1
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
2
|
Krygier K, Wijetunge AN, Srayeddin A, Mccann H, Rullo AF. Leveraging Covalency to Stabilize Ternary Complex Formation For Cell-Cell "Induced Proximity". ACS Chem Biol 2024; 19:2103-2117. [PMID: 39325690 DOI: 10.1021/acschembio.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Recent advances in the field of translational chemical biology use diverse "proximity-inducing" synthetic modalities to elicit new modes of "event driven" pharmacology. These include mechanisms of targeted protein degradation and immune clearance of pathogenic cells. Heterobifunctional "chimeric" compounds like Proteolysis TArgeting Chimeras (PROTACs) and Antibody Recruiting Molecules (ARMs) leverage these mechanisms, respectively. Both systems function through the formation of reversible "ternary" or higher-order biomolecular complexes. Critical to function are key parameters, such as bifunctional molecule affinity for endogenous proteins, target residence time, and turnover. To probe the mechanism and enhance function, covalent chemical approaches have been developed to kinetically stabilize ternary complexes. These include electrophilic PROTACs and Covalent Immune Recruiters (CIRs), the latter designed to uniquely enforce cell-cell induced proximity. Inducing cell-cell proximity is associated with key challenges arising from a combination of steric and/or mechanical based destabilizing forces on the ternary complex. These factors can attenuate the formation of ternary complexes driven by high affinity bifunctional/proximity inducing molecules. This Account describes initial efforts in our lab to address these challenges using the CIR strategy in antibody recruitment or receptor engineered T cell model systems of cell-cell induced proximity. ARMs form ternary complexes with serum antibodies and surface protein antigens on tumor cells that subsequently engage immune cells via Fc receptors. Binding and clustering of Fc receptors trigger immune cell killing of the tumor cell. We applied the CIR strategy to convert ARMs to covalent chimeras, which "irreversibly" recruit serum antibodies to tumor cells. These covalent chimeras leverage electrophile preorganization and kinetic effective molarity to achieve fast and selective covalent engagement of the target ternary complex protein, e.g., serum antibody. Importantly, covalent engagement can proceed via diverse binding site amino acids beyond cysteine. Covalent chimeras demonstrated striking functional enhancements compared to noncovalent ARM analogs in functional immune assays. We revealed this enhancement was in fact due to the increased kinetic stability and not concentration, of ternary complexes. This finding was recapitulated using analogous CIR modalities that integrate peptidic or carbohydrate binding ligands with Sulfur(VI) Fluoride Exchange (SuFEx) electrophiles to induce cell-cell proximity. Mechanistic studies in a distinct model system that uses T cells engineered with receptors that recognize covalent chimeras or ARMs, revealed covalent receptor engagement uniquely enforces downstream activation signaling. Finally, this Account discusses potential challenges and future directions for adapting and optimizing covalent chimeric/bifunctional molecules for diverse applications in cell-cell induced proximity.
Collapse
Affiliation(s)
- Karolina Krygier
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Anjalee N Wijetunge
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Arthur Srayeddin
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Harrison Mccann
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Anthony F Rullo
- Center for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| |
Collapse
|
3
|
Seabrook LJ, Franco CN, Loy CA, Osman J, Fredlender C, Zimak J, Campos M, Nguyen ST, Watson RL, Levine SR, Khalil MF, Sumigray K, Trader DJ, Albrecht LV. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 2024:10.1038/s41589-024-01741-y. [PMID: 39414979 DOI: 10.1038/s41589-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates-glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.
Collapse
Affiliation(s)
- Laurence J Seabrook
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Carolina N Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Cody A Loy
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jaida Osman
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Callie Fredlender
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jan Zimak
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Richard L Watson
- Department of Medicine, Division of Pulmonary & Critical Care, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha R Levine
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Marian F Khalil
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Lauren V Albrecht
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Sanchez J, Claus C, McIntyre C, Tanos T, Boehnke A, Friberg LE, Jönsson S, Frances N. Combining mathematical modeling, in vitro data and clinical target expression to support bispecific antibody binding affinity selection: a case example with FAP-4-1BBL. Front Pharmacol 2024; 15:1472662. [PMID: 39444607 PMCID: PMC11497128 DOI: 10.3389/fphar.2024.1472662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The majority of bispecific costimulatory antibodies in cancer immunotherapy are capable of exerting tumor-specific T-cell activation by simultaneously engaging both tumor-associated targets and costimulatory receptors expressed by T cells. The amount of trimeric complex formed when the bispecific antibody is bound simultaneously to the T cell receptor and the tumor-associated target follows a bell-shaped curve with increasing bispecific antibody exposure/dose. The shape of the curve is determined by the binding affinities of the bispecific antibody to its two targets and target expression. Here, using the case example of FAP-4-1BBL, a fibroblast activation protein alpha (FAP)-directed 4-1BB (CD137) costimulator, the impact of FAP-binding affinity on trimeric complex formation and pharmacology was explored using mathematical modeling and simulation. We quantified (1) the minimum number of target receptors per cell required to achieve pharmacological effect, (2) the expected coverage of the patient population for 19 different solid tumor indications, and (3) the range of pharmacologically active exposures as a function of FAP-binding affinity. A 10-fold increase in FAP-binding affinity (from a dissociation constant [KD] of 0.7 nM-0.07 nM) was predicted to reduce the number of FAP receptors needed to achieve 90% of the maximum pharmacological effect from 13,400 to 4,000. Also, the number of patients with colon cancer that would achieve 90% of the maximum effect would increase from 6% to 39%. In this work, a workflow to select binding affinities for bispecific antibodies that integrates preclinical in vitro data, mathematical modeling and simulation, and knowledge on target expression in the patient population, is provided. The early implementation of this approach can increase the probability of success with cancer immunotherapy in clinical development.
Collapse
Affiliation(s)
- Javier Sanchez
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christina Claus
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christine McIntyre
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Welwyn, Welwyn Garden City, United Kingdom
| | - Tamara Tanos
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Axel Boehnke
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | | | - Siv Jönsson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
5
|
Shahriar I, Kamra M, Kanduluru AK, Campbell CL, Nguyen TH, Srinivasarao M, Low PS. Targeted recruitment of immune effector cells for rapid eradication of influenza virus infections. Proc Natl Acad Sci U S A 2024; 121:e2408469121. [PMID: 39348541 PMCID: PMC11474073 DOI: 10.1073/pnas.2408469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.
Collapse
Affiliation(s)
- Imrul Shahriar
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Mohini Kamra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Ananda Kumar Kanduluru
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Charity Lynn Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Thanh Hiep Nguyen
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Madduri Srinivasarao
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Philip S. Low
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
6
|
Lai M, Pichardo-Almarza C, Verma M, Shahinuzzaman M, Zhu X, Kimko H. T-cell engagers: model interrogation as a tool to quantify the interplay of relative affinity and target expression on trimer formation. Front Pharmacol 2024; 15:1470595. [PMID: 39439898 PMCID: PMC11493665 DOI: 10.3389/fphar.2024.1470595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
T-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation. The shape of the dose-response is determined by a non-trivial interplay of binding affinities, exposure and antigens expression levels. Furthermore, excessively low binding to the TCR may reduce efficacy, but mitigate risk of over-stimulating cytokine secretion or induce effector cell exhaustion. These inevitable trade-off highlights the importance of quantitatively understanding the relationship between TCE concentration, target expression, binding affinities, and trimer formation. We utilized a mechanistic target engagement model to show that, if the TCE design parameters are close to the recommended ranges found in the literature, relative affinities for TCR, TAA and target expression levels have qualitatively different, but predictable, effects on the resulting dose-response curve: higher expression levels shift the curve upwards, higher antigen affinity shifts the curve to the left, and higher TCR affinity shifts the curve upwards and to the left.
Collapse
Affiliation(s)
- Massimo Lai
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Cesar Pichardo-Almarza
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Meghna Verma
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Md Shahinuzzaman
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Xu Zhu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| |
Collapse
|
7
|
Fan AT, Gadbois GE, Huang HT, Jiang J, Sigua LH, Smith ER, Wu S, Dunne-Dombrink K, Goyal P, Tao AJ, Sellers W, Fischer ES, Donovan KA, Ferguson FM. A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.612508. [PMID: 39345570 PMCID: PMC11429919 DOI: 10.1101/2024.09.17.612508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bifunctional molecules such as targeted protein degraders induce proximity to promote gain-of-function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine-targeted reversible-covalent chemistry to rationally tune the binding kinetics at the protein-of-interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E-STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate-limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization efforts.
Collapse
Affiliation(s)
- Angela T. Fan
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Gillian E. Gadbois
- Department of Chemistry and Biochemistry, University of California, San Diego
| | | | - Jiewei Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Logan H. Sigua
- Medical Scientist Training Program, University of California, San Diego
| | - Emily R. Smith
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Kara Dunne-Dombrink
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Pavitra Goyal
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Andrew J. Tao
- Department of Chemistry and Biochemistry, University of California, San Diego
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston
| | - Fleur M. Ferguson
- Department of Chemistry and Biochemistry, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
8
|
Tan X, Huang Z, Pei H, Jia Z, Zheng J. Molecular glue-mediated targeted protein degradation: A novel strategy in small-molecule drug development. iScience 2024; 27:110712. [PMID: 39297173 PMCID: PMC11409024 DOI: 10.1016/j.isci.2024.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Small-molecule drugs are effective and thus most widely used. However, their applications are limited by their reliance on active high-affinity binding sites, restricting their target options. A breakthrough approach involves molecular glues, a novel class of small-molecule compounds capable of inducing protein-protein interactions (PPIs). This opens avenues to target conventionally undruggable proteins, overcoming limitations seen in conventional small-molecule drugs. Molecular glues play a key role in targeted protein degradation (TPD) techniques, including ubiquitin-proteasome system-based approaches such as proteolysis targeting chimeras (PROTACs) and molecular glue degraders and recently emergent lysosome system-based techniques like molecular degraders of extracellular proteins through the asialoglycoprotein receptors (MoDE-As) and macroautophagy degradation targeting chimeras (MADTACs). These techniques enable an innovative targeted degradation strategy for prolonged inhibition of pathology-associated proteins. This review provides an overview of them, emphasizing the clinical potential of molecular glues and guiding the development of molecular-glue-mediated TPD techniques.
Collapse
Affiliation(s)
- Xueqiang Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zuyi Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hairun Pei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jimin Zheng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Wu Y, Meibohm B, Zhang T, Hou X, Wang H, Sun X, Jiang M, Zhang B, Zhang W, Liu Y, Jin W, Wang F. Translational modelling to predict human pharmacokinetics and pharmacodynamics of a Bruton's tyrosine kinase-targeted protein degrader BGB-16673. Br J Pharmacol 2024. [PMID: 39289908 DOI: 10.1111/bph.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Bifunctional small molecule degraders, which link the target protein with E3 ubiquitin ligase, could lead to the efficient degradation of the target protein. BGB-16673 is a Bruton's tyrosine kinase (BTK) degrader. A translational PK/PD modelling approach was used to predict the human BTK degradation of BGB-16673 from preclinical in vitro and in vivo data. EXPERIMENTAL APPROACH A simplified mechanistic PK/PD model was used to establish the correlation between the in vitro and in vivo BTK degradation by BGB-16673 in a mouse model. Human and mouse species differences were compared using the parameters generated from in vitro human or mouse blood, and human or mouse serum spiked TMD-8 cells. Human PD was then predicted using the simplified mechanistic PK/PD model. KEY RESULTS BGB-16673 showed potent BTK degradation in mouse whole blood, human whole blood, and TMD-8 tumour cells in vitro. Furthermore, BGB-16673 showed BTK degradation in a murine TMD-8 xenograft model in vivo. The PK/PD model predicted human PD and the observed BTK degradation in clinical studies both showed robust BTK degradation in blood and tumour at clinical dose range. CONCLUSION AND IMPLICATIONS The presented simplified mechanistic model with reduced number of model parameters is practically easier to be applied to research projects compared with the full mechanistic model. It can be used as a tool to better understand the PK/PD behaviour for targeted protein degraders and increase the confidence when moving to the clinical stage.
Collapse
Affiliation(s)
- Yue Wu
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Taichang Zhang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xinfeng Hou
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
- Migrasome Therapeutics Co. Ltd., Beijing, China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Xiaona Sun
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ming Jiang
- Department of Discovery Biology, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Bo Zhang
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Wei Jin
- Department of Translational Science, BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Fan Wang
- Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
10
|
Greenway H, Wang J. Evaluation of High-Affinity Monoclonal Antibodies and Antibody-Drug Conjugates by Homogenous Time-Resolved FRET. ACS Med Chem Lett 2024; 15:1598-1605. [PMID: 39291004 PMCID: PMC11403740 DOI: 10.1021/acsmedchemlett.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The rapid growth of therapeutic monoclonal antibodies demands greater accessibility to scalable methods of evaluating antigen binding. Homogenous TR-FRET is ideal for preliminary screening but has not been reported to assay these interactions due to their high-affinity and complex solution-phase kinetics. Here we report the development of a competition assay to rank-order the relative affinities of these drugs for a common antigen. The assay is compatible with automation, requires no modification of the analytes, and measures affinities as low as single-digit picomolar. We further demonstrate applications to inform the development of antibody-drug conjugates. The assay may aid discovery and manufacturing of therapeutic antibodies as a low-cost, high-throughput alternative to existing technologies.
Collapse
Affiliation(s)
- Harmon Greenway
- The Verna
and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center
for
NextGen Therapeutics, Baylor College of
Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- The Verna
and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center
for
NextGen Therapeutics, Baylor College of
Medicine, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Ng CM, Bauer RJ. General quasi-equilibrium multivalent binding model to study diverse and complex drug-receptor interactions of biologics. J Pharmacokinet Pharmacodyn 2024:10.1007/s10928-024-09936-5. [PMID: 39153154 DOI: 10.1007/s10928-024-09936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
Pharmacokinetics and pharmacodynamics of many biologics are influenced by their complex binding to biological receptors. Biologics consist of diverse groups of molecules with different binding kinetics to its receptors including IgG with simple one-to-one drug receptor bindings, bispecific antibody (BsAb) that binds to two different receptors, and antibodies that can bind to six or more identical receptors. As the binding process is typically much faster than elimination (or internalization) and distribution processes, quasi-equilibrium (QE) binding models are commonly used to describe drug-receptor binding kinetics of biologics. However, no general QE modeling framework is available to describe complex binding kinetics for diverse classes of biologics. In this paper, we describe novel approaches of using differential algebraic equations (DAE) to solve three QE multivalent drug-receptor binding (QEMB) models. The first example describes the binding kinetics of three-body equilibria of BsAb that binds to 2 different receptors for trimer formation. The second example models an engineered IgG variant (Multabody) that can bind to 24 identical target receptors. The third example describes an IgG with modified neonatal Fc receptor (FcRn) binding affinity that competes for the same FcRn receptor as endogenous IgG. The model parameter estimates were obtained by fitting the model to all data simultaneously. The models allowed us to study potential roles of cooperative binding on bell-shaped drug exposure-response relationships of BsAb, and concentration-depended distribution of different drug-receptor complexes for Multabody. This DAE-based QEMB model platform can serve as an important tool to better understand complex binding kinetics of diverse classes of biologics.
Collapse
Affiliation(s)
- Chee M Ng
- NewGround Pharmaceutical Consulting LLC, Foster City, CA, USA.
| | | |
Collapse
|
12
|
Brewer A, Zhao JF, Fasimoye R, Shpiro N, Macartney TJ, Wood NT, Wightman M, Alessi DR, Sapkota GP. Targeted dephosphorylation of SMAD3 as an approach to impede TGF-β signaling. iScience 2024; 27:110423. [PMID: 39104417 PMCID: PMC11298613 DOI: 10.1016/j.isci.2024.110423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
TGF-β (transforming growth factor-β) signaling is involved in a myriad of cellular processes and its dysregulation has been implicated in many human diseases, including fibrosis and cancer. TGF-β transcriptional responses are controlled by tail phosphorylation of transcription factors SMAD2 and SMAD3 (mothers against decapentaplegic homolog 2/3). Therefore, targeted dephosphorylation of phospho-SMAD3 could provide an innovative mechanism to block some TGF-β-induced transcriptional responses, such as the transcription of SERPINE-1, which encodes plasminogen activator inhibitor 1 (PAI-1). Here, by developing and employing a bifunctional molecule, BDPIC (bromoTAG-dTAG proximity-inducing chimera), we redirected multiple phosphatases, tagged with bromoTAG, to dephosphorylate phospho-SMAD3, tagged with dTAG. Using CRISPR-Cas9 technology, we generated homozygous double knock-in A549 bromoTAG/bromoTAG PPM1H/ dTAG/dTAG SMAD3 cells, in which the BDPIC-induced proximity between bromoTAG-PPM1H and dTAG-SMAD3 led to a robust dephosphorylation of dTAG-SMAD3 and a significant decrease in SERPINE-1 transcription. Our work demonstrates targeted dephosphorylation of phospho-proteins as an exciting modality for rewiring cell signaling.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rotimi Fasimoye
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
Greenway H, Wang J. Evaluation of High-Affinity Monoclonal Antibodies and Antibody-Drug Conjugates by Homogenous Time-Resolved FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606727. [PMID: 39149296 PMCID: PMC11326180 DOI: 10.1101/2024.08.05.606727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The rapid growth of therapeutic monoclonal antibodies demands greater accessibility to scalable methods of evaluating antigen binding. Homogenous TR-FRET is ideal for preliminary screening but has not been reported to assay these interactions due to their high-affinity and complex solution-phase kinetics. Here we report the development of a competition assay to rank-order the relative affinities of these drugs for a common antigen. The assay is compatible with automation, requires no modification of the analytes, and measures affinities as low as single-digit picomolar. We further demonstrate applications to inform the development of antibody-drug conjugates. The assay may aid discovery and manufacturing of therapeutic antibodies as a low-cost, high-throughput alternative to existing technologies.
Collapse
Affiliation(s)
- Harmon Greenway
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- The Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for NextGen Therapeutics, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Lynch TL, Marin VL, McClure RA, Phipps C, Ronau JA, Rouhimoghadam M, Adams AM, Kandi S, Wolke ML, Shergalis AG, Potts GK, Nacham O, Richardson P, Kakavas SJ, Chhor G, Jenkins GJ, Woller KR, Warder SE, Vasudevan A, Reitsma JM. Quantitative Measurement of Rate of Targeted Protein Degradation. ACS Chem Biol 2024; 19:1604-1615. [PMID: 38980123 DOI: 10.1021/acschembio.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.
Collapse
Affiliation(s)
- Thomas L Lynch
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Colin Phipps
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Judith A Ronau
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Milad Rouhimoghadam
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ashley M Adams
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Soumya Kandi
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Malerie L Wolke
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Andrea G Shergalis
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Omprakash Nacham
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul Richardson
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Stephan J Kakavas
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gekleng Chhor
- Target Enabling Technologies, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gary J Jenkins
- Quantitative, Translational & ADME Sciences, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kevin R Woller
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Scott E Warder
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Justin M Reitsma
- Technology & Therapeutic Platforms, AbbVie Incorporated, 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
15
|
Kelly LM, Rutter JC, Lin KH, Ling F, Duchmann M, Latour E, Arang N, Pasquer H, Ho Nhat D, Charles J, Killarney ST, Ang HX, Namor F, Culeux C, Lombard B, Loew D, Swaney DL, Krogan NJ, Brunel L, Carretero É, Verdié P, Amblard M, Fodil S, Huynh T, Sebert M, Adès L, Raffoux E, Fenouille N, Itzykson R, Lobry C, Benajiba L, Forget A, Martin AR, Wood KC, Puissant A. Targeting a lineage-specific PI3Kɣ-Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule. NATURE CANCER 2024; 5:1082-1101. [PMID: 38816660 DOI: 10.1038/s43018-024-00782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.
Collapse
Affiliation(s)
- Lois M Kelly
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Frank Ling
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Matthieu Duchmann
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Emmanuelle Latour
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Nadia Arang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hélène Pasquer
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Duong Ho Nhat
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Juliette Charles
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hazel X Ang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Federica Namor
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Cécile Culeux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Bérangère Lombard
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Damarys Loew
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Luc Brunel
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Élodie Carretero
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pascal Verdié
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Muriel Amblard
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sofiane Fodil
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Tony Huynh
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Marie Sebert
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Lionel Adès
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Emmanuel Raffoux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nina Fenouille
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Raphaël Itzykson
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Camille Lobry
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Lina Benajiba
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Clinical Investigation Center, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Anthony R Martin
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Alexandre Puissant
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France.
| |
Collapse
|
16
|
Payne NC, Ichikawa S, Woo CM, Mazitschek R. Protocol for the comprehensive biochemical and cellular profiling of small-molecule degraders using CoraFluor TR-FRET technology. STAR Protoc 2024; 5:103129. [PMID: 38857155 PMCID: PMC11193044 DOI: 10.1016/j.xpro.2024.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Comprehensive characterization of small-molecule degraders, including binary and ternary complex formation and degradation efficiency, is critical for bifunctional ligand development and understanding structure-activity relationships. Here, we present a protocol for the biochemical and cellular profiling of small-molecule degraders based on CoraFluor time-resolved fluorescence resonance energy transfer (TR-FRET) technology. We describe steps for labeling antibodies and proteins, tracer saturation binding, binary target engagement, ternary complex profiling, and off-rate determination. We then detail procedures for the quantification of endogenous and GFP fusion proteins in cell lysates. For complete details on the use and execution of this protocol, please refer to Ichikawa et al.1.
Collapse
Affiliation(s)
- N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Saki Ichikawa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Robinson SA, Co JA, Banik SM. Molecular glues and induced proximity: An evolution of tools and discovery. Cell Chem Biol 2024; 31:1089-1100. [PMID: 38688281 DOI: 10.1016/j.chembiol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Small molecule molecular glues can nucleate protein complexes and rewire interactomes. Molecular glues are widely used as probes for understanding functional proximity at a systems level, and the potential to instigate event-driven pharmacology has motivated their application as therapeutics. Despite advantages such as cell permeability and the potential for low off-target activity, glues are still rare when compared to canonical inhibitors in therapeutic development. Their often simple structure and specific ability to reshape protein-protein interactions pose several challenges for widespread, designer applications. Molecular glue discovery and design campaigns can find inspiration from the fields of synthetic biology and biophysics to mine chemical libraries for glue-like molecules.
Collapse
Affiliation(s)
| | | | - Steven Mark Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Ichikawa S, Payne NC, Xu W, Chang CF, Vallavoju N, Frome S, Flaxman HA, Mazitschek R, Woo CM. The cyclimids: Degron-inspired cereblon binders for targeted protein degradation. Cell Chem Biol 2024; 31:1162-1175.e10. [PMID: 38320555 DOI: 10.1016/j.chembiol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - N Connor Payne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Wenqing Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nandini Vallavoju
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Spencer Frome
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hope A Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Ray CMP, Yang H, Spangler JB, Mac Gabhann F. Mechanistic computational modeling of monospecific and bispecific antibodies targeting interleukin-6/8 receptors. PLoS Comput Biol 2024; 20:e1012157. [PMID: 38848446 PMCID: PMC11189202 DOI: 10.1371/journal.pcbi.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.
Collapse
Affiliation(s)
- Christina M. P. Ray
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Medical-Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Nano Biotechnology (INBT), Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
20
|
Won HI, Zinga S, Kandror O, Akopian T, Wolf ID, Schweber JTP, Schmid EW, Chao MC, Waldor M, Rubin EJ, Zhu J. Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy. Nat Commun 2024; 15:4065. [PMID: 38744895 PMCID: PMC11094019 DOI: 10.1038/s41467-024-48506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.
Collapse
Affiliation(s)
- Harim I Won
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Samuel Zinga
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Olga Kandror
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tatos Akopian
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jessica T P Schweber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Maya Waldor
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Shah Zaib Saleem R, Schwalm MP, Knapp S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg Med Chem 2024; 105:117718. [PMID: 38621319 DOI: 10.1016/j.bmc.2024.117718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.
Collapse
Affiliation(s)
- Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, SBA School of Sciences & Engineering, LUMS, Pakistan
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
22
|
Chen N, Zhang Z, Liu X, Wang H, Guo RC, Wang H, Hu B, Shi Y, Zhang P, Liu Z, Yu Z. Sulfatase-Induced In Situ Formulation of Antineoplastic Supra-PROTACs. J Am Chem Soc 2024; 146:10753-10766. [PMID: 38578841 DOI: 10.1021/jacs.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.
Collapse
Affiliation(s)
- Ninglin Chen
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongbo Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hao Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yang Shi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, 36 Lushan Road, Changsha, Hunan 410000, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
23
|
Giardina SF, Valdambrini E, Singh PK, Bacolod MD, Babu-Karunakaran G, Peel M, Warren JD, Barany F. Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs): A Modular Platform for Generating Reversible, Self-Assembling Bifunctional Targeted Degraders. J Med Chem 2024; 67:5473-5501. [PMID: 38554135 DOI: 10.1021/acs.jmedchem.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Pradeep K Singh
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | | | - Michael Peel
- MRP Pharma LLC, Chapel Hill, North Carolina 27514, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
24
|
Nakamura M, Ohoka N, Shibata N, Inoue T, Tsuji G, Demizu Y. Development of STING degrader with double covalent ligands. Bioorg Med Chem Lett 2024; 102:129677. [PMID: 38408510 DOI: 10.1016/j.bmcl.2024.129677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Stimulator of interferon genes (STING), a homodimeric membrane receptor localized in the endoplasmic reticulum, plays a pivotal role in signaling innate immune responses. Inhibitors and proteolysis-targeting chimeras (PROTACs) targeting STING are promising compounds for addressing autoinflammatory and autoimmune disorders. In this study, we used a minimal covalent handle recently developed as the ligand portion of an E3 ligase. The engineered STING degrader with a low molecular weight compound covalently binds to STING and E3 ligase. Degrader 2 showed sustained STING degradation activity at lower concentrations (3 µM, 48 h, about 75 % degradation) compared to a reported STING PROTAC, SP23. This discovery holds significance for its potential in treating autoinflammatory and autoimmune diseases, offering promising avenues for developing more efficacious STING-targeted therapies.
Collapse
Affiliation(s)
- Miki Nakamura
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1, Tsushimanaka, Kita 700-8530, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yosuke Demizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1, Tsushimanaka, Kita 700-8530, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
25
|
Casan JML, Seymour JF. Degraders upgraded: the rise of PROTACs in hematological malignancies. Blood 2024; 143:1218-1230. [PMID: 38170175 DOI: 10.1182/blood.2023022993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT Targeted protein degradation (TPD) is a revolutionary approach to targeted therapy in hematological malignancies that potentially circumvents many constraints of existing small-molecule inhibitors. Heterobifunctional proteolysis-targeting chimeras (PROTACs) are the leading TPD drug class, with numerous agents now in clinical trials for a range of blood cancers. PROTACs harness the cell-intrinsic protein recycling infrastructure, the ubiquitin-proteasome system, to completely degrade target proteins. Distinct from targeted small-molecule inhibitor therapies, PROTACs can eliminate critical but conventionally "undruggable" targets, overcome resistance mechanisms to small-molecule therapies, and can improve tissue specificity and off-target toxicity. Orally bioavailable, PROTACs are not dependent on the occupancy-driven pharmacology inherent to inhibitory therapeutics, facilitating substoichiometric dosing that does not require an active or allosteric target binding site. Preliminary clinical data demonstrate promising therapeutic activity in heavily pretreated populations and novel technology platforms are poised to exploit a myriad of permutations of PROTAC molecular design to enhance efficacy and targeting specificity. As the field rapidly progresses and various non-PROTAC TPD drug candidates emerge, this review explores the scientific and preclinical foundations of PROTACs and presents them within common clinical contexts. Additionally, we examine the latest findings from ongoing active PROTAC clinical trials.
Collapse
Affiliation(s)
- Joshua M L Casan
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Mercer JAM, DeCarlo SJ, Roy Burman SS, Sreekanth V, Nelson AT, Hunkeler M, Chen PJ, Donovan KA, Kokkonda P, Tiwari PK, Shoba VM, Deb A, Choudhary A, Fischer ES, Liu DR. Continuous evolution of compact protein degradation tags regulated by selective molecular glues. Science 2024; 383:eadk4422. [PMID: 38484051 PMCID: PMC11203266 DOI: 10.1126/science.adk4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.
Collapse
Affiliation(s)
- Jaron A. M. Mercer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Stephan J. DeCarlo
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Shourya S. Roy Burman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Andrew T. Nelson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Praveen K. Tiwari
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Veronika M. Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Xia X, Ni R. Designing Superselectivity in Linker-Mediated Multivalent Nanoparticle Adsorption. PHYSICAL REVIEW LETTERS 2024; 132:118202. [PMID: 38563948 DOI: 10.1103/physrevlett.132.118202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Using a statistical mechanical model and numerical simulations, we provide the design principle for the bridging strength (ξ) and linker density (ρ) dependent superselectivity in linker-mediated multivalent nanoparticle adsorption. When the bridges are insufficient, the formation of multiple bridges leads to both ξ- and ρ-dependent superselectivity. When the bridges are excessive, the system becomes insensitive to bridging strength due to entropy-induced self-saturation and shows a superselective desorption with respect to the linker density. Counterintuitively, lower linker density or stronger bridging strength enhances the superselectivity. These findings help the understanding of relevant biological processes and open up opportunities for applications in biosensing, drug delivery, and programmable self-assembly.
Collapse
Affiliation(s)
- Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
28
|
Kumar S, Nabet B. A chemical magnet: Approaches to guide precise protein localization. Bioorg Med Chem 2024; 102:117672. [PMID: 38461554 PMCID: PMC11064470 DOI: 10.1016/j.bmc.2024.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.
Collapse
Affiliation(s)
- Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Kodadek T. Catalytic Protein Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202316726. [PMID: 38064411 DOI: 10.1002/anie.202316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Many of the highest priority targets in a wide range of disease states are difficult-to-drug proteins. The development of reversible small molecule inhibitors for the active sites of these proteins with sufficient affinity and residence time on-target is an enormous challenge. This has engendered interest in strategies to increase the potency of a given protein inhibitor by routes other than further improvement in gross affinity. Amongst these, the development of catalytic protein inhibitors has garnered the most attention and investment, particularly with respect to protein degraders, which catalyze the destruction of the target protein. This article discusses the genesis of the burgeoning field of catalytic inhibitors, the current state of the art, and exciting future directions.
Collapse
Affiliation(s)
- Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
30
|
Cronan GE, Kuzminov A. Degron-Controlled Protein Degradation in Escherichia coli: New Approaches and Parameters. ACS Synth Biol 2024; 13:669-682. [PMID: 38317378 DOI: 10.1021/acssynbio.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Wells JA, Kumru K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat Rev Drug Discov 2024; 23:126-140. [PMID: 38062152 DOI: 10.1038/s41573-023-00833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
Targeted protein degradation (TPD) has emerged in the past decade as a major new drug modality to remove intracellular proteins with bispecific small molecules that recruit the protein of interest (POI) to an E3 ligase for degradation in the proteasome. Unlike classic occupancy-based drugs, intracellular TPD (iTPD) eliminates the target and works catalytically, and so can be more effective and sustained, with lower dose requirements. Recently, this approach has been expanded to the extracellular proteome, including both secreted and membrane proteins. Extracellular targeted protein degradation (eTPD) uses bispecific antibodies, conjugates or small molecules to degrade extracellular POIs by trafficking them to the lysosome for degradation. Here, we focus on recent advances in eTPD, covering degrader systems, targets, molecular designs and parameters to advance them. Now almost any protein, intracellular or extracellular, is addressable in principle with TPD.
Collapse
Affiliation(s)
- James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaan Kumru
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Lee RB, Maddineni S, Landry M, Diaz C, Tashfeen A, Yamada-Hunter SA, Mackall CL, Beinat C, Sunwoo JB, Cochran JR. An engineered NKp46 antibody for construction of multi-specific NK cell engagers. Protein Eng Des Sel 2024; 37:gzae013. [PMID: 39163262 PMCID: PMC11359164 DOI: 10.1093/protein/gzae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
Recent developments in cancer immunotherapy have highlighted the potential of harnessing natural killer (NK) cells in the treatment of neoplastic malignancies. Of these, bispecific antibodies, and NK cell engager (NKCE) protein therapeutics in particular, have been of interest. Here, we used phage display and yeast surface display to engineer RLN131, a unique cross-reactive antibody that binds to human, mouse, and cynomolgus NKp46, an activating receptor found on NK cells. RLN131 induced proliferation and activation of primary NK cells, and was used to create bispecific NKCE constructs of varying configurations and valency. All NKCEs were able to promote greater NK cell cytotoxicity against tumor cells than an unmodified anti-CD20 monoclonal antibody, and activity was observed irrespective of whether the constructs contained a functional Fc domain. Competition binding and fine epitope mapping studies were used to demonstrate that RLN131 binds to a conserved epitope on NKp46, underlying its species cross-reactivity.
Collapse
Affiliation(s)
- Robert B Lee
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| | - Sainiteesh Maddineni
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Madeleine Landry
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - Celeste Diaz
- Cancer Biology Program, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Aanya Tashfeen
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, United States
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - John B Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| |
Collapse
|
33
|
Lee H, Lee JY, Jang H, Cho HY, Kang M, Bae SH, Kim S, Kim E, Jang J, Kim JY, Jeon YH. Discovery of proteolysis-targeting chimera targeting undruggable proteins using a covalent ligand screening approach. Eur J Med Chem 2024; 263:115929. [PMID: 37956552 DOI: 10.1016/j.ejmech.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Targeted protein degradation (TPD) technology, such as proteolysis-targeting chimera (PROTAC), has become a new therapeutic modality. However, the degradation of undruggable proteins, such as those involved in protein-protein interactions (PPIs), using PROTAC is still limited owing to the difficulties in finding small-molecule binders of these proteins. To identify new chemical moieties that bind to the target sites of the protein of interest (POI), we conducted a site-specific and fragment-based covalent ligand screening using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To apply the selected hits to the PROTAC approach, two-dimensional (2D) nuclear magnetic resonance (NMR) experiments were performed to evaluate the reversible binding of their analogs without covalent warheads. To proof the proposed approach, human mouse double minute (MDM)2 was selected as a model system since it is involved in PPIs and is known to be a degradable target protein. Western blot analysis showed that newly synthesized PROTACs, incorporated reversible analogs of screening hits, affected degradation in a dose- and time-dependent manner. This methodology makes it possible to use PROTAC technology to exploit previously undruggable proteins for TPD.
Collapse
Affiliation(s)
- Hyeonjun Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Ju Yeon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Hyunsoo Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Hye Young Cho
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Minhee Kang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Sang Hyun Bae
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Suin Kim
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Eunji Kim
- Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea.
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, South Korea.
| | - Young Ho Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea; Azcuris, Co., Ltd., 2511 Sejong-ro, Sejong, 30019, South Korea.
| |
Collapse
|
34
|
Schröder M, Renatus M, Liang X, Meili F, Zoller T, Ferrand S, Gauter F, Li X, Sigoillot F, Gleim S, Stachyra TM, Thomas JR, Begue D, Khoshouei M, Lefeuvre P, Andraos-Rey R, Chung B, Ma R, Pinch B, Hofmann A, Schirle M, Schmiedeberg N, Imbach P, Gorses D, Calkins K, Bauer-Probst B, Maschlej M, Niederst M, Maher R, Henault M, Alford J, Ahrne E, Tordella L, Hollingworth G, Thomä NH, Vulpetti A, Radimerski T, Holzer P, Carbonneau S, Thoma CR. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat Commun 2024; 15:275. [PMID: 38177131 PMCID: PMC10766610 DOI: 10.1038/s41467-023-44237-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.
Collapse
Affiliation(s)
- Martin Schröder
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Ridgeline Discovery, Basel, Switzerland
| | - Xiaoyou Liang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Fabian Meili
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Francois Gauter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Xiaoyan Li
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Scott Gleim
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jason R Thomas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Damien Begue
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Peggy Lefeuvre
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - BoYee Chung
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Renate Ma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Benika Pinch
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Andreas Hofmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Patricia Imbach
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Delphine Gorses
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Keith Calkins
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Matt Niederst
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rob Maher
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Martin Henault
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - John Alford
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Erik Ahrne
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Luca Tordella
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anna Vulpetti
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, Basel, Switzerland
- Ridgeline Discovery, Basel, Switzerland
| | - Philipp Holzer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Seth Carbonneau
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Claudio R Thoma
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
- Ridgeline Discovery, Basel, Switzerland.
| |
Collapse
|
35
|
Bhole RP, Patil S, Kapare HS, Chikhale RV, Gurav SS. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras. Curr Top Med Chem 2024; 24:2050-2073. [PMID: 38963108 DOI: 10.2174/0115680266309968240621072550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
In the realm of oncology, the transformative impact of PROTAC (PROteolysis TAgeting Chimeras) technology has been particularly pronounced since its introduction in the 21st century. Initially conceived for cancer treatment, PROTACs have evolved beyond their primary scope, attracting increasing interest in addressing a diverse array of medical conditions. This expanded focus includes not only oncological disorders but also viral infections, bacterial ailments, immune dysregulation, neurodegenerative conditions, and metabolic disorders. This comprehensive review explores the broadening landscape of PROTAC application, highlighting ongoing developments and innovations aimed at deploying these molecules across a spectrum of diseases. Careful consideration of the design challenges associated with PROTACs reveals that, when appropriately addressed, these compounds present significant advantages over traditional therapeutic approaches, positioning them as promising alternatives. To evaluate the efficacy of PROTAC molecules, a diverse array of assays is employed, ranging from High-Throughput Imaging (HTI) assays to Cell Painting assays, CRBN engagement assays, Fluorescence Polarization assays, amplified luminescent proximity homogeneous assays, Timeresolved fluorescence energy transfer assays, and Isothermal Titration Calorimetry assays. These assessments collectively contribute to a nuanced understanding of PROTAC performance. Looking ahead, the trajectory of PROTAC technology suggests its potential recognition as a versatile therapeutic strategy for an expansive range of medical conditions. Ongoing progress in this field sets the stage for PROTACs to emerge as valuable tools in the multifaceted landscape of medical treatments.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyappeth, Pimpri, Pune, 411018, India
| | - Sapana Patil
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Harshad S Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panjim, Goa, India
| |
Collapse
|
36
|
Sternicki LM, Poulsen SA. Native Mass Spectrometry: Insights and Opportunities for Targeted Protein Degradation. Anal Chem 2023; 95:18655-18666. [PMID: 38090751 DOI: 10.1021/acs.analchem.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Native mass spectrometry (nMS) is one of the most powerful biophysical methods for the direct observation of noncovalent protein interactions with both small molecules and other proteins. With the advent of targeted protein degradation (TPD), nMS is now emerging as a compelling approach to characterize the multiple fundamental interactions that underpin the TPD mechanism. Specifically, nMS enables the simultaneous observation of the multiple binary and ternary complexes [i.e., all combinations of E3 ligase, target protein of interest, and small molecule proximity-inducing reagents (such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues)], formed as part of the TPD equilibrium; this is not possible with any other biophysical method. In this paper we overview the proof-of-concept applications of nMS within the field of TPD and demonstrate how it is providing researchers with critical insight into the systems under study. We also provide an outlook on the scope and future opportunities offered by nMS as a core and agnostic biophysical tool for advancing research developments in TPD.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
37
|
Ray CMP, Yang H, Spangler JB, Mac Gabhann F. Mechanistic computational modeling of monospecific and bispecific antibodies targeting interleukin-6/8 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.570445. [PMID: 38187701 PMCID: PMC10769311 DOI: 10.1101/2023.12.18.570445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.
Collapse
Affiliation(s)
- Christina MP Ray
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Medical-Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for Nano Biotechnology (INBT), Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Xu Z, Zhang X, Pal C, Rozners E, Callahan BP. Enzyme Fragment Complementation Driven by Nucleic Acid Hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572427. [PMID: 38187717 PMCID: PMC10769296 DOI: 10.1101/2023.12.19.572427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Chandan Pal
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, The State University of New York, 4400 Vestal Parkway East Binghamton, New York, 13902, USA
| |
Collapse
|
39
|
Zhao H, Narjes F. Kinetic Modeling of PROTAC-Induced Protein Degradation. ChemMedChem 2023; 18:e202300530. [PMID: 37905604 DOI: 10.1002/cmdc.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
Kinetics of the PROTAC-induced protein degradation were modelled using the equilibrium approximation, accounting for the protein recovery rate with a time lag. The simulated kinetic curves resemble what is experimentally observed, and the physical formulas of the half-maximal degradation concentration (DC50 ) were derived from them. The equations reveal that DC50 is proportional to the dissociation constant of the ternary complex (Kd ) and inversely proportional to the expression level of the E3 ligase and the effective ubiquitylation rate (kub ). The predicted relationships were rigorously confirmed by experimental evidences from a matched molecular pair analysis using a set of published PROTACs.
Collapse
Affiliation(s)
- Hongtao Zhao
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43183, Sweden
| | - Frank Narjes
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 43183, Sweden
| |
Collapse
|
40
|
Feller F, Hansen FK. Targeted Protein Degradation of Histone Deacetylases by Hydrophobically Tagged Inhibitors. ACS Med Chem Lett 2023; 14:1863-1868. [PMID: 38116436 PMCID: PMC10726458 DOI: 10.1021/acsmedchemlett.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
There is a growing interest in alternative strategies for targeted protein degradation. In this work, we present the development of histone deacetylase (HDAC) degraders based on hydrophobic tagging technology. To this end, a library of hydrophobically tagged HDAC inhibitors was synthesized via efficient solid-phase protocols utilizing pre-loaded resins. The subsequent biological evaluation led to the identification of our best degrader, 1a, which significantly decreased HDAC1 levels in MM.1S multiple myeloma cells.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
41
|
Gibson WJ, Sadagopan A, Shoba VM, Choudhary A, Meyerson M, Schreiber SL. Bifunctional Small Molecules That Induce Nuclear Localization and Targeted Transcriptional Regulation. J Am Chem Soc 2023; 145:26028-26037. [PMID: 37992275 PMCID: PMC10704550 DOI: 10.1021/jacs.3c06179] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins. We use this system to calculate kinetic constants for passive diffusion across the nuclear pore and demonstrate single-cell heterogeneity in response to these bifunctional molecules with cells requiring high carrier to cargo expression for complete import. We also observe incorporation of cargo into BRD4-containing condensates. Proteins shown to be substrates for nuclear transport include oncogenic mutant nucleophosmin (NPM1c) and mutant PI3K catalytic subunit alpha (PIK3CAE545K), suggesting potential applications to cancer treatment. In addition, we demonstrate that chemically induced localization of BRD4 to cytosolic-localized DNA-binding proteins, namely, IRF1 with a nuclear export signal, induces target gene expression. These results suggest that induced localization of proteins with bifunctional molecules enables the rewiring of cell circuitry, with significant implications for disease therapy.
Collapse
Affiliation(s)
- William J. Gibson
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
- Department of Medicine and Department of
Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ananthan Sadagopan
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
| | - Veronika M. Shoba
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Divisions
of Renal Medicine and Engineering, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Matthew Meyerson
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Dana
Farber Cancer Institute, 450 Brookline Ave, Boston, Massachusetts 02215, United States
- Department of Medicine and Department of
Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stuart L. Schreiber
- Broad
Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
42
|
Lee IK, Sharma N, Noguera-Ortega E, Liousia M, Baroja ML, Etersque JM, Pham J, Sarkar S, Carreno BM, Linette GP, Puré E, Albelda SM, Sellmyer MA. A genetically encoded protein tag for control and quantitative imaging of CAR T cell therapy. Mol Ther 2023; 31:3564-3578. [PMID: 37919903 PMCID: PMC10727978 DOI: 10.1016/j.ymthe.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.
Collapse
Affiliation(s)
- Iris K Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitika Sharma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Estela Noguera-Ortega
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Liousia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean M Etersque
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Pham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Swarbhanu Sarkar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald P Linette
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Ru J, Wang Y, Li Z, Wang J, Ren C, Zhang J. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. Eur J Med Chem 2023; 261:115800. [PMID: 37708798 DOI: 10.1016/j.ejmech.2023.115800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-l-lysine side chains in histones and non-histones, which are key to epigenetic regulation in humans. Targeting HDACs has emerged as a promising strategy for treating various types of cancer, including myeloma and hematologic malignancies. At present, numerous small molecule inhibitors targeting HDACs are actively being investigated in clinical trials. Despite their potential efficacy in cancer treatment, HDAC inhibitors suffer from multi-directional selectivity and preclinical resistance issues. Hence, developing novel inhibitors based on cutting-edge medicinal chemistry techniques is essential to overcome these limitations and improve clinical outcomes. This manuscript presents an extensive overview of the properties and biological functions of HDACs in cancer, provides an overview of the current state of development and limitations of clinical HDAC inhibitors, and analyzes a range of innovative medicinal chemistry techniques that are applied. These techniques include selective inhibitors, dual-target inhibitors, proteolysis targeting chimeras, and protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jinxiao Ru
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Zijia Li
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, USA
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
44
|
Chen S, Zheng Y, Liang B, Yin Y, Yao J, Wang Q, Liu Y, Neamati N. The application of PROTAC in HDAC. Eur J Med Chem 2023; 260:115746. [PMID: 37607440 DOI: 10.1016/j.ejmech.2023.115746] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Inducing protein degradation by proteolysis targeting chimera (PROTAC) has provided great opportunities for scientific research and industrial applications. Histone deacetylase (HDAC)-PROTAC has been widely developed since the first report of its ability to induce the degradation of SIRT2 in 2017. To date, ten of the eighteen HDACs (HDACs 1-8, HDAC10, and SIRT2) have been successfully targeted and degraded by HDAC-PROTACs. HDAC-PROTACs surpass traditional HDAC inhibitors in many aspects, such as higher selectivity, more potent antiproliferative activity, and the ability to disrupt the enzyme-independent functions of a multifunctional protein and overcome drug resistance. Rationally designing HDAC-PROTACs is a main challenge in development because slight variations in chemical structure can lead to drastic effects on the efficiency and selectivity of the degradation. In the future, HDAC-PROTACs can potentially be involved in clinical research with the support of the increased amount of in vivo data, pharmacokinetic evaluation, and pharmacological studies.
Collapse
Affiliation(s)
- Shaoting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuxiang Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Benji Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yudong Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Jian Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Yanghan Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
45
|
Cronan GE, Kuzminov A. Degron-controlled protein degradation in Escherichia coli: New Approaches and Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566101. [PMID: 37986802 PMCID: PMC10659297 DOI: 10.1101/2023.11.08.566101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein degron tags have proven uniquely useful for characterization of gene function. Degrons mediate quick depletion, usually within minutes, of a protein of interest - allowing researchers to characterize cellular responses to the loss of function. To develop a general purpose degron tool in E. coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated control over several enzymes of DNA metabolism, but also found with other substates apparent limitations of a SspB-dependent system. Several degron target proteins were degraded too slowly to affect their complete depletion during active growth, whereas others appeared completely refractory to degron-promoted degradation. We demonstrated that a model substrate, beta-galactosidase, was positively recognized as a degron substrate, but failed to be degraded by the ClpXP protease - demonstrating an apparently unknown mechanism of protease resistance. Thus, only a minority of our, admittedly biased, selection of degron substates proved amenable to rapid SspB-catalyzed degradation. We conclude that substrate-dependence of the SspB system remains a critical factor for the success of this degron system. For substrates that prove degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
46
|
Etersque JM, Lee IK, Sharma N, Xu K, Ruff A, Northrup JD, Sarkar S, Nguyen T, Lauman R, Burslem GM, Sellmyer MA. Regulation of eDHFR-tagged proteins with trimethoprim PROTACs. Nat Commun 2023; 14:7071. [PMID: 37923771 PMCID: PMC10624689 DOI: 10.1038/s41467-023-42820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023] Open
Abstract
Temporal control of protein levels in cells and living animals can be used to improve our understanding of protein function. In addition, control of engineered proteins could be used in therapeutic applications. PRoteolysis-TArgeting Chimeras (PROTACs) have emerged as a small-molecule-driven strategy to achieve rapid, post-translational regulation of protein abundance via recruitment of an E3 ligase to the target protein of interest. Here, we develop several PROTAC molecules by covalently linking the antibiotic trimethoprim (TMP) to pomalidomide, a ligand for the E3 ligase, Cereblon. These molecules induce degradation of proteins of interest (POIs) genetically fused to a small protein domain, E. coli dihydrofolate reductase (eDHFR), the molecular target of TMP. We show that various eDHFR-tagged proteins can be robustly degraded to 95% of maximum expression with PROTAC molecule 7c. Moreover, TMP-based PROTACs minimally affect the expression of immunomodulatory imide drug (IMiD)-sensitive neosubstrates using proteomic and biochemical assays. Finally, we show multiplexed regulation with another known degron-PROTAC pair, as well as reversible protein regulation in a rodent model of metastatic cancer, demonstrating the formidable strength of this system. Altogether, TMP PROTACs are a robust approach for selective and reversible degradation of eDHFR-tagged proteins in vitro and in vivo.
Collapse
Affiliation(s)
- Jean M Etersque
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iris K Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nitika Sharma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kexiang Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Ruff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin D Northrup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swarbhanu Sarkar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tommy Nguyen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Lauman
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M Burslem
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Makri Pistikou AM, Cremers GAO, Nathalia BL, Meuleman TJ, Bögels BWA, Eijkens BV, de Dreu A, Bezembinder MTH, Stassen OMJA, Bouten CCV, Merkx M, Jerala R, de Greef TFA. Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells. Nat Commun 2023; 14:7001. [PMID: 37919273 PMCID: PMC10622552 DOI: 10.1038/s41467-023-42810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The rational design and implementation of synthetic mammalian communication systems can unravel fundamental design principles of cell communication circuits and offer a framework for engineering of designer cell consortia with potential applications in cell therapeutics. Here, we develop the foundations of an orthogonal, and scalable mammalian synthetic communication platform that exploits the programmability of synthetic receptors and selective affinity and tunability of diffusing coiled-coil peptides. Leveraging the ability of coiled-coils to exclusively bind to a cognate receptor, we demonstrate orthogonal receptor activation and Boolean logic operations at the receptor level. We show intercellular communication based on synthetic receptors and secreted multidomain coiled-coils and demonstrate a three-cell population system that can perform AND gate logic. Finally, we show CC-GEMS receptor-dependent therapeutic protein expression. Our work provides a modular and scalable framework for the engineering of complex cell consortia, with the potential to expand the aptitude of cell therapeutics and diagnostics.
Collapse
Affiliation(s)
- Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Glenn A O Cremers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bryan L Nathalia
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus J Meuleman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bruno V Eijkens
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten T H Bezembinder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M J A Stassen
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn C V Bouten
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Chen X, Zhou Y, Zhao Y, Tang W. Targeted degradation of extracellular secreted and membrane proteins. Trends Pharmacol Sci 2023; 44:762-775. [PMID: 37758536 PMCID: PMC10591793 DOI: 10.1016/j.tips.2023.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Targeted protein degradation (TPD) involving chimeric molecules has emerged as one of the most promising therapeutic modalities in recent years. Among various reported TPD strategies, proteolysis-targeting chimeras (PROTACs) stand out as a significant breakthrough in small-molecule drug discovery and have garnered the most attention to date. However, PROTACs are mainly capable of depleting intracellular proteins. Given that many important therapeutic targets such as cytokines, growth factors, and numerous receptors are membrane proteins or secreted extracellularly, there is interest in the development of novel strategies to degrade these protein categories. We review advances in this emerging area and provide insights to enhance the development of novel TPDs targeting extracellular proteins.
Collapse
Affiliation(s)
- Xuankun Chen
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yaxian Zhou
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yuan Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Guzzetti S, Morentin Gutierrez P. An integrated modelling approach for targeted degradation: insights on optimization, data requirements and PKPD predictions from semi- or fully-mechanistic models and exact steady state solutions. J Pharmacokinet Pharmacodyn 2023; 50:327-349. [PMID: 37120680 PMCID: PMC10460745 DOI: 10.1007/s10928-023-09857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient population. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mechanistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug discovery programs and increased probability of success in the clinic.
Collapse
Affiliation(s)
- Sofia Guzzetti
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
50
|
Zhang NY, Hou DY, Hu XJ, Liang JX, Wang MD, Song ZZ, Yi L, Wang ZJ, An HW, Xu W, Wang H. Nano Proteolysis Targeting Chimeras (PROTACs) with Anti-Hook Effect for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202308049. [PMID: 37486792 DOI: 10.1002/anie.202308049] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanhai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|