1
|
Alizadehmojarad AA, Bachilo SM, Weisman RB. Sequence-Dependent Surface Coverage of ssDNA Coatings on Single-Wall Carbon Nanotubes. J Phys Chem A 2024; 128:5578-5585. [PMID: 38981061 DOI: 10.1021/acs.jpca.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A combination of experimental measurements and molecular dynamics (MD) simulations was used to investigate how the surfaces of single-wall carbon nanotubes (SWCNTs) are covered by adsorbed ssDNA oligos with different base compositions and lengths. By analyzing the UV absorption spectra of ssDNA-coated SWCNTs before and after coating displacement by a transparent surfactant, the mass ratios of adsorbed ssDNA to SWCNTs were determined for poly-T, poly-C, GT-containing, and AT-containing ssDNA oligos. Based on the measured mass ratios, it is estimated that an average of 20, 22, 26, or 32 carbon atoms are covered by one adsorbed thymine, cytosine, adenine, or guanine nucleotide, respectively. In addition, the UV spectra revealed electronic interactions of varying strengths between the nucleobase aromatic rings and the nanotube π-systems. Short poly-T DNA oligos show stronger π-π stacking interactions with SWCNT surfaces than do short poly-C DNA oligos, whereas both long poly-C and poly-T DNA oligos show strong interactions. These experiments were complemented by MD computations on simulated systems that were constrained to match the measured ssDNA/SWCNT mass ratios. The surface coverages computed from the MD results varied with oligo composition in a pattern that correlates higher measured yields of nanotube fluorescence with greater surface coverage.
Collapse
Affiliation(s)
- Ali A Alizadehmojarad
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Ling S, Wei X, Luo X, Li X, Li S, Xiong F, Zhou W, Xie S, Liu H. Surfactant Micelle-Driven High-Efficiency and High-Resolution Length Separation of Carbon Nanotubes for Electronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400303. [PMID: 38501842 DOI: 10.1002/smll.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Indexed: 03/20/2024]
Abstract
High-efficiency extraction of long single-wall carbon nanotubes (SWCNTs) with excellent optoelectronic properties from SWCNT solution is critical for enabling their application in high-performance optoelectronic devices. Here, a straightforward and high-efficiency method is reported for length separation of SWCNTs by modulating the concentrations of binary surfactants. The results demonstrate that long SWCNTs can spontaneously precipitate for binary-surfactant but not for single-surfactant systems. This effect is attributed to the formation of compound micelles by binary surfactants that squeeze the free space of long SWCNTs due to their large excluded volumes. With this technique, it can readily separate near-pure long (≥500 nm in length, 99% in content) and short (≤500 nm in length, 98% in content) SWCNTs with separation efficiencies of 26% and 64%, respectively, exhibiting markedly greater length resolution and separation efficiency than those of previously reported methods. Thin-film transistors fabricated from extracted semiconducting SWCNTs with lengths >500 nm exhibit significantly improved electrical properties, including a 10.5-fold on-state current and 14.7-fold mobility, compared with those with lengths <500 nm. The present length separation technique is perfectly compatible with various surfactant-based methods for structure separations of SWCNTs and is significant for fabrication of high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Ling
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
| | - Feibing Xiong
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian, 361024, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
3
|
Sims CM, Fagan JA. Orthogonal Determination of Competing Surfactant Adsorption onto Single-Wall Carbon Nanotubes During Aqueous Two-Polymer Phase Extraction via Fluorescence Spectroscopy and Analytical Ultracentrifugation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:10.1021/acs.jpcc.4c02568. [PMID: 39444379 PMCID: PMC11494907 DOI: 10.1021/acs.jpcc.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A combination of analytical ultracentrifugation (AUC) and fluorescence spectroscopy are utilized to orthogonally probe compositions of adsorbed surfactant layers on the surface of (7,5) species single-wall carbon nanotubes (SWCNTs) under conditions known to achieve differential partitioning in aqueous two-phase extraction (ATPE) separations. Fluorescence emission intensity and AUC anhydrous particle density measurements independently probe and can discriminate between adsorbed surfactant layers on a (7,5) nanotube comprised of either of two common nanotube dispersants, the anionic surfactants sodium deoxycholate and sodium dodecyl sulfate. Measurements on dispersions containing mixtures of both surfactants indicate near total direct exchange of the dominant surfactant species adsorbed to the carbon nanotube at a critical concentration ratio consistent with the ratio leading to partitioning change in the ATPE separation. By conducting these orthogonal measurements in a complex environment reflective of an ATPE separation, including multiple surfactant and polymer solution components, the results provide direct evidence for the hypothesis that it is the nature of the adsorbed surfactant layer that primarily controls partitioning behavior in selective ATPE separations of SWCNTs.
Collapse
Affiliation(s)
- Christopher M. Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| |
Collapse
|
4
|
Santoro A, Buonocore M, Grimaldi M, Napolitano E, D’Ursi AM. Monitoring the Conformational Changes of the Aβ(25-35) Peptide in SDS Micelles: A Matter of Time. Int J Mol Sci 2023; 24:ijms24020971. [PMID: 36674488 PMCID: PMC9867351 DOI: 10.3390/ijms24020971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by the formation of amyloid plaques constituted prevalently by amyloid peptides. Due to the well-known challenges related to the study in solution of these peptides, several membrane-mimicking systems such as micelle constituted by detergent-i.e., DPC and SDS-have been deeply investigated. Additionally, the strategy of studying short fragments instead of the full-length peptide turned out to be advantageous in exploring the structural properties of the different moieties in Aβ in order to reproduce its pathologic effects. Several studies reveal that among Aβ fragments, Aβ(25-35) is the shortest fragment able to reproduce the aggregation process. To enrich the structural data currently available, in the present work we decided to evaluate the conformational changes adopted by Aβ(25-35) in SDS combining CD and NMR spectroscopies at different times. From the solved structures, it emerges that Aβ(25-35) passes from an unordered conformation at the time of the constitution of the system to a more ordered and energetically favorable secondary structure at day 7, which is kept for 2 weeks. These preliminary data suggest that a relatively long time affects the kinetic in the aggregation process of Aβ(25-35) in a micellar system, favoring the stabilization and the formation of a soluble helix conformation.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Department of Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Department of Veterinary Pathology, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
5
|
Fan Y, You E, Xu Z, Lin W. A Substrate-Binding Metal-Organic Layer Selectively Catalyzes Photoredox Ene-Carbonyl Reductive Coupling Reactions. J Am Chem Soc 2021; 143:18871-18876. [PMID: 34738806 DOI: 10.1021/jacs.1c10180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intermolecular photoredox ene-carbonyl reductive coupling reactions typically have low product selectivity owing to competing dimerization and/or reduction of ketyl radicals. Herein, we report a metal-organic layer (MOL), Hf-Ir-OTf, as a bifunctional photocatalyst for selective photoredox reductive coupling of ketones or aldehydes with electron-deficient alkenes. Composed of iridium-based photosensitizers (Ir-PSs) and triflated Hf12 clusters, Hf-Ir-OTf uses Lewis acidic Hf sites to bind and activate electron-deficient alkenes to accept ketyl radicals generated by adjacent Ir-PSs, thereby suppressing undesired dimerization and reduction of ketyl radicals to enhance the selectivity for the cross-coupling products. The MOL-catalyzed reductive coupling reaction accommodates a variety of olefinic substrates and tolerates reducible groups, nicely complementing current methods for cross-coupling reactions.
Collapse
Affiliation(s)
- Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Eric You
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4316-4330. [PMID: 33794644 PMCID: PMC8154882 DOI: 10.1021/acs.langmuir.1c00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of the performed studies was to thoroughly examine the internal structure of self-assembled nanocarriers (i.e., polymeric micelles-PMs) by means of a hydrophobic phthalocyanine probe in order to identify the crucial features that are required to enhance the photoactive probe stability and reactivity. PMs of hydrophilic poly(ethylene glycol) and hydrophobic poly(ε-caprolactone) (PCL) or poly(d,l-lactide) (PDLLA) were fabricated and loaded with tetra tert-butyl zinc(II) phthalocyanine (ZnPc-t-but4), a multifunctional spectroscopic probe with a profound ability to generate singlet oxygen upon irradiation. The presence of subdomains, comprising "rigid" and "flexible" regions, in the studied block copolymers' micelles as well as their interactions with the probe molecules, were assessed by various high-resolution NMR measurements [e.g., through-space magnetic interactions by the 1D NOE effect, pulsed field gradient spin-echo, and spin-lattice relaxation time (T1) techniques]. The studies of the impact of the core-type microenvironment on the ZnPc-t-but4 photochemical performance also included photobleaching and reactive oxygen species measurements. ZnPc-t-but4 molecules were found to exhibit spatial proximity effects with both (PCL and PDLLA) hydrophobic polymer chains and interact with both subdomains, which are characterized by different rigidities. It was deduced that the interfaces between particular subdomains constitute an optimal host space for probe molecules, especially in the context of photochemical stability, photoactivity (i.e., for significant enhancement of singlet oxygen generation rates), and aggregation prevention. The present contribution proves that the combination of an appropriate probe, high-resolution NMR techniques, and UV-vis spectroscopy enables one to gain complex information about the subtle structure of PMs essential for their application as nanocarriers for photoactive compounds, for example, in photodynamic therapy, nanotheranostics, combination therapy, or photocatalysis, where the micelles constitute the optimal microenvironment for the desired photoreactions.
Collapse
|
7
|
Yang D, Li L, Wei X, Wang Y, Zhou W, Kataura H, Xie S, Liu H. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. SCIENCE ADVANCES 2021; 7:7/8/eabe0084. [PMID: 33597241 PMCID: PMC7888923 DOI: 10.1126/sciadv.abe0084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/31/2020] [Indexed: 05/19/2023]
Abstract
Mass production of zigzag and near-zigzag single-wall carbon nanotubes (SWCNTs), whether by growth or separation, remains a challenge, which hinders the disclosure of their previously unknown property and practical applications. Here, we report a method to separate SWCNTs by chiral angle through temperature control of a binary surfactant system of sodium cholate (SC) and SDS in gel chromatography. Eleven types of single-chirality SWCNT species with chiral angle less than 20° were efficiently separated including multiple zigzag and near-zigzag species. Among them, (7, 3), (8, 3), (8, 4), (9, 1), (9, 2), (10, 2), and (11, 1), were produced on the submilligram scale. The spectral detection results indicate that lowering the temperature induced selective adsorption and reorganization of the SC/SDS cosurfactants on SWCNTs with different chiral angles, amplifying their interaction difference with gel. We believe that this work is an important step toward industrial separation of single-chirality zigzag and near-zigzag SWCNTs.
Collapse
Affiliation(s)
- Dehua Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yanchun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li H, Gordeev G, Garrity O, Peyyety NA, Selvasundaram PB, Dehm S, Krupke R, Cambré S, Wenseleers W, Reich S, Zheng M, Fagan JA, Flavel BS. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS NANO 2020; 14:948-963. [PMID: 31742998 PMCID: PMC6994058 DOI: 10.1021/acsnano.9b08244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
Collapse
Affiliation(s)
- Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Georgy Gordeev
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Oisin Garrity
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Naga Anirudh Peyyety
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Pranauv Balaji Selvasundaram
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Simone Dehm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Ralph Krupke
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Sofie Cambré
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Wim Wenseleers
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Ming Zheng
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| |
Collapse
|
9
|
Chaudhary H, Fernandes RMF, Gowda V, Claessens MMAE, Furó I, Lendel C. Intrinsically disordered protein as carbon nanotube dispersant: How dynamic interactions lead to excellent colloidal stability. J Colloid Interface Sci 2019; 556:172-179. [PMID: 31445446 DOI: 10.1016/j.jcis.2019.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022]
Abstract
The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Ricardo M F Fernandes
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, P-4169-007 Porto, Portugal.
| | - Vasantha Gowda
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Mireille M A E Claessens
- MESA + Institute for Nanotechnology and Mira Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, the Netherlands
| | - István Furó
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Christofer Lendel
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
10
|
Parrilla M, Guinovart T, Ferré J, Blondeau P, Andrade FJ. A Wearable Paper-Based Sweat Sensor for Human Perspiration Monitoring. Adv Healthc Mater 2019; 8:e1900342. [PMID: 31293084 DOI: 10.1002/adhm.201900342] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Indexed: 11/10/2022]
Abstract
The fabrication and performance of a wearable paper-based chemiresistor for monitoring perspiration dynamics (sweat rate and sweat loss) are detailed. A novel approach is introduced to measure the amount of aqueous solution in the order of microliters delivered to the sensor by monitoring a linear change in resistance along a conducting paper. The wearable sensor is based on a single-walled carbon nanotubes and surfactant (sodium dodecylbenzenesulfonate) nanocomposite integrated within cellulose fibers of a conventional filter paper. The analytical performance and the sensing mechanism are presented. Monitoring sweat loss in the human body while exercising is demonstrated using the integration of a wireless reader and a user-friendly interface. By addressing the barriers of cost, simplicity, and the truly in situ demanding measurements, this unique wearable sensor is expected to serve in the future in many different applications involving the on-body detection of biofluids, such as a monitoring tool of dehydration levels for athletes as well as a tool for enhancing the sport performance by providing an accurate recovery of the hydration status in daily exercises.
Collapse
Affiliation(s)
- Marc Parrilla
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Tomàs Guinovart
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Jordi Ferré
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
- Kamleon Ventures SL Av. Països Catalans 18 43007 Tarragona Spain
| | - Pascal Blondeau
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Francisco J. Andrade
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| |
Collapse
|
11
|
Li H, Gordeev G, Garrity O, Reich S, Flavel BS. Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction. ACS NANO 2019; 13:2567-2578. [PMID: 30673278 DOI: 10.1021/acsnano.8b09579] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An aqueous two-phase extraction (ATPE) technique capable of separating small-diameter single-walled carbon nanotubes in one, two, or at the most three steps is presented. Separation is performed in the well-studied two-phase system containing polyethylene glycol and dextran, but it is achieved without changing the global concentration or ratio of cosurfactants. Instead, the technique is reliant upon the different surfactant shell around each nanotube diameter at a fixed surfactant concentration. The methodology to obtain a single set of surfactant conditions is provided, and strategies to optimize these for other diameter regimes are discussed. In total, 11 different chiralities in the diameter range 0.69-0.91 nm are separated. These include semiconducting and both armchair and nonarmchair metallic nanotube species. Titration of cosurfactant suspensions reveal separation to be driven by the pH of the suspension with each ( n, m) species partitioning at a fixed pH. This allows for an ( n, m) separation approach to be presented that is as simple as pipetting known volumes of acid into the ATPE system.
Collapse
Affiliation(s)
- Han Li
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Karlsruhe 76344 , Germany
| | - Georgy Gordeev
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Oisin Garrity
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Stephanie Reich
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Karlsruhe 76344 , Germany
- Institute of Materials Science , Technische Universität Darmstadt , Darmstadt 64289 , Germany
| |
Collapse
|
12
|
Kitanosono T, Xu P, Kobayashi S. Chiral Lewis acids integrated with single-walled carbon nanotubes for asymmetric catalysis in water. Science 2018; 362:311-315. [PMID: 30337405 DOI: 10.1126/science.aap7883] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 05/27/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
Abstract
The development of highly reactive and stereoselective catalytic systems is required not only to improve existing synthetic methods but also to invent distinct chemical reactions. Herein, a homogenized combination of nickel-based Lewis acid-surfactant-combined catalysts and single-walled carbon nanotubes is shown to exhibit substantial activity in water. In addition to the enhanced reactivity, stereoselective performance and long-term stability were demonstrated in asymmetric conjugate addition reactions of aldoximes to furnish chiral nitrones in high yields with excellent selectivities. The practical and straightforward application of the designed catalysts in water provides an expedient, environmentally benign, and highly efficient pathway to access optically active compounds.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry, School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Pengyu Xu
- Department of Chemistry, School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Zhou L, Liu X, Li H. Release of Retained Single-Walled Carbon Nanotubes in Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12224-12232. [PMID: 30217110 DOI: 10.1021/acs.langmuir.8b02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The separation of single-chirality, even-enantiomeric single-walled carbon nanotubes (SWCNTs) has been well established using gel permeation chromatography. Successful SWCNTs separation has been considered to be the selective adsorption and desorption of specific SWCNTs on the porous sites of Sephacryl gels. This work reports two nonspecific releases of SWCNTs retained on Sephacryl gels: (1) a considerable number of SWCNTs were eluted using a low-concentration SDS condition solution (0.5 wt %) from the gels exclusively eluted with a high-concentration SDS eluting solution (5 wt %) after being stocked overnight and (2) the retained SWCNTs in Sephacryl gels can be eluted using a low-concentration SDS condition solution (0.5 wt %) after being stocked overnight without any treatments. Inspired by extracellular matrix systems, these releases are attributed to the strain-induced gel relaxation. The roles of surfactants, especially SDS, in the retention and release of SWCNTs on Sephacryl gels were discussed on the basis of spectral dilution and titration experiments using single-chirality (6,5) SWCNT as the probe.
Collapse
Affiliation(s)
- Lili Zhou
- Atom Optoelectronics , 440 Hindry Avenue, Unit E , Inglewood , California 90301 , United States
| | - Xiaofeng Liu
- Atom Optoelectronics , 440 Hindry Avenue, Unit E , Inglewood , California 90301 , United States
| | - Huaping Li
- Atom Optoelectronics , 440 Hindry Avenue, Unit E , Inglewood , California 90301 , United States
| |
Collapse
|
14
|
Tan J, Wang X, Yu Z, Luo J, Lan B, Li N, Xin Y, Zeng C, Yan L, Zhang LM, Chen X, Guan S, Li W, Yang L. Spectroscopic investigation of a hyperbranched cationic amylopectin derivative as a multi-guest molecular host for targeted delivery of a photosensitizer to pancreatic cancer cells. Carbohydr Polym 2018; 197:38-46. [DOI: 10.1016/j.carbpol.2018.05.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
15
|
Algoul ST, Sengupta S, Bui TT, Velarde L. Tuning the Surface Ordering of Self-Assembled Ionic Surfactants on Semiconducting Single-Walled Carbon Nanotubes: Concentration, Tube Diameter, and Counterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9279-9288. [PMID: 30008207 DOI: 10.1021/acs.langmuir.8b01813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report direct spectroscopic measurements of the macromolecular organization of ionic surfactants on the surface of semiconducting single-walled carbon nanotubes (SWCNTs) within solution-processed thin films. By using vibrational sum frequency generation (VSFG) spectroscopy, sensitive measurements of interfacial surfactant ordering were obtained as a function of surfactant concentration for sodium dodecyl sulfate (SDS)-encapsulated (6,5) and (7,6) SWCNTs with and without excess electrolytes. Anionic surfactants are known to effectively stabilize SWCNTs. The current models suggest a strong influence of the dispersion conditions on the surfactant interfacial macromolecular organization and self-assembly. Direct experimental probes of such an organization using nanotubes of specific chirality are needed to validate the existing models. We found that as the bulk SDS concentration increases near the surfactant critical micelle concentration, the interfacial ordering increased, approaching the formation of cylindrical-like micelles with the nanotube at the core. At the higher surfactant concentrations measured here, the (6,5) SWCNTs produced more ordered structures relative to those with the (7,6) SWCNTs. The relatively larger-diameter (7,6) chiral tubes support enhanced van der Waals (vdW) interactions between the tube carbon surface and the surfactant methylene chain groups that likely increase the density of gauche defects. A new effect arises when the precursor solution is exposed to a small concentration of divalent Ca2+ counterions. We postulate that a salt-bridging configuration on such highly curved surfaces decreases the ordering of interfacial surfactant molecules, resulting in compact, disordered structures. However, this phenomenon was not observed with excess Na+ ions at the same ionic strength. Instead, a modest increase in surfactant ordering was observed with the excess monovalent electrolyte. These results provide new insights for thin film solution processing of vdW nanomaterials and demonstrate that VSFG is a sensitive probe of surfactant organization on nanostructures.
Collapse
Affiliation(s)
- Soha T Algoul
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Sanghamitra Sengupta
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Thomas T Bui
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Luis Velarde
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
16
|
Banjare MK, Behera K, Kurrey R, Banjare RK, Satnami ML, Pandey S, Ghosh KK. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:376-386. [PMID: 29635182 DOI: 10.1016/j.saa.2018.03.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Aggregation behavior of bio-surfactants (BS) sodium cholate (NaC) and sodium deoxycholate (NaDC) within aqueous solution of ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide [Emim][Br] has been investigated using surface tension, conductivity, steady state fluorescence, FT-IR and dynamic light scattering (DLS) techniques. Various interfacial and thermodynamic parameters are determined in the presence of different wt% of IL [Emim][Br]. Information regarding the local microenvironment and size of the aggregates is obtained from fluorescence and DLS, respectively. FT-IR spectral response is used to reveal the interactions taking place within aqueous NaC/NaDC micellar solutions. It is noteworthy to mention that increasing wt% of [Emim][Br] results in an increase in the spontaneity of micelle formation and the hydrophilic IL shows more affinity for NaC as compared to NaDC. Further, the micellar solutions of BS-[Emim][Br] are utilized for studying the aggregation of antidepressants drug promazine hydrochloride (pH). UV-vis spectroscopic investigation reveals interesting outcomes and the results show changes in spectral absorbance of PH drug on the addition of micellar solution (BS-[Emim][Br]). Highest binding affinity and most promising activity are shown for NaC as compared to NaDC.
Collapse
Affiliation(s)
- Manoj Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Kamalakanta Behera
- Centre for Interdisciplinary Research in Basic Sciences, JMI, Jamia Nagar, New Delhi 110 025, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Ramesh Kumar Banjare
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492 010, Chhattisgarh, India.
| |
Collapse
|
17
|
Banjare MK, Behera K, Kurrey R, Banjare RK, Satnami ML, Pandey S, Ghosh KK. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation. SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:376-386. [DOI: https:/doi.org/10.1016/j.saa.2018.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
18
|
Awad TS, Asker D, Romsted LS. Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1H NMR. J Colloid Interface Sci 2018; 514:83-92. [DOI: 10.1016/j.jcis.2017.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|
19
|
Striolo A, Grady BP. Surfactant Assemblies on Selected Nanostructured Surfaces: Evidence, Driving Forces, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8099-8113. [PMID: 28516778 DOI: 10.1021/acs.langmuir.7b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surfactant adsorption at solid-liquid interfaces is critical for a number of applications of vast industrial interest and can also be used to seed surface-modification processes. Many of the surfaces of interest are nanostructured, as they might present surface roughness at the molecular scale, chemical heterogeneity, as well as a combination of both surface roughness and chemical heterogeneity. These effects provide lateral confinement on the surfactant aggregates. It is of interest to quantify how much surfactant adsorbs on such nanostructured surfaces and how the surfactant aggregates vary as the degree of lateral confinement changes. This review focuses on experimental evidence on selected substrates, including gold- and carbon-based substrates, suggesting that lateral confinement can have pronounced effects both on the amount adsorbed and on the morphology of the aggregates as well as on a systematic study, via diverse simulation approaches, on the effect of lateral confinement on the structure of the surfactant aggregates. Atomistic and coarse-grained simulations conducted for surfactants on graphene sheets and carbon nanotubes are reviewed, as well as coarse-grained simulations for surfactant adsorption on nanostructured surfaces. Finally, we suggest a few possible extensions of these studies that could positively impact a few practical applications. In particular, the simultaneous effect of lateral confinement and of the coadsorption of molecular compounds within the surface aggregates is expected to yield interesting fundamental results with long-lasting consequences in applications ranging from drug delivery to the design of advanced materials.
Collapse
Affiliation(s)
- Alberto Striolo
- Department of Chemical Engineering University College London , London, WC1E 7JE United Kingdom
| | - Brian Patrick Grady
- School of Chemical, Biological and Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
20
|
Xu J, Mueller R, Hazelbaker E, Zhao Y, Bonzongo JCJ, Clar JG, Vasenkov S, Ziegler KJ. Strongly Bound Sodium Dodecyl Sulfate Surrounding Single-Wall Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5006-5014. [PMID: 28475342 DOI: 10.1021/acs.langmuir.7b00758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
NMR techniques have been widely used to infer molecular structure, including surfactant aggregation. A combination of optical spectroscopy, proton NMR spectroscopy, and pulsed field gradient NMR (PFG NMR) is used to study the adsorption number for sodium dodecyl sulfate (SDS) with single-wall carbon nanotubes (SWCNTs). Distinct transitions in the NMR chemical shift of SDS are observed in the presence of SWCNTs. These transitions demonstrate that micelle formation is delayed by SWCNTs due to the adsorption of SDS on the nanotube surface. Once the nanotube surface is saturated, the free SDS concentration increases until micelle formation is observed. Therefore, the adsorption number of SDS on SWCNTs can be determined by the changes to the apparent critical micelle concentration (CMC). PFG NMR found that SDS remains strongly bound onto the nanotube. Quantitative analysis of the diffusivity of SDS allowed calculation of the adsorption number of strongly bound SDS on SWCNTs. The adsorption numbers from these techniques give the same values within experimental error, indicating that a significant fraction of the SDS interacting with nanotubes remains strongly bound for as long as 0.5 s, which is the maximum diffusion time used in the PFG NMR measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin G Clar
- Department of Chemistry, Elon University , Elon, North Carolina 27244, United States
| | | | | |
Collapse
|
21
|
Zhu J, Hersam MC. Assembly and Electronic Applications of Colloidal Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603895. [PMID: 27862354 DOI: 10.1002/adma.201603895] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Artificial solids and thin films assembled from colloidal nanomaterials give rise to versatile properties that can be exploited in a range of technologies. In particular, solution-based processes allow for the large-scale and low-cost production of nanoelectronics on rigid or mechanically flexible substrates. To achieve this goal, several processing steps require careful consideration, including nanomaterial synthesis or exfoliation, purification, separation, assembly, hybrid integration, and device testing. Using a ubiquitous electronic device - the field-effect transistor - as a platform, colloidal nanomaterials in three electronic material categories are reviewed systematically: semiconductors, conductors, and dielectrics. The resulting comparative analysis reveals promising opportunities and remaining challenges for colloidal nanomaterials in electronic applications, thereby providing a roadmap for future research and development.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois, 60208-3108, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois, 60208-3108, USA
- Graduate Program in Applied Physics, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208-3108, USA
| |
Collapse
|
22
|
Pagès G, Gilard V, Martino R, Malet-Martino M. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping. Analyst 2017; 142:3771-3796. [DOI: 10.1039/c7an01031a] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advent of Diffusion Ordered SpectroscopY (DOSY) NMR has enabled diffusion coefficients to be routinely measured and used to characterize chemical systems in solution. Indeed, DOSY NMR allows the separation of the chemical entities present in multicomponent systems and provides information on their intermolecular interactions as well as on their size and shape.
Collapse
Affiliation(s)
- G. Pagès
- INRA
- AgroResonance – UR370 Qualité des Produits Animaux
- Saint Genès Champanelle
- France
| | - V. Gilard
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - R. Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| | - M. Malet-Martino
- Groupe de RMN Biomédicale
- Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique
- UMR CNRS 5068
- Université de Toulouse
- 31062 Toulouse cedex 9
| |
Collapse
|
23
|
Jang M, Kim S, Jeong H, Ju SY. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation. NANOTECHNOLOGY 2016; 27:41LT01. [PMID: 27595315 DOI: 10.1088/0957-4484/27/41/41lt01] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm(-3). Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change.
Collapse
Affiliation(s)
- Myungsu Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Korea
| | | | | | | |
Collapse
|
24
|
Yu L, Shearer C, Shapter J. Recent Development of Carbon Nanotube Transparent Conductive Films. Chem Rev 2016; 116:13413-13453. [DOI: 10.1021/acs.chemrev.6b00179] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- LePing Yu
- Centre for Nanoscale Science
and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia, Australia 5042
| | - Cameron Shearer
- Centre for Nanoscale Science
and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia, Australia 5042
| | - Joseph Shapter
- Centre for Nanoscale Science
and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia, Australia 5042
| |
Collapse
|
25
|
Tang MSY, Ng EP, Juan JC, Ooi CW, Ling TC, Woon KL, Show PL. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review. NANOTECHNOLOGY 2016; 27:332002. [PMID: 27396920 DOI: 10.1088/0957-4484/27/33/332002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
Collapse
Affiliation(s)
- Malcolm S Y Tang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. Low Dimensional Material Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
26
|
Li H, Zhou L. Visualizing Helical Wrapping of Semiconducting Single-Walled Carbon Nanotubes by Surfactants and Their Impacts on Electronic Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201601033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huaping Li
- Chemelectronics LLC; 440 Hindry Avenue, Unit E Inglewood, California 90301 USA
| | - Lili Zhou
- Chemelectronics LLC; 440 Hindry Avenue, Unit E Inglewood, California 90301 USA
| |
Collapse
|
27
|
Clancy AJ, Melbourne J, Shaffer MSP. A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes. JOURNAL OF MATERIALS CHEMISTRY. A 2015; 3:16708-16715. [PMID: 27019712 PMCID: PMC4786951 DOI: 10.1039/c5ta03561a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/07/2015] [Indexed: 05/28/2023]
Abstract
Reductive dissolution is a promising processing route for single walled carbon nanotubes (SWCNTs) that avoids the damage caused by ultrasonication and aggressive oxidation whilst simultaneously allowing access to a wealth of SWCNT functionalisation reactions. Here, reductive dissolution has been simplified to a single one-pot reaction through the use of sodium naphthalide in dimethylacetamide allowing direct synthesis of SWCNT Na+ solutions. Gram quantities of SWCNTs can be dissolved at concentrations over 2 mg mL-1. These reduced SWCNT solutions can easily be functionalised through the addition of alkyl halides; reducing steric bulk of the grafting moiety and increasing polarisability of the leaving group increases the extent of functionalisation. An optimised absolute sodium concentration of 25 mM is shown to be more important than carbon to metal ratio in determining the maximum degree of functionalisation. This novel dissolution system can be modified for use as a non-destructive purification route for raw SWCNT powder by adjusting the degree of charging to dissolve carbonaceous impurities, catalyst particles and defective material, before processing the remaining SWCNTs.
Collapse
Affiliation(s)
- A J Clancy
- London Centre for Nanotechnology , Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , UK .
| | - J Melbourne
- London Centre for Nanotechnology , Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , UK .
| | - M S P Shaffer
- London Centre for Nanotechnology , Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , UK .
| |
Collapse
|
28
|
Galantini L, di Gregorio MC, Gubitosi M, Travaglini L, Tato JV, Jover A, Meijide F, Soto Tellini VH, Pavel NV. Bile salts and derivatives: Rigid unconventional amphiphiles as dispersants, carriers and superstructure building blocks. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Gong M, Shastry TA, Cui Q, Kohlmeyer RR, Luck KA, Rowberg A, Marks TJ, Durstock MF, Zhao H, Hersam MC, Ren S. Understanding charge transfer in carbon nanotube-fullerene bulk heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7428-7435. [PMID: 25797180 DOI: 10.1021/acsami.5b01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting single-walled carbon nanotube/fullerene bulk heterojunctions exhibit unique optoelectronic properties highly suitable for flexible, efficient, and robust photovoltaics and photodetectors. We investigate charge-transfer dynamics in inverted devices featuring a polyethylenimine-coated ZnO nanowire array infiltrated with these blends and find that trap-assisted recombination dominates transport within the blend and at the active layer/nanowire interface. We find that electrode modifiers suppress this recombination, leading to high performance.
Collapse
Affiliation(s)
| | | | | | - Ryan R Kohlmeyer
- ∥National Research Council, Washington, D.C. 20001, United States
- ⊥Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | | | | | | | - Michael F Durstock
- ⊥Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | | | | | | |
Collapse
|
30
|
Hernandez Santiago AA, Buchelnikov AS, Rubinson MA, Yesylevskyy SO, Parkinson JA, Evstigneev MP. Shape-independent model (SHIM) approach for studying aggregation by NMR diffusometry. J Chem Phys 2015; 142:104202. [DOI: 10.1063/1.4913974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrian A. Hernandez Santiago
- Department of Physics and Mathematics, Faculty of Chemistry, Autonomous University of Puebla, Puebla CP 72570, Mexico
| | | | - Maria A. Rubinson
- Department of Physics, Sevastopol State University, Universitetskaya str.33, Sevastopol 299053, Ukraine
| | - Semen O. Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, Kiev-28 03680, Ukraine
| | - John A. Parkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Maxim P. Evstigneev
- Department of Biology and Chemistry, Belgorod State University, Belgorod 308015, Russia
- Department of Physics, Sevastopol State University, Universitetskaya str.33, Sevastopol 299053, Ukraine
| |
Collapse
|
31
|
Qin W, Gong M, Chen X, Shastry TA, Sakidja R, Yuan G, Hersam MC, Wuttig M, Ren S. Multiferroicity of carbon-based charge-transfer magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:734-739. [PMID: 25389110 DOI: 10.1002/adma.201403396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/10/2014] [Indexed: 06/04/2023]
Abstract
A new type of carbon charge-transfer magnet, consisting of a fullerene acceptor and single-walled carbon nanotube donor, is demonstrated, which exhibits room temperature ferromagnetism and magnetoelectric (ME) coupling. In addition, external stimuli (electric/magnetic/elastic field) and the concentration of a nanocarbon complex enable the tunabilities of the magnetization and ME coupling due to the control of the charge transfer.
Collapse
Affiliation(s)
- Wei Qin
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Teng Y, Song LX, Liu W, Xia J, Zhao L, Wang QS, Ruan MM. Creation of hollow microtubular iron oxalate dihydrate induced by a metallo-supramolecular micelle based on the self-assembly of potassium ferrioxalate and sodium dodecyl sulphate. RSC Adv 2015. [DOI: 10.1039/c5ra01703c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel metallo-supramolecular micelle PF–SDS–SM was formed at room temperature through the self-assembly of potassium ferrioxalate and sodium dodecyl sulphate.
Collapse
Affiliation(s)
- Yue Teng
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- China 230026
| | - Le Xin Song
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- China 230026
| | - Wei Liu
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- China 230026
| | - Juan Xia
- CAS Key Laboratory of Materials for Energy Conversion
- Department of Materials Science and Engineering
- University of Science and Technology of China
- Hefei
- China 230026
| | - Li Zhao
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China 230026
| | - Qing Shan Wang
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China 230026
| | - Mao Mao Ruan
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China 230026
| |
Collapse
|
33
|
Kadria-Vili Y, Canning G, Bachilo SM, Weisman RB. High Precision Fractionator for Use with Density Gradient Ultracentrifugation. Anal Chem 2014; 86:11018-23. [DOI: 10.1021/ac502365w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yara Kadria-Vili
- Department
of Chemistry and
Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Griffin Canning
- Department
of Chemistry and
Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sergei M. Bachilo
- Department
of Chemistry and
Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - R. Bruce Weisman
- Department
of Chemistry and
Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Charge-transfer induced magnetic field effects of nano-carbon heterojunctions. Sci Rep 2014; 4:6126. [PMID: 25146555 PMCID: PMC4141262 DOI: 10.1038/srep06126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022] Open
Abstract
Room temperature magnetic field effects have not been definitively observed in either single-walled carbon nanotubes (SWCNTs) or C60 under a small magnetic field due to their weak hyperfine interaction and slight difference of g-factor between positive and negative polarons. Here, we demonstrate charge-transfer induced magnetic field effects in nano-carbon C60-SWCNT bulk heterojunctions at room temperature, where the mechanism of magnetic field effects is verified using excited state transition modeling. By controlling SWCNT concentrations and interfacial interactions, nano-carbon heterojunctions exhibit tunability of charge-transfer density and room temperature magnetoconductance of 2.8% under 100 mT external magnetic field. External stimuli, such as electric field and photoexcitation, also play an important role in controlling the magnetic field effects of nano-carbon heterojunctions, which suggests that these findings could enable the control of optoelectronic properties of nano-carbon heterojunctions.
Collapse
|
35
|
Zhang M, Khripin CY, Fagan JA, McPhie P, Ito Y, Zheng M. Single-step total fractionation of single-wall carbon nanotubes by countercurrent chromatography. Anal Chem 2014; 86:3980-4. [PMID: 24673411 PMCID: PMC4037701 DOI: 10.1021/ac5003189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of simple processes to fractionate synthetic mixtures of single-wall carbon nanotubes (SWCNTs) into individual species is crucial to many applications. Existing methods for single-chirality SWCNT purification are cumbersome, often requiring multiple steps and different conditions for different species. Here, we report a method to achieve total fractionation of a synthetic SWCNT mixture by countercurrent chromatography, resulting in purification of many single-chirality SWCNT species in a single run. This method is based on a tunable partition of sodium deoxycholate dispersed SWCNTs in a polyethylene glycol/dextran aqueous two-phase system. By running the mobile phase with 0.02% of sodium deoxycholate and a gradient of sodium dodecyl sulfate from 0.1% to 0.7% (w/w), we observe clear diameter-dependent elution, with ∼ 90% total recovery. Among all the fractions collected, a number of them are enriched in single-chirality (9,4), (7,5), (7,6), (8,3), (6,5) species, while most of the remaining ones contain no more than 2-3 major species. We also observe strong (n,m)-dependent elution peak width due to the enantiomer-resolved partition. These results demonstrate countercurrent chromatography (CCC) as an effective way to obtain high purity (n, m) species, and suggest the potential of CCC as an analytical tool for chirality distribution mapping of synthetic SWCNT mixtures.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
36
|
Subbaiyan NK, Cambré S, Parra-Vasquez ANG, Hároz EH, Doorn SK, Duque JG. Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS NANO 2014; 8:1619-28. [PMID: 24450507 DOI: 10.1021/nn405934y] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aqueous two-phase extraction has recently been demonstrated as a new method to separate single-wall carbon nanotubes (SWCNTs). In this work, we determined that the mechanism of separation is driven by the hydrophobicity of the surfactant, or combination of surfactants, at the SWCNT surface. This knowledge allowed us to develop a simple approach for obtaining highly enriched single-chirality suspensions in only 1 or 2 steps. These results were obtained by strategically combining multiple surfactants with different diameter-dependent binding affinities for SWCNTs and salts that readjust the surfactant structure within the mixed micelle surrounding the SWCNTs. The procedure is successfully applied to SWCNTs from different sources (CoMoCAT and HiPco) with various diameter distributions (from 0.53 to 1.2 nm). Each separation step is characterized by optical absorption, resonant Raman, and photoluminescence excitation spectroscopies. By determining the SWCNT sorting mechanism, we were able to develop a new set of parameters that separated another chirality.
Collapse
Affiliation(s)
- Navaneetha K Subbaiyan
- Chemistry Division, Physical Chemistry and Applied Spectroscopy Group (C-PCS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory , Los Alamos, New Mexico 87544, United States
| | | | | | | | | | | |
Collapse
|
37
|
Xue Z, Zhang J, Peng L, Han B, Mu T, Li J, Yang G. Poly(ethylene glycol) Stabilized Mesoporous Metal-Organic Framework Nanocrystals: Efficient and Durable Catalysts for the Oxidation of Benzyl Alcohol. Chemphyschem 2013; 15:85-9. [DOI: 10.1002/cphc.201300809] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 01/01/2023]
|
38
|
Oh H, Sim J, Ju SY. Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11154-11162. [PMID: 23909509 DOI: 10.1021/la4022933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Binding affinity and thermodynamic understanding between a surfactant and carbon nanotube is essential to develop various carbon nanotube applications. Flavin mononucleotide-wrapped carbon nanotubes showing a large redshift in optical signature were utilized to determine the binding affinity and related thermodynamic parameters of 12 different nanotube chiralities upon exchange with other surfactants. Determined from the midpoint of sigmoidal transition, the equilibrium constant (K), which is inversely proportional to the binding affinity of the initial surfactant-carbon nanotube, provided quantitative binding strengths of surfactants as SDBS > SC ≈ FMN > SDS, irrespective of electronic types of SWNTs. Binding affinity of metallic tubes is weaker than that of semiconducting tubes. The complex K patterns from semiconducting tubes show preference to certain SWNT chiralities and surfactant-specific cooperativity according to nanotube chirality. Controlling temperature was effective to modulate K values by 30% and enables us to probe thermodynamic parameters. Equally signed enthalpy and entropy changes produce Gibbs energy changes with a magnitude of a few kJ/mol. A greater negative Gibbs energy upon exchange of surfactant produces an enhanced nanotube photoluminescence, implying the importance of understanding thermodynamics for designing nanotube separation and supramolecular assembly of surfactant.
Collapse
Affiliation(s)
- Hyunkyu Oh
- Department of Chemistry, Yonsei University, Seoul 120-749, South Korea
| | | | | |
Collapse
|