1
|
Shang R, Wu T, Meguid SA. Molecular dynamics simulations of the effect of static electric field on progressive ice formation. J Chem Phys 2024; 161:094504. [PMID: 39230380 DOI: 10.1063/5.0226624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Ice accumulation under static electric fields presents a significant hazard to transmission lines and power grids. Contemporary computational studies of electrofreezing predominantly probed excessive electric fields (109 V/m) that are significantly higher than those typically encountered in proximity to transmission lines. To elucidate the influence of realistic electric fields (105 V/m) on ice crystallization, we run extensive molecular dynamics (MD) simulations across dual ice-water coexistence systems. Three aspects of work were accordingly examined. First, we investigated the influence of the effect of static electric fields, with a strength of 105 V/m, along three orthogonal axes on the phase transition during the encountered freezing and melting processes. Second, we established the mechanism of how the direction of an electric field, the initial ice crystallography, and the adjacent crystal planes influence the solidification process. Third, the results of our MD simulations were further post-processed to determine the dipole moment, radial distribution, and angle distribution resulting from the static electric field. Our results indicate that while weak electric fields do not cause complete polarization of liquid water molecules, they can induce a transition to a more structured ice-like geometry of the water molecules at the ice-water interphase region, particularly when applied perpendicular to the ice-water interphase. Notably, the interface adjacent to cubic ice exhibits a greater response to the electric fields than that adjacent to hexagonal ice. This is attributable to the intrinsic differences in their original hydrogen bonding networks.
Collapse
Affiliation(s)
- Ruiqi Shang
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- The Institute of Advanced Technologies in Energy and Electrical Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Wu
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - S A Meguid
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
2
|
Soni A, Patey GN. Using machine learning with atomistic surface and local water features to predict heterogeneous ice nucleation. J Chem Phys 2024; 160:124501. [PMID: 38530008 DOI: 10.1063/5.0177706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Heterogeneous ice nucleation (HIN) has applications in climate science, nanotechnology, and cryopreservation. Ice nucleation on the earth's surface or in the atmosphere usually occurs heterogeneously involving foreign substrates, known as ice nucleating particles (INPs). Experiments identify good INPs but lack sufficient microscopic resolution to answer the basic question: What makes a good INP? We employ molecular dynamics (MD) simulations in combination with machine learning (ML) to address this question. Often, the large amount of computational cost required to cross the nucleation barrier and observe HIN in MD simulations is a practical limitation. We use information obtained from short MD simulations of atomistic surface and water models to predict the likelihood of HIN. We consider 153 atomistic substrates with some surfaces differing in elemental composition and others only in terms of lattice parameters, surface morphology, or surface charges. A range of water features near the surface (local) are extracted from short MD simulations over a time interval (≤300 ns) where ice nucleation has not initiated. Three ML classification models, Random Forest (RF), support vector machine, and Gaussian process classification are considered, and the accuracies achieved by all three approaches lie within their statistical uncertainties. Including local water features is essential for accurate prediction. The accuracy of our best RF classification model obtained including both surface and local water features is 0.89 ± 0.05. A similar accuracy can be achieved including only local water features, suggesting that the important surface properties are largely captured by the local water features. Some important features identified by ML analysis are local icelike structures, water density and polarization profiles perpendicular to the surface, and the two-dimensional lattice match to ice. We expect that this work, with its strong focus on realistic surface models, will serve as a guide to the identification or design of substrates that can promote or discourage ice nucleation.
Collapse
Affiliation(s)
- Abhishek Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - G N Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Gaire B, Wilson MC, Singla S, Dhinojwala A. Connection between Molecular Interactions and Mechanical Work of Adhesion. ACS Macro Lett 2022; 11:1285-1290. [DOI: 10.1021/acsmacrolett.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Babu Gaire
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Michael C. Wilson
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Backus EHG, Schaefer J, Bonn M. Probing the Mineral-Water Interface with Nonlinear Optical Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10482-10501. [PMID: 32558984 PMCID: PMC8247323 DOI: 10.1002/anie.202003085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Indexed: 12/21/2022]
Abstract
The interaction between minerals and water is manifold and complex: the mineral surface can be (de)protonated by water, thereby changing its charge; mineral ions dissolved into the aqueous phase screen the surface charges. Both factors affect the interaction with water. Intrinsically molecular-level processes and interactions govern macroscopic phenomena, such as flow-induced dissolution, wetting, and charging. This realization is increasingly prompting molecular-level studies of mineral-water interfaces. Here, we provide an overview of recent developments in surface-specific nonlinear spectroscopy techniques such as sum frequency and second harmonic generation (SFG/SHG), which can provide information about the molecular arrangement of the first few layers of water molecules at the mineral surface. The results illustrate the subtleties of both chemical and physical interactions between water and the mineral as well as the critical role of mineral dissolution and other ions in solution for determining those interactions.
Collapse
Affiliation(s)
- Ellen H. G. Backus
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Physical ChemistryUniversity of ViennaWähringer Strasse 421090ViennaAustria
| | - Jan Schaefer
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
5
|
Backus EHG, Schaefer J, Bonn M. Untersuchung der Mineral‐Wasser‐Grenzschicht mit nicht‐linearer optischer Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen H. G. Backus
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Institut für Physikalische Chemie Universität Wien Währinger Straße 42 1090 Wien Österreich
| | - Jan Schaefer
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
6
|
Moll CJ, Meister K, Versluis J, Bakker HJ. Freezing of Aqueous Carboxylic Acid Solutions on Ice. J Phys Chem B 2020; 124:5201-5208. [PMID: 32414235 PMCID: PMC7322724 DOI: 10.1021/acs.jpcb.9b10462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We study the properties of acetic
acid and propionic acid solutions
at the surface of monocrystalline ice with surface-specific vibrational
sum-frequency generation (VSFG) and heterodyne-detected vibrational
sum-frequency generation spectroscopy (HD-VSFG). When we decrease
the temperature toward the eutectic point of the acid solutions, we
observe the formation of a freeze concentrated solution (FCS) of the
carboxylic acids that is brought about by a freeze-induced phase separation
(FIPS). The freeze concentrated solution freezes on top of the ice
surface as we cool the system below the eutectic point. We find that
for freeze concentrated acetic acid solutions the freezing causes
a strong decrease of the VSFG signal, while for propionic acid an
increase and a blue-shift are observed. This different behavior points
at a distinct difference in molecular-scale behavior when cooling
below the eutectic point. We find that cooling of the propionic acid
solution below the eutectic point leads to the formation of hydrogen-bonded
dimers with an opposite alignment of the carboxylic acid O–H
groups.
Collapse
Affiliation(s)
- Carolyn J Moll
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Konrad Meister
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.,Max-Planck Institute for Polymer Research, Ackermannweg 10, Mainz D 55128, Germany.,University of Alaska Southeast, Juneau, Alaska 99801, United States
| | - Jan Versluis
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands
| |
Collapse
|
7
|
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged Proteins and Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905309. [PMID: 31943419 DOI: 10.1002/adma.201905309] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.
Collapse
Affiliation(s)
- Chao Ma
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anke Malessa
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J Boersma
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
8
|
Emelyanenko AM, Emelyanenko KA, Boinovich LB. Deep Undercooling of Aqueous Droplets on a Superhydrophobic Surface: The Specific Role of Cation Hydration. J Phys Chem Lett 2020; 11:3058-3062. [PMID: 32227995 DOI: 10.1021/acs.jpclett.0c00609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An extraordinary prolonged freezing delay was detected for the first time for deeply undercooled sessile droplets of aqueous solutions of alkali metal chlorides deposited onto a superhydrophobic surface. Accounting for the variation in the hydration energy of ions, their distribution in the vicinity of charged interfaces of solution/air and solution/superhydrophobic surface allows qualitative description of the observed ice nucleation kinetics and ionic specificity in freezing phenomena.
Collapse
Affiliation(s)
- Alexandre M Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| | - Kirill A Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| | - Ludmila B Boinovich
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Leninsky Prospect 31 Bldg. 4, 119071 Moscow, Russia
| |
Collapse
|
9
|
Qian Y, Deng GH, Lapp J, Rao Y. Interfaces of Gas-Aerosol Particles: Relative Humidity and Salt Concentration Effects. J Phys Chem A 2019; 123:6304-6312. [PMID: 31253043 DOI: 10.1021/acs.jpca.9b03896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth of aerosol particles is intimately related to chemical reactions in the gas phase and particle phase and at gas-aerosol particle interfaces. While chemical reactions in gas and particle phases are well documented, there is very little information regarding interface-related reactions. The interface of gas-aerosol particles not only facilitates a physical channel for organic species to enter and exit but also provides a necessary lane for culturing chemical reactions. The physical and chemical properties of gas-particle interfaces have not been studied extensively, nor have the reactions occurring at the interfaces been well researched. This is mainly due to the fact that there is a lack of suitable in situ interface-sensitive analytical techniques for direct measurements of interfacial properties. The motivation behind this research is to understand how interfaces play a role in the growth of aerosol particles. We have developed in situ interface-specific second harmonic scattering to examine interfacial behaviors of molecules of aerosol particles under different relative humidity (RH) and salt concentrations. Both the relative humidity and salt concentration can change the particle size and the phase of the aerosol. RH not only varies the concentration of solutes inside aerosol particles but also changes interfacial hydration in local regions. Organic molecules were found to exhibit distinct behaviors at the interfaces and bulk on NaCl particles under different RH levels. Our quantitative analyses showed that the interfacial adsorption free energies remain unchanged while interfacial areas increase as the relative humidity increases. Furthermore, the surface tension of NaCl particles decreases as the RH increases. Our experimental findings from the novel nonlinear optical scattering technique stress the importance of interfacial water behaviors on aerosol particles in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Jordan Lapp
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
10
|
Langowski JKA, Singla S, Nyarko A, Schipper H, van den Berg FT, Kaur S, Astley HC, Gussekloo SWS, Dhinojwala A, van Leeuwen JL. Comparative and functional analysis of the digital mucus glands and secretions of tree frogs. Front Zool 2019; 16:19. [PMID: 31210775 PMCID: PMC6563374 DOI: 10.1186/s12983-019-0315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background Mucus and mucus glands are important features of the amphibian cutis. In tree frogs, the mucus glands and their secretions are crucial components of the adhesive digital pads of these animals. Despite a variety of hypothesised functions of these components in tree frog attachment, the functional morphology of the digital mucus glands and the chemistry of the digital mucus are barely known. Here, we use an interdisciplinary comparative approach to analyse these components, and discuss their roles in tree frog attachment. Results Using synchrotron micro-computer-tomography, we discovered in the arboreal frog Hyla cinerea that the ventral digital mucus glands differ in their morphology from regular anuran mucus glands and form a subdermal gland cluster. We show the presence of this gland cluster also in several other—not exclusively arboreal—anuran families. Using cryo-histochemistry as well as infrared and sum frequency generation spectroscopy on the mucus of two arboreal (H. cinerea and Osteopilus septentrionalis) and of two terrestrial, non-climbing frog species (Pyxicephalus adspersus and Ceratophrys cranwelli), we find neutral and acidic polysaccharides, and indications for proteinaceous and lipid-like mucus components. The mucus chemistry varies only little between dorsal and ventral digital mucus in H. cinerea, ventral digital and abdominal mucus in H. cinerea and O. septentrionalis, and between the ventral abdominal mucus of all four studied species. Conclusions The presence of a digital mucus gland cluster in various anuran families, as well as the absence of differences in the mucus chemistry between arboreal and non-arboreal frog species indicate an adaptation towards generic functional requirements as well as to attachment-related requirements. Overall, this study contributes to the understanding of the role of glands and their secretions in tree frog attachment and in bioadhesion in general, as well as the evolution of anurans. Electronic supplementary material The online version of this article (10.1186/s12983-019-0315-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julian K A Langowski
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Saranshu Singla
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Alex Nyarko
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Henk Schipper
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Frank T van den Berg
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Sukhmanjot Kaur
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Henry C Astley
- 3Biomimicry Research & Innovation Center, Departments of Biology and Polymer Science, The University of Akron, 235 Carroll St., Akron, Ohio 44325-3908 USA
| | - Sander W S Gussekloo
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Ali Dhinojwala
- 2Department of Polymer Science, The University of Akron, 170 University Ave, Akron, Ohio 44325-3909 USA
| | - Johan L van Leeuwen
- 1Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| |
Collapse
|
11
|
Yamaguchi S, Suzuki Y, Nojima Y, Otosu T. Perspective on sum frequency generation spectroscopy of ice surfaces and interfaces. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abdelmonem A, Backus EHG, Bonn M. Ice Nucleation at the Water-Sapphire Interface: Transient Sum-Frequency Response without Evidence for Transient Ice Phase. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:24760-24764. [PMID: 30450149 PMCID: PMC6231158 DOI: 10.1021/acs.jpcc.8b07480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Heterogeneous ice nucleation at the water-sapphire interface is studied using sum-frequency generation spectroscopy. We follow the response of the O-H stretch mode of interfacial water during ice nucleation as a function of time and temperature. The ice and liquid states each exhibit very distinct, largely temperature-independent responses. However, at the moment of freezing, a transient response with a significantly different intensity is observed, with a lifetime between several seconds and several minutes. The presence of this transient signal has previously been attributed to a transient phase of ice. Here, we demonstrate that the transient signal can be explained without invoking a transient ice phase, as the transient signal can simply be accounted for by a linear combination of time-dependent liquid and ice responses.
Collapse
Affiliation(s)
- Ahmed Abdelmonem
- Institute
of Meteorology and Climate Research—Atmospheric Aerosol Research
(IMKAAF), Karlsruhe Institute of Technology
(KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Lützenkirchen J, Scharnweber T, Ho T, Striolo A, Sulpizi M, Abdelmonem A. A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications. J Colloid Interface Sci 2018; 529:294-305. [DOI: 10.1016/j.jcis.2018.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
|
14
|
Qian Y, Deng GH, Rao Y. In Situ Chemical Analysis of the Gas-Aerosol Particle Interface. Anal Chem 2018; 90:10967-10973. [PMID: 30111093 DOI: 10.1021/acs.analchem.8b02537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gas-aerosol particle interface is believed to contribute to the growth of secondary organic aerosols in the atmosphere. Despite its importance, the chemical composition of the interface has not been probed directly because of a lack of suitable interface-specific analytical techniques. The preliminary result in our early work has demonstrated direct observations of molecules at the gas-aerosol particle interface with the development of second harmonic scattering (SHS). However, the SHS technique is far away from being an analytical tool of chemical compositions at the gas-aerosol particle interface. In this work, we continued to develop the interface-specific SHS for in situ chemical analysis of molecules at the gas-aerosol particle interface. As an example, we demonstrated coherent SHS signal of a new SHS probe, crystal violet (CV), from interfaces of aerosol particles. The development of the SHS technique includes: (1) Optimization for a more efficient femtosecond laser system in the generation of SHS from aerosol particles. A near 5 MHz repetition rate of a femtosecond laser was found to be optimal for the generation of SHS; (2) exploration of a more effective detector for SHS of aerosol particles. We found that both a CCD detector and a single-photon counter produce similar signal-to-noise ratios of the interfacial SHS signals from aerosol particles. The CCD detector is a more effective option for the detection of SHS and could greatly reduce sampling time of the interfacial responses; (3) combination of the optimal laser system with the CCD detector, which has greatly improved the detection sensitivity of interfacial molecules by more than 2 orders of magnitude and could potentially detect interfacial SHS from a single aerosol particle. These experimental results not only provided a thorough analysis of the SHS technique but also built a solid foundation for further development of a new vibrational sum frequency scattering (SFS) technique for chemical structures at the gas-aerosol particle interface.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
15
|
Zhou Y, Josey B, Anim-Danso E, Maranville B, Karapetrova J, Jiang Z, Zhou Q, Dhinojwala A, Foster MD. In Situ Nanoscale Characterization of Water Penetration through Plasma Polymerized Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9634-9644. [PMID: 30036069 PMCID: PMC11135041 DOI: 10.1021/acs.langmuir.8b01646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search continues for means of making quick determinations of the efficacy of a coating for protecting a metal surface against corrosion. One means of reducing the time scale needed to differentiate the performance of different coatings is to draw from nanoscale measurements inferences about macroscopic behavior. Here we connect observations of the penetration of water into plasma polymerized (PP) protective coatings and the character of the interface between the coating and an oxide-coated aluminum substrate or model oxide-coated silicon substrate to the macroscopically observable corrosion for those systems. A plasma polymerized film from hexamethyldisiloxane (HMDSO) monomer is taken as illustrative of a hydrophobic coating, while a PP film from maleic anhydride (MA) is used as a characteristically hydrophilic coating. The neutron reflectivity (NR) of films on silicon oxide coated substrates shows that water moves more readily through the hydrophilic PP-MA film. Off-specular X-ray scattering indicates the PP-MA film on aluminum is less conformal with the substrate than is the PP-HMDSO film. Measurements with infrared-visible sum frequency generation spectroscopy (SFG), which probes the chemical nature of the interface, make clear that the chemical interactions between coating and aluminum oxide are disrupted by interfacial water. With this water penetration and interface disruption, macroscopic corrosion can occur much more rapidly. An Al panel coated with PP-MA corrodes after 1 day in salt spray, while a similarly thin (∼30 nm) PP-HMDSO coating protects an Al panel for a period on the order of one month.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Brian Josey
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Brian Maranville
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jenia Karapetrova
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Zhang Jiang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qixin Zhou
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Mark D. Foster
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Dhopatkar N, Anim-Danso E, Peng C, Singla S, Liu X, Joy A, Dhinojwala A. Reorganization of an Amphiphilic Glassy Polymer Surface in Contact with Water Probed by Contact Angle and Sum Frequency Generation Spectroscopy. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nishad Dhopatkar
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chao Peng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Saranshu Singla
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xinhao Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
17
|
Lovering KA, Chou KC. Insights into Ice Formation via Immersion Freezing from Nonlinear Optical Spectroscopy. Top Catal 2018. [DOI: 10.1007/s11244-018-0928-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Fundamental interfacial mechanisms underlying electrofreezing. Adv Colloid Interface Sci 2018; 251:26-43. [PMID: 29289337 DOI: 10.1016/j.cis.2017.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/19/2017] [Accepted: 12/03/2017] [Indexed: 11/24/2022]
Abstract
This article reviews the fundamental interfacial mechanisms underlying electrofreezing (promotion of ice nucleation via the application of an electric field). Electrofreezing has been an active research topic for many decades, with applications in food preservation, cryopreservation, cryogenics and ice formation. There is substantial literature detailing experimental and simulations-based studies, which aim to understand the complex mechanisms underlying accelerated ice nucleation in the presence of electric fields and electrical charge. This work provides a critical review of all such studies. It is noted that application-focused studies of electrofreezing are excluded from this review; such studies have been previously reviewed in literature. This review focuses only on fundamental studies, which analyze the physical mechanisms underlying electrofreezing. Topics reviewed include experimental studies on electrofreezing (DC and AC electric fields), pyroelectricity-based control of freezing, molecular dynamics simulations of electrofreezing, and thermodynamics-based explanations of electrofreezing. Overall, it is seen that electrofreezing can enable disruptive advancements in the control of liquid-to-solid phase change, and that our current understanding of the underlying mechanisms can be significantly improved through further studies of various interfacial effects coming into play.
Collapse
|
19
|
Wang H, Jasensky J, Ulrich NW, Cheng J, Huang H, Chen Z, He C. Capsaicin-Inspired Thiol-Ene Terpolymer Networks Designed for Antibiofouling Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13689-13698. [PMID: 29100465 DOI: 10.1021/acs.langmuir.7b03098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel photocurable ternary polymer networks were prepared by incorporating N-(4-hydroxy-3-methoxybenzyl)-acrylamide (HMBA) into a cross-linked thiol-ene network based on poly(ethylene glycol)diacrylate (PEGDA) and (mercaptopropyl)methylsiloxane homopolymers (MSHP). The ternary network materials displayed bactericidal activity against Escherichia coli and Staphylococcus aureus and reduced the attachment of marine organism Phaeodactylum tricornutum. Extensive soaking of the polymer networks in aqueous solution indicated that no active antibacterial component leached out of the materials, and thus the ternary thiol-ene coating killed the bacteria by surface contact. The surface structures of the polymer networks with varied content ratios were studied by sum frequency generation (SFG) vibrational spectroscopy. The results demonstrated that the PDMS Si-CH3 groups and mimic-capsaicine groups are predominantly present at the polymer-air interface of the coatings. Surface reorganization was apparent after polymers were placed in contact with D2O: the hydrophobic PDMS Si-CH3 groups left the surface and returned to the bulk of the polymer networks, and the hydrophilic PEG chains cover the polymer surfaces in D2O. The capasaicine methoxy groups are able to segregate to the surface in an aqueous environment, depending upon the ratio of HMBA/PEGDA. SFG measurements in situ showed that the antibacterial HMBA chains, rather than the nonfouling PEG, played a dominant role in mediating the antibiofouling performance in this particular polymer system.
Collapse
Affiliation(s)
- Haiye Wang
- College of Materials Science and Engineering, Donghua University , Shanghai 201620, P. R. China
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua Jasensky
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nathan W Ulrich
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Junjie Cheng
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hao Huang
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chunju He
- College of Materials Science and Engineering, Donghua University , Shanghai 201620, P. R. China
| |
Collapse
|
20
|
Singla S, Anim-Danso E, Islam AE, Ngo Y, Kim SS, Naik RR, Dhinojwala A. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy. ACS NANO 2017; 11:4899-4906. [PMID: 28448717 DOI: 10.1021/acsnano.7b01499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The water/graphene interface has received considerable attention in the past decade due to its relevance in various potential applications including energy storage, sensing, desalination, and catalysis. Most of our knowledge about the interfacial water structure next to graphene stems from simulations, which use experimentally measured water contact angles (WCAs) on graphene (or graphite) to estimate the water-graphene interaction strength. However, the existence of a wide spectrum of reported WCAs on supported graphene and graphitic surfaces makes it difficult to interpret the water-graphene interactions. Here, we have used surface-sensitive infrared-visible sum frequency generation (SFG) spectroscopy to probe the interfacial water structure next to graphene supported on a sapphire substrate. In addition, the ice nucleation properties of graphene have been explored by performing in situ freezing experiments as graphitic surfaces are considered good ice nucleators. For graphene supported on sapphire, we observed a strong SFG peak associated with highly coordinated, ordered water next to graphene. Similar ordering was not detected next to bare sapphire, implying that the observed ordering of water molecules in the former case is a consequence of the presence of graphene. Our analysis indicates that graphene behaves like a hydrophobic (or negatively charged) surface, leading to enhanced ordering of water molecules. Although liquid water orders next to graphene, the ice formed is proton disordered. This research sheds light on water-graphene interactions relevant in optimizing the performance of graphene in various applications.
Collapse
Affiliation(s)
- Saranshu Singla
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
- Solvay Speciality Polymers , 4500 McGinnis Ferry Road, Alpharetta, Georgia 30005, United States
| | | | | | | | | | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| |
Collapse
|
21
|
Lovering KA, Bertram AK, Chou KC. Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing. J Phys Chem Lett 2017; 8:871-875. [PMID: 28151687 DOI: 10.1021/acs.jpclett.6b02920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagonal and cubic ice, are centrosymmetric, our study suggests the transient existence of stacking-disordered ice during the freezing process at water/mineral interfaces. Stacking-disordered ice, which has only been observed in bulk ice at temperatures lower than -20 °C, is a random mixture of layers of hexagonal ice and cubic ice. However, the transient phase at the ice/mineral interface was observed at temperatures as high as -1 °C. It suggests that the mineral surface may play a role in promoting and stabilizing the formation of stacking-disordered ice at the interface.
Collapse
Affiliation(s)
- Kaitlin A Lovering
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Keng C Chou
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
22
|
Zhang Y, Anim-Danso E, Bekele S, Dhinojwala A. Effect of Surface Energy on Freezing Temperature of Water. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17583-90. [PMID: 27314147 DOI: 10.1021/acsami.6b02094] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Previous studies have found that superhydrophobic surfaces are effective in delaying freezing of water droplets. However, the freezing process of water droplets on superhydrophobic surfaces depends on factors such as droplet size, surface area, roughness, and cooling rate. The role of surface energy, independent of any other parameters, in delaying freezing of water is not understood. Here, we have used infrared-visible sum frequency generation spectroscopy (SFG) to study the freezing of water next to solid substrates with water contact angles varying from 5° to 110°. We find that the freezing temperature of water decreases with increasing surface hydrophobicity only when the sample volume is small (∼10 μL). For a larger volume of water (∼300 μL), the freezing temperature is independent of surface energy. For water next to the surfaces with contact angle ≥54°, we observe a strong SFG peak associated with highly coordinated water. This research sheds new light on understanding the key factors in designing new anti-icing coatings.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Selemon Bekele
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| |
Collapse
|
23
|
Yang H, Ma C, Li K, Liu K, Loznik M, Teeuwen R, van Hest JCM, Zhou X, Herrmann A, Wang J. Tuning Ice Nucleation with Supercharged Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5008-5012. [PMID: 27119590 DOI: 10.1002/adma.201600496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the SUP backbone is another parameter to control it.
Collapse
Affiliation(s)
- Huige Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Ma
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang, 471023, P. R. China
| | - Kai Liu
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Mark Loznik
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Rosalie Teeuwen
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525, AJ, Nijmegen, The Netherlands
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Andreas Herrmann
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
|
25
|
|
26
|
Zhou J, Anim-Danso E, Zhang Y, Zhou Y, Dhinojwala A. Interfacial Water at Polyurethane-Sapphire Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12401-7. [PMID: 26496071 DOI: 10.1021/acs.langmuir.5b03263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infrared-visible sum frequency generation spectroscopy (SFG) was used to directly probe water between polyurethane (PU) and sapphire substrates after exposing samples to liquid water and water vapor. For liquid water, the observation of SFG peaks associated with H2O bands (3000-3400 cm(-1)) and D2O bands (2300-2600 cm(-1)) indicated water molecules diffused to the buried interface and existed in the form of a hydrogen-bonded water network. The water layer disrupted interactions between polyurethane and sapphire. When PU films were exposed to water vapor, the SFG peak intensities of PU hydrocarbon and sapphire hydroxyl groups changed significantly, which suggested water molecules had reached the interface. However, no hydrogen-bonded water bands were present; instead, the H2O peak at 3550 cm(-1) and D2O peaks (2600-2700 cm(-1)) were observed. We assigned these peaks to low-coordination water molecules or hydroxyl groups hydrogen bonded with carboxyl groups of PU at the interface. The water molecules did not form a uniform layer at the interface and as a consequence did not completely disrupt the PU/sapphire interactions. These results provide important implications for understanding interfacial adhesion, coatings, and corrosion.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Yu Zhang
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Yang Zhou
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325-3909, United States
| |
Collapse
|
27
|
Abstract
We study the properties of water at the surface of an antifreeze protein with femtosecond surface sum frequency generation spectroscopy. We find clear evidence for the presence of ice-like water layers at the ice-binding site of the protein in aqueous solution at temperatures above the freezing point. Decreasing the temperature to the biological working temperature of the protein (0 °C to -2 °C) increases the amount of ice-like water, while a single point mutation in the ice-binding site is observed to completely disrupt the ice-like character and to eliminate antifreeze activity. Our observations indicate that not the protein itself but ordered ice-like water layers are responsible for the recognition and binding to ice.
Collapse
|
28
|
Brooks SD, Suter K, Olivarez L. Effects of Chemical Aging on the Ice Nucleation Activity of Soot and Polycyclic Aromatic Hydrocarbon Aerosols. J Phys Chem A 2014; 118:10036-47. [DOI: 10.1021/jp508809y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarah D. Brooks
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Katie Suter
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Laura Olivarez
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Zhang Y, Anim-Danso E, Dhinojwala A. The Effect of a Solid Surface on the Segregation and Melting of Salt Hydrates. J Am Chem Soc 2014; 136:14811-20. [DOI: 10.1021/ja5067866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Zhang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
30
|
Zhu H, Jha KC, Bhatta RS, Tsige M, Dhinojwala A. Molecular structure of poly(methyl methacrylate) surface. I. Combination of interface-sensitive infrared-visible sum frequency generation, molecular dynamics simulations, and ab initio calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:11609-11618. [PMID: 25215928 DOI: 10.1021/la502333u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The chemical composition and molecular structure of polymeric surfaces are important in understanding wetting, adhesion, and friction. Here, we combine interface-sensitive sum frequency generation spectroscopy (SFG), all-atom molecular dynamics (MD) simulations, and ab initio calculations to understand the composition and the orientation of chemical groups on poly(methyl methacrylate) (PMMA) surface as a function of tacticity and temperature. The SFG spectral features for isotactic and syndiotactic PMMA surfaces are similar, and the dominant peak in the spectra corresponds to the ester-methyl groups. The SFG spectra for solid and melt states are very similar for both syndiotactic and isotactic PMMA. In comparison, the MD simulation results show that both the ester-methyl and the α-methyl groups of syndiotactic-PMMA are ordered and tilted toward the surface normal. For the isotactic-PMMA, the α-methyl groups are less ordered compared to their ester-methyl groups. The backbone methylene groups have a broad angular distribution and are disordered, independent of tacticity and temperature. We have compared the SFG results with theoretical spectra calculated using MD simulations and ab initio calculations. Our analysis shows that the weaker intensity of α-methyl groups in SFG spectra is due to a combination of smaller molecular hyperpolarizability, lower ordering, and lower surface number density. This work highlights the importance of combining SFG spectroscopy with MD simulations and ab initio calculations in understanding polymer surfaces.
Collapse
Affiliation(s)
- He Zhu
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | |
Collapse
|
31
|
Shultz MJ, Bisson PJ, Brumberg A. Best face forward: crystal-face competition at the ice-water interface. J Phys Chem B 2014; 118:7972-80. [PMID: 24784996 DOI: 10.1021/jp500956w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ice-water interface plays an important role in determining the outcome of both biological and environmental processes. Under ambient pressure, the most stable form of ice is hexagonal ice (Ih). Experimentally probing the surface free energy between each of the major faces of Ih ice and the liquid is both experimentally and theoretically challenging. The basis for the challenge is the near-equality of the surface free energy for the major faces along with the tendency of water to supercool. As a result, morphology from crystallization initiated below 0 °C is kinetically controlled. The reported work circumvents supercooling consequences by providing a polycrystalline seed, followed by isothermal, equilibrium growth. Natural selection among seeded faces results in a single crystal. A record of the growth front is preserved in the frozen boule. Crystal orientation at the front is revealed by examining the boule cross section with two techniques: (1) viewing between crossed polarizers to locate the optical axis and (2) etching to distinguish the primary-prism face from the secondary-prism face. Results suggest that the most stable ice-water interface at 0 °C is the secondary-prism face, followed by the primary-prism face. The basal face that imparts the characteristic hexagonal shape to snowflakes is a distant third. The results contrast with those from freezing the vapor where the basal and primary-prism faces have comparable free energy followed by the secondary-prism face.
Collapse
Affiliation(s)
- Mary Jane Shultz
- Laboratory for Water and Surface Studies, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | | | | |
Collapse
|
32
|
Boulesbaa A, Borguet E. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface. J Phys Chem Lett 2014; 5:528-533. [PMID: 26276604 DOI: 10.1021/jz401961j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.
Collapse
Affiliation(s)
- Abdelaziz Boulesbaa
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
33
|
Prasad S, Zhu H, Kurian A, Badge I, Dhinojwala A. Interfacial segregation in polymer blends driven by acid-base interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15727-31. [PMID: 24313915 DOI: 10.1021/la403418h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Infrared-visible sum frequency generation spectroscopy (SFG) was used to measure the interfacial concentrations of poly(methyl methacrylate) (PMMA)/polystyrene (PS) blends next to a sapphire substrate. The acid-base interactions of carbonyl groups of PMMA with the hydroxyl groups on the sapphire drive the interfacial segregation of PMMA next to the sapphire substrate. Using the shift of sapphire surface OH peaks, we have determined the difference in interfacial energy between the PMMA/sapphire and the PS/sapphire to be ~44-45 mJ/m(2). These results highlight the importance of acid-base interactions and their role in controlling the interfacial segregation next to solid substrates in polymer blends.
Collapse
Affiliation(s)
- Shishir Prasad
- Department of Polymer Science, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | |
Collapse
|
34
|
Anim-Danso E, Zhang Y, Dhinojwala A. Freezing and Melting of Salt Hydrates Next to Solid Surfaces Probed by Infrared–Visible Sum Frequency Generation Spectroscopy. J Am Chem Soc 2013; 135:8496-9. [DOI: 10.1021/ja403437c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emmanuel Anim-Danso
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Yu Zhang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|