proposed approach for indirect curing of hydrogels below the tissue is a gradient photopolymerization phenomenon. Moreover, we found that the hydrogel mechanical and adhesive properties can be modulated by playing with different parameters of the system such as the NIR light power and the UCNP concentration. The proposed photopolymerization of adhesive hydrogels below the tissue opens the prospect of a minimally invasive surgical treatment of injured soft tissues.
Collapse
Affiliation(s)
- Peyman Karami
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Vijay Kumar Rana
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Qianyi Zhang
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Antoine Boniface
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, Lausanne1015, Switzerland
| |
Collapse
|
17
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
18
|
Trifanova EM, Khvorostina MA, Mariyanats AO, Sochilina AV, Nikolaeva ME, Khaydukov EV, Akasov RA, Popov VK. Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196547. [PMID: 36235084 PMCID: PMC9573624 DOI: 10.3390/molecules27196547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
Modern biocompatible materials of both natural and synthetic origin, in combination with advanced techniques for their processing and functionalization, provide the basis for tissue engineering constructs (TECs) for the effective replacement of specific body defects and guided tissue regeneration. Here we describe TECs fabricated using electrospinning and 3D printing techniques on a base of synthetic (polylactic-co-glycolic acids, PLGA) and natural (collagen, COL, and hyaluronic acid, HA) polymers impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 upconversion nanoparticles (UCNPs) for in vitro control of the tissue/scaffold interaction. Polymeric structures impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 nanoparticles were visualized with high optical contrast using laser irradiation at 976 nm. We found that the photoluminescence spectra of impregnated scaffolds differ from the spectrum of free UCNPs that could be used to control the scaffold microenvironment, polymer biodegradation, and cargo release. We proved the absence of UCNP-impregnated scaffold cytotoxicity and demonstrated their high efficiency for cell attachment, proliferation, and colonization. We also modified the COL-based scaffold fabrication technology to increase their tensile strength and structural stability within the living body. The proposed approach is a technological platform for "smart scaffold" development and fabrication based on bioresorbable polymer structures impregnated with UCNPs, providing the desired photoluminescent, biochemical, and mechanical properties for intravital visualization and monitoring of their behavior and tissue/scaffold interaction in real time.
Collapse
Affiliation(s)
- Ekaterina M. Trifanova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Maria A. Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Aleksandra O. Mariyanats
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Anastasia V. Sochilina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | | | - Evgeny V. Khaydukov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Roman A. Akasov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Vladimir K. Popov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| |
Collapse
|
19
|
Tapia Hernandez R, Lee MC, Yadav AK, Chan J. Repurposing Cyanine Photoinstability To Develop Near-Infrared Light-Activatable Nanogels for In Vivo Cargo Delivery. J Am Chem Soc 2022; 144:18101-18108. [PMID: 36153991 PMCID: PMC10088867 DOI: 10.1021/jacs.2c08187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.
Collapse
Affiliation(s)
- Rodrigo Tapia Hernandez
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Zhang H, Zhang J, Peng X, Li Z, Bai W, Wang T, Gu Z, Li Y. Smart Internal Bio-Glues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203587. [PMID: 35901498 PMCID: PMC9507370 DOI: 10.1002/advs.202203587] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 05/25/2023]
Abstract
Although smart bio-glues have been well documented, the development of internal bio-glues for non-invasive or minimally invasive surgery is still met with profound challenges such as safety risk and the lack of deep tissue penetration stimuli for internal usage. Herein, a series of smart internal bio-glues are developed via the integration of o-nitrobenzene modified biopolymers with up-conversion nanoparticles (UCNPs). Upon irradiation by near-infrared (NIR) light, the prepared smart bio-glues can undergo a gelation process, which may further induce strong adhesion between tissues under both dry and wet conditions based on multi-interactions. Moreover, those NIR light-responsive bio-glues with deeper tissue penetration ability demonstrate good biocompatibility, excellent hemostatic performance, and the potent ability to accelerate wound healing for both external and internal wounds. This work provides new opportunities for minimally invasive surgery, especially in internal wound healing using smart and robust bio-glues.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianhua Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- Experimental and Research Animal InstituteSichuan UniversityChengdu610041China
| | - Zhan Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Wanjie Bai
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tianyou Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yiwen Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
21
|
Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022; 349:143-155. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.
Collapse
Affiliation(s)
- Carmen J Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Lan Li
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tyler A Finamore
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48864, USA
| | - Ryan K Roeder
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Zhang Z, Chen Y, Zhang Y. Self-Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103241. [PMID: 34850560 DOI: 10.1002/smll.202103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/27/2023]
Abstract
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite. Various designs can show their different desired properties depending on the application situation. This review provides a complete summary on the optimization of the synthesis method for the recently designed UCNPs assemblies and summarizes various applications, including dual-modality cell imaging, molecular delivery, detection, and programmed control therapy. The challenges and limitations the UCNPs assembly faces and the potential solutions in this field are also presented.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
23
|
Liang Y, Shen Y, Liang H. Solvent-responsive strong hydrogel with programmable deformation and reversible shape memory for load-carrying soft robot. MATERIALS TODAY COMMUNICATIONS 2022; 30:103067. [DOI: 10.1016/j.mtcomm.2021.103067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
24
|
Di Cicco C, Vecchione R, Quagliariello V, Busato A, Tufano I, Bedini E, Gerosa M, Sbarbati A, Boschi F, Marzola P, Maurea N, Netti PA. Biocompatible, photo-responsive layer-by-layer polymer nanocapsules with an oil core: in vitro and in vivo study. J R Soc Interface 2022; 19:20210800. [PMID: 35193388 PMCID: PMC8867280 DOI: 10.1098/rsif.2021.0800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In cancer therapy, stimulus-responsive drug delivery systems are of particular interest for reducing side effects in healthy tissues and improving drug selectivity in the tumoral ones. Here, a strategy for the preparation of a photo-responsive cross-linked trilayer deposited onto an oil-in-water nanoemulsion via a layer-by-layer technique is reported. The system is made of completely biocompatible materials such as soybean oil, egg lecithin and glycol chitosan, with heparin as the polymeric shell. The oil core is pre-loaded with curcumin as a model lipophilic active molecule with anti-tumoral properties. The trilayer cross-linkage is performed via a photoinitiator-free thiol-ene 'click' reaction. In particular, the system is implemented with an o-nitrobenzyl group functionalized with a thiol moiety which can perform both the thiol-ene 'click' reaction and the cleavage meant for controlled drug release at two different wavelengths, respectively. So the preparation and characterization of a photo-responsive natural nanocarrier (PNC) that is stable under physiological conditions owing to the thiol-ene cross-linkage are reported. PNC performance has been assessed in vitro on melanoma cells as well as in vivo on xenograft tumour-induced mice.
Collapse
Affiliation(s)
- Chiara Di Cicco
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy,Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy,Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Alice Busato
- Department of Computer Science Research Area in Experimental and Applied Physics, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Immacolata Tufano
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy,Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, 80126 Napoli, Italy
| | - Marco Gerosa
- Department of Computer Science Research Area in Experimental and Applied Physics, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Federico Boschi
- Department of Computer Science Research Area in Experimental and Applied Physics, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science Research Area in Experimental and Applied Physics, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Via Mariano Semmola 53, 80131 Naples, Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy,Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University Federico II, Piazzale Tecchio 80, 80125 Naples, Italy,Interdisciplinary Research Center of Biomaterials (CRIB), University Federico II, P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
25
|
Cao J, Zhang D, Zhou Y, Zhang Q, Wu S. Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromol Rapid Commun 2022; 43:e2100703. [PMID: 35038195 DOI: 10.1002/marc.202100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Indexed: 11/08/2022]
Abstract
Photoresponsive polymer gels have attracted increasing interest owing to their potential applications in healable materials, drug release systems, and extracellular matrices. Because polymer gels provide suitable environments for photochemical reactions, their properties and functions can be controlled with light with a high spatiotemporal resolution. Herein, the design of photoresponsive polymer gels based on different types of photochemical reactions is introduced. The mechanism and applications of irreversible photoreactions, such as photoinduced free-radical polymerization, photoinduced click reactions, and photolysis, as well as reversible photoreactions such as photoinduced reversible cycloadditions, reversible photosubstitution of metal complexes, and photoinduced metathesis are reviewed. The remaining challenges of photoresponsive polymer gels are also discussed.
Collapse
Affiliation(s)
- Jingning Cao
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Gosecka M, Gosecki M, Urbaniak M. Composite Dynamic Hydrogels Constructed on Boronic Ester Cross-Links with NIR-Enhanced Diffusivity. Biomacromolecules 2022; 23:948-959. [PMID: 34986638 DOI: 10.1021/acs.biomac.1c01359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic hydrogels with thermosensitive cross-links are highly promising platforms for "on-demand" drug delivery systems. However, there is a problem with triggering a response in their whole volume, which reduces their efficiency. To achieve better thermoresponsiveness, a graphene oxide-filled composite hydrogel based on boronic ester cross-links, composed of hyperbranched polyglycidol, HbPGL, and poly(acrylamide-ran-2-acrylamidephenylboronic acid), poly(AM-ran-2-AAPBA), has been constructed. The homogeneous embedment of graphene oxide (GO) in the network assured near-infrared (NIR)-photothermal response in its bulk due to the rapid light-to-heat conversion. The rate and amplitude of materials response increase with graphene oxide concentration. The temperature of the hydrogel containing graphene oxide at a concentration of 13.2 mg/mL increased from 36.6 to 41 °C in 29 s upon NIR irradiation. The network diffusivity and the extent of its change with temperature can be regulated by the length of the applied boronic acid-based cross-linking agent. The hydrogel constructed on the shorter copolymer (Mn = 23 000 g/mol) displayed a significant increase in diffusivity with temperature. A diffusion ordered NMR study revealed that the diffusion coefficient determined for niacin, a model drug encapsulated in the hydrogel, increased from 6.09 × 10-10 at 25 °C to 1.28 × 10-9 m2/s at 41 °C. In the case of the hydrogel constructed on the longer acrylamide copolymer (Mn = 43 000 g/mol), in which physical entanglements stabilize the network, the change of encapsulated niacin diffusion coefficient was significantly smaller, i.e., from 3.83 × 10-10 at 25 °C to 6.63 × 10-10 m2/s at 41 °C. The possibility of on-demand NIR-regulated diffusivity of the reported boronic ester-based hydrogels makes them promising candidates for controlled drug delivery platforms.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Malgorzata Urbaniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
27
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polym Chem 2022. [DOI: 10.1039/d1py01066b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covalently crosslinked stimuli-destructible hydrogels with the ability of irreversible bond dissociation have attracted great attentions due to their biodegradability, stability against hydrolysis, and controlled solubility upon insertion of desired triggers.
Collapse
Affiliation(s)
- Sina Shahi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, PO Box: 51335-1996, Tabriz, Iran
| |
Collapse
|
28
|
Liu R, Feng Y, Li Z, Lu S, Guan T, Li X, Liu Y, Chen Z, Chen X. A Novel Near-infrared Responsive Lanthanide Upconversion Nanoplatform for Drug Delivery Based on Photocleavage of Cypate ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
30
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
31
|
Kulkarni NS, Chauhan G, Goyal M, Sarvepalli S, Gupta V. Development of Gelatin Methacrylate (GelMa) Hydrogels for Versatile Intracavitary Applications: In-vitro Characterization and Ex-vivo Performance Assessment. Biomater Sci 2022; 10:4492-4507. [DOI: 10.1039/d2bm00022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Applicability of hydrogels as drug delivery systems is on the rise due to their highly tunable degree of polymeric crosslinking to attain varying rates of payload release. Sustaining the release...
Collapse
|
32
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
33
|
Kulkarni K, Minehan RL, Gamot T, Coleman HA, Bowles S, Lin Q, Hopper D, Northfield SE, Hughes RA, Widdop RE, Aguilar MI, Parkington HC, Del Borgo MP. Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58279-58290. [PMID: 34756031 DOI: 10.1021/acsami.1c14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β3-tripeptide is presented. The drug-loaded β3-peptide was successfully co-assembled with a functionally inert lipidated β3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling β3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.
Collapse
Affiliation(s)
- Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rachel L Minehan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tanesh Gamot
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon Bowles
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qingqing Lin
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Denham Hopper
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan E Northfield
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A Hughes
- Pharmacy and Pharmaceutical Sciences Education, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
35
|
Tethering smartness to the metal containing polymers - recent trends in the stimuli-responsive metal containing polymers. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Dong Y, Li S, Li X, Wang X. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. Int J Biol Macromol 2021; 190:693-699. [PMID: 34520776 DOI: 10.1016/j.ijbiomac.2021.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
Smart hydrogels responsive to minimally invasive near-infrared (NIR) light have great potential in localized drug delivery for cancer treatment, but they still show some limitations such as low photothermal conversion, poor photothermal stability, and improper temperature range in biomedical applications. In this paper, the two-dimensional MXene nanosheets with high photothermal conversion efficiency as well as photothermal stability was firstly prepared, then the MXene nanosheets and the therapeutic drug were embedded in the low-melting-point agarose hydrogel network to fabricate the drug-loaded MXene/agarose hydrogel (MXene@Hydrogel). With the addition of low concentration of MXene (20 ppm), the MXene@Hydrogel could quickly rise to 60 °C under NIR irradiation and melt to release the encapsulated drugs. Importantly, the drug on/off release and the kinetics could be easily controlled with varied agarose concentration, MXene concentration, light intensity, and exposure time. In addition, the drug doxorubicin retained the anticancer activity after released from the MXene@Hydrogel network under NIR irradiation. With the excellent biocompatibility, the newly fabricated NIR-responsive MXene@Hydrogel offers a novel way for the development of smart hydrogel-based drug delivery system for localized cancer treatment.
Collapse
Affiliation(s)
- Yangjin Dong
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
37
|
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021; 338:446-461. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023]
Abstract
Over the past three decades, various photosensitive nanoparticles have been developed as potential therapies in human health, ranging from photodynamic therapy technologies that have already reached clinical use, to drug delivery systems that are still in the preclinical stages. Many of these systems are designed to achieve a high spatial and temporal on-demand drug release via phototriggerable mechanisms. This review examines the current clinical and experimental applications in cancer treatment of photosensitive drug release systems, including nanocarriers such as liposomes, micelles, polymeric nanoparticles, and hydrogels. We will focus on the three main physicochemical mechanisms of imparting photosensitivity to a delivery system: i) photochemical reactions (oxidation, cleavage, and polymerization), ii) photoisomerization, iii) and photothermal reactions. Photosensitive nanoparticles have a multitude of different applications including controlled drug release, resulting from physical/conformational changes in the delivery systems in response to light of specific wavelengths. Most of the recent research in these delivery systems has primarily focused on improving the efficacy and safety of cancer treatments such as photodynamic and photothermal therapy. Combinations of multiple treatment modalities using photosensitive nanoparticulate delivery systems have also garnered great interest in combating multi-drug resistant cancers due to their synergistic effects. Finally, the challenges and future potential of photosensitive drug delivery systems in biomedical applications is outlined.
Collapse
Affiliation(s)
- Patrick Pan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shaun W P Rees
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
38
|
Chakraborty A, Roy A, Ravi SP, Paul A. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Biomater Sci 2021; 9:6337-6354. [PMID: 34397056 DOI: 10.1039/d1bm00605c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging tissue engineering approach that aims to develop cell or biomolecule-laden, complex polymeric scaffolds with high precision, using hydrogel-based "bioinks". Hydrogels are water-swollen, highly crosslinked polymer networks that are soft, quasi-solid, and can support and protect biological materials. However, traditional hydrogels have weak mechanical properties and cannot retain complex structures. They must be reinforced with physical and chemical manipulations to produce a mechanically resilient bioink. Over the past few years, we have witnessed an increased use of nanoparticles and biological moiety-functionalized nanoparticles to fabricate new bioinks. Nanoparticles of varied size, shape, and surface chemistries can provide a unique solution to this problem primarily because of three reasons: (a) nanoparticles can mechanically reinforce hydrogels through physical and chemical interactions. This can favorably influence the bioink's 3D printability and structural integrity by modulating its rheological, biomechanical, and biochemical properties, allowing greater flexibility to print a wide range of structures; (b) nanoparticles can introduce new bio-functionalities to the hydrogels, which is a key metric of a bioink's performance, influencing both cell-material and cell-cell interactions within the hydrogel; (c) nanoparticles can impart "smart" features to the bioink, making the tissue constructs responsive to external stimuli. Responsiveness of the hydrogel to magnetic field, electric field, pH changes, and near-infrared light can be made possible by the incorporation of nanoparticles. Additionally, bioink polymeric networks with nanoparticles can undergo advanced chemical crosslinking, allowing greater flexibility to print structures with varied biomechanical properties. Taken together, the unique properties of various nanoparticles can help bioprint intricate constructs, bringing the process one step closer to complex tissue structure and organ printing. In this review, we explore the design principles and multifunctional properties of various nanomaterials and nanocomposite hydrogels for potential, primarily extrusion-based bioprinting applications. We illustrate the significance of biocompatibility of the designed nanocomposite hydrogel-based bioink for clinical translation and discuss the different parameters that affect cell fate after cell-nanomaterial interaction. Finally, we critically assess the current challenges of nanoengineering bioinks and provide insight into the future directions of potential hydrogel bioinks in the rapidly evolving field of bioprinting.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Avinava Roy
- Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
39
|
Suhail M, Fang CW, Khan A, Minhas MU, Wu PC. Fabrication and In Vitro Evaluation of pH-Sensitive Polymeric Hydrogels as Controlled Release Carriers. Gels 2021; 7:110. [PMID: 34449621 PMCID: PMC8395813 DOI: 10.3390/gels7030110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer-Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan;
| | - Chih-Wun Fang
- Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung City 81342, Taiwan;
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Khawaja Fareed Campus (Railway Road), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | | | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
40
|
Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y, Nie Z. Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater 2021; 130:138-148. [PMID: 34082094 DOI: 10.1016/j.actbio.2021.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Precise delivery of therapeutic protein drugs that specifically modulate desired cellular responses is critical in clinical practice. However, the spatiotemporal regulation of protein drugs release to manipulate the target cell population in vivo remains a huge challenge. Herein, we have rationally developed an injectable and Near-infrared (NIR) light-responsive MXene-hydrogel composed of Ti3C2, agarose, and protein that enables flexibly and precisely control the release profile of protein drugs to modulate cellular behaviors with high spatiotemporal precision remotely. As a proof-of-concept study, we preloaded hepatic growth factor (HGF) into the MXene@hydrogel (MXene@agarose/HGF) to activate the c-Met-mediated signaling by NIR light. We demonstrated NIR light-instructed cell diffusion, migration, and proliferation at the user-defined localization, further promoting angiogenesis and wound healing in vivo. Our approach's versatility was validated by preloading tumor necrotic factor-α (TNF-α) into the composite hydrogel (MXene@agarose/TNF-α) to promote the pro-apoptotic signaling pathway, achieving the NIR light-induced programmed cell deaths (PCD) of tumor spheroids. Taking advantage of the deep-tissue penetrative NIR light, we could eradicate the deep-seated tumors in a xenograft model exogenously. Therefore, the proposed MXene-hydrogel provides the impetus for developing therapeutic synthetic materials for light-controlled drug release under thick tissue, which will find promising applications in regenerative medicine and tumor therapy. STATEMENT OF SIGNIFICANCE: Current stimuli-responsive hydrogels for therapeutic proteins delivery mainly depend on self-degradation, passive diffusion, or the responsiveness to cues relevant to diseases. However, it remains challenging to spatiotemporally deliver protein-based drugs to manipulate the target cell population in vivo in an "on-demand" manner. Therefore, we have rationally constructed an injectable and Near-infrared (NIR) light-responsive composite hydrogel by embedding Ti3C2 MXene and protein drugs within an agarose hydrogel to enable the remote control of protein drugs delivery with high spatiotemporal precision. The NIR light-controlled release of the growth factor or cytokine has been carried out to regulate receptor-mediated cellular behaviors under deep tissue for skin wound healing or cancer therapy. This system will provide the potential for precision medicine through the development of intelligent drug delivery systems.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Shaohua Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhu Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| | - Yan Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082 P.R. China.
| |
Collapse
|
41
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
42
|
Zheng C, Yu Y, Kuang S, Zhu B, Zhou H, Zhang SQ, Yang J, Shi L, Ran C. β-Amyloid Peptides Manipulate Switching Behaviors of Donor-Acceptor Stenhouse Adducts. Anal Chem 2021; 93:9887-9896. [PMID: 34235921 DOI: 10.1021/acs.analchem.1c01957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular switching plays a critical role in biological and displaying systems. Donor-acceptor Stenhouse adducts (DASAs) is a newly re-discovered series of switchable photochromes, and light is the most used approach to control its switching behavior. In this report, we speculated that hydrophobic binding pockets of biologically relevant peptides/proteins could be harnessed to alter its switching behavior without the assistance of light. We designed and synthesized a DASA compound SHA-2, and we demonstrated that the Aβ40 species could stabilize SHA-2 in the linear conformation and decrease the rate of molecular switching via fluorescence spectral studies. Moreover, molecular dynamics simulation revealed that SHA-2 could bind to the hydrophobic fragment of the peptide and resulted in substantial changes in the tertiary structure of Aβ40 monomer. This structural change is likely to impede the aggregation of Aβ40, as evidenced by the results from thioflavin T fluorescence and ProteoStat aggregation detection experiments. We believe that our study opens a new window to alter the switching behavior of DASA via DASA-peptide/protein interactions.
Collapse
Affiliation(s)
- Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States.,PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yue Yu
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Heng Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Shao-Qing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, California 95343, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
43
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
44
|
Zhang Y, Zhu L, Tian J, Zhu L, Ma X, He X, Huang K, Ren F, Xu W. Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100216. [PMID: 34306976 PMCID: PMC8292884 DOI: 10.1002/advs.202100216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Nucleic acid-based hydrogels that integrate intrinsic biological properties of nucleic acids and mechanical behavior of their advanced assemblies are appealing bioanalysis and biomedical studies for the development of new-generation smart biomaterials. It is inseparable from development and incorporation of novel structural and functional units. This review highlights different functional units of nucleic acids, polymers, and novel nanomaterials in the order of structures, properties, and functions, and their assembly strategies for the fabrication of nucleic acid-based hydrogels. Also, recent advances in the design of multifunctional and stimuli-responsive nucleic acid-based hydrogels in bioanalysis and biomedical science are discussed, focusing on the applications of customized hydrogels for emerging directions, including 3D cell cultivation and 3D bioprinting. Finally, the key challenge and future perspectives are outlined.
Collapse
Affiliation(s)
- Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Jingjing Tian
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xuan Ma
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| |
Collapse
|
45
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
46
|
Zou X, Zhu J, Hu P, Liu R. Methods to Evaluate Near‐Infrared Photoinitiating Systems for Photopolymerisation Reactions Assisted By Upconversion Materials. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiucheng Zou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Junzhe Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Peng Hu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| |
Collapse
|
47
|
Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021; 26:709-728. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a result of the low oral bioavailability of several drugs, there is a renewed interest for parenteral administration to target their absorption directly into the blood bypassing the long gastrointestinal route and hepatic metabolism. In order to address the potential side effects of frequent injections, sustained release systems are the most popular approaches for achieving controlled long-acting drug delivery. Injectable in-situ forming implants (ISFIs) have gained greater popularity in comparison to other sustained systems. Their significant positive aspects are attributed to easier production, acceptable administration route, reduced dosing frequency and patient compliance achievement. ISFI systems, comprising biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) based on solvent exchange mechanisms, are emerged as liquid formulations that develop solid or semisolid depots after injection and deliver drugs over extended periods. The drug release from ISFI systems is generally characterized by an initial burst during the matrix solidification, followed by diffusion processes and finally polymeric degradation and erosion. The choice of suitable solvent with satisfactory viscosity, miscibility and biocompatibility along with considerable PLGA hydrophobicity and molecular weights is fundamental for optimizing the drug release. This overview gives a particular emphasis on evaluations and the wide ranges of requirements needed to achieve reasonable physicochemical characteristics of ISFIs.
Collapse
Affiliation(s)
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
48
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Abramov A, Maiti B, Keridou I, Puiggalí J, Reiser O, Díaz DD. A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates. Macromol Rapid Commun 2021; 42:e2100213. [PMID: 34031940 DOI: 10.1002/marc.202100213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Indexed: 11/10/2022]
Abstract
A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)n -alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG2000 -alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG2000 -oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.
Collapse
Affiliation(s)
- Alex Abramov
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Binoy Maiti
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - Ina Keridou
- Department d'Enginyeria Química, Ecola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, 08019, Spain
| | - Jordi Puiggalí
- Department d'Enginyeria Química, Ecola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona, 08019, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C/Baldiri Reixax 10-12, Barcelona, 08028, Spain
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany
| | - David Díaz Díaz
- Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, 93053, Regensburg, Germany.,Departmento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna, Tenerife, 38206, Spain.,Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, Tenerife, 38206, Spain
| |
Collapse
|
50
|
Cao Y, Cheng Y, Zhao G. Near-Infrared Light-, Magneto-, and pH-Responsive GO-Fe 3O 4/Poly( N-isopropylacrylamide)/alginate Nanocomposite Hydrogel Microcapsules for Controlled Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5522-5530. [PMID: 33929865 DOI: 10.1021/acs.langmuir.1c00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Responsive hydrogels have found widespread applications in biomedical science and engineering fields, especially for drug delivery. Despite the superior performance of responsive hydrogels, challenges still exist in drug-delivery efficiency when environmental stimuli are weak. Recently, the demand in the design of hydrogel-based drug delivery systems has stimulated considerable interest in the search for new strategies, for instance, the application of nanocomposite hydrogels for reinforcing the versatility and flexibility in controlled drug delivery. In this study, a novel and effective nanocomposite hydrogel microcapsule drug delivery system, which is composed of poly(N-isopropylacrylamide) (PNIPAM) and alginate interpenetrating polymer and GO-Fe3O4 nanomaterials, is developed to achieve NIR light-, magneto-, and pH-responsive drug release. The GO-Fe3O4 nanomaterials embedded in the interpenetrating polymer enable the PNIPAM hydrogel deswelling by raising temperature above the lower critical solution temperature under NIR light and alternating magnetic field, thus accelerating the release of doxorubicin. In addition, the introduction of alginate into PNIPAM hydrogels endows nanocomposite hydrogels (NCHs) with quick gelation property, enhanced mechanical property, and pH-responsive performance. The in vitro cytotoxicity assay confirmed that the NCH platform can effectively kill the cancer cells. This novel multiresponsive drug delivery system holds great promise for the treatment of diseases.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yue Cheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|