1
|
Sun C, Qi T, Rahman FU, Hayashi T, Ming J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nat Commun 2024; 15:9307. [PMID: 39468097 PMCID: PMC11519556 DOI: 10.1038/s41467-024-53767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Transition metal-catalyzed addition of organometallics to aryl(alkyl)alkynes has been well known to proceed with the regioselectivity in forming a carbon-carbon bond at the alkyl-substituted carbon (β-addition). Herein, the reverse regiochemistry with high selectivity in giving 1,1-diarylalkenes (α-addition) was realized in the reaction of arylboronic acids with aryl(alkyl)alkynes by use of a rhodium catalyst coordinated with a chiral diene ligand, whereas the arylation of the same alkynes proceeded with the usual regioselectivity (β-addition) in the presence of a rhodium/DM-BINAP catalyst. The regioselectivity can be switched by the choice of ligands on the rhodium catalysts. This reverse regioselectivity also enabled the catalytic asymmetric synthesis of phoenix-like axially chiral alkylidene dihydroanthracenes with high enantioselectivity through an α-addition/1,4-migration/cyclization sequence.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ting Qi
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Faiz-Ur Rahman
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
| |
Collapse
|
2
|
Li MR, Zheng MY, Wang DC, Guo HM. Pd-catalyzed 5- exo-dig cyclization/etherification cascade of N-propargyl arylamines for the synthesis of polysubstituted furans. Chem Commun (Camb) 2024; 60:7721-7724. [PMID: 38967357 DOI: 10.1039/d4cc02255f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A method for the synthesis of furans bearing indoline skeletons was developed via an intramolecular palladium-catalyzed 5-exo-dig cyclization/etherification cascade of N-propargyl arylamines containing a 1,3-dicarbonyl side chain. This method realized the first capture of vinyl carbopalladiums by ketones as O-nucleophiles and showed a wide range of substrate tolerability affording trisubstituted furans in various yields. The enantioselective version for this domino process and diverse derivatizations of the reaction products were also studied.
Collapse
Affiliation(s)
- Meng-Ru Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Meng-Yao Zheng
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
4
|
Lu J, Yao Y, Li L, Fu N. Dual Transition Metal Electrocatalysis: Direct Decarboxylative Alkenylation of Aliphatic Carboxylic Acids. J Am Chem Soc 2023. [PMID: 38029443 DOI: 10.1021/jacs.3c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Direct decarboxylative alkenylation of widely available aliphatic carboxylic acids with vinyl halides for the synthesis of alkenes with all substitution patterns has been accomplished by means of Ce/Ni dual transition metal electrocatalysis. The reactions employ alkyl acids as the limiting reagents and exhibit a broad scope with respect to both coupling partners. Notably, simple primary alkyl carboxylic acids could be readily engaged as carbon-centered radical precursors in the reaction. This new alkenylation protocol has been successfully demonstrated in direct modification of naturally occurring complex acids and is amenable to the enantioselective decarboxylative alkenylation of arylacetic acid. Mechanistic studies, including a series of controlled experiments and cyclic voltammetry data, allow us to probe the key intermediates and the pathway of the reaction.
Collapse
Affiliation(s)
- Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen L, Li Y, Bai X, Dong D, Pan M, Huang L, Huang R, Long X, Li Y. Ru(OAc) 3-Catalyzed Regioselective Difunctionalization of Alkynes: Access to ( E)-2-Bromo-1-alkenyl Sulfonates. Org Lett 2023; 25:7025-7029. [PMID: 37708078 DOI: 10.1021/acs.orglett.3c02623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
A new approach is proposed for the divergent and regioselective synthesis of (E)-2-bromo-1-phenylvinyl trifluoromethanesulfonates through alkyne difunctionalization by employing a compatible system of abundantly available alkynes, N-bromosuccinimide (NBS), and trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalyzed by ruthenium(III) acetate [Ru(OAc)3]. It is a novel method for the preparation of vinyl triflate and it offers a fundamental basis for the development of advanced functional compounds, including drugs and organic functional materials. Unlike previously reported methods, the proposed protocol can tolerate a broad range of functional groups. Alkynes derived from bioactive molecules, such as l(-)-borneol, demonstrate the potential value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Lu Chen
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ya Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaoyan Bai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Dian Dong
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Meiwei Pan
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ling Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Runqin Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaotong Long
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
6
|
Kaplan JA, Blum SA. Iodination-Group-Transfer Reactions to Generate Trisubstituted Iodoalkenes with Regio- and Stereochemical Control. J Org Chem 2023; 88:13236-13247. [PMID: 37656489 DOI: 10.1021/acs.joc.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The regio- and stereodefined synthesis of trisubstituted alkenes remains a significant synthetic challenge. Herein, a method is developed for producing regio- and stereodefined trisubstituted iodoalkenes by diverting intermediates from an iodination-electrophilic-cyclization mechanism. Specifically, cyclized sulfonium ion-pair intermediates are diverted to alkenes by ring-opening with nucleophilic iodide. Alternatively, scavenging of the iodide by AgOTf prevents ring-opening, enabling isolation of the sulfonium ion-pair intermediate. Isolation of the ion pair enables access to complementary reactivity, including ring-opening by alternative nucleophiles (i.e., amines), yielding trisubstituted acyclic alkenes and an example acyclic tetrasubstituted alkene. X-ray crystallographic determination of reaction intermediates and products confirms that the initial electrophilic-cyclization step sets the stereo- and regiochemistry of the product. The products serve as synthetic building blocks by readily participating in downstream functionalization reactions, including oxidation, palladium-catalyzed cross-coupling, and nucleophilic displacement.
Collapse
Affiliation(s)
- Joseph A Kaplan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Zhang Y, Guo H, Wu Q, Bi X, Shi E, Xiao J. Stereoselective synthesis of ( E)-α,β-unsaturated esters: triethylamine-catalyzed allylic rearrangement of enol phosphates. RSC Adv 2023; 13:13511-13515. [PMID: 37181505 PMCID: PMC10173029 DOI: 10.1039/d3ra02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023] Open
Abstract
α,β-Unsaturated esters are key structural motifs widely distributed in various biologically active molecules, and their Z/E-stereoselective synthesis has always been considered highly attractive in organic synthesis. Herein, we present a >99% (E)-stereoselective one-pot synthetic approach towards β-phosphoroxylated α,β-unsaturated esters via a mild trimethylamine-catalyzed 1,3-hydrogen migration of the corresponding unconjugated intermediates derived from the solvent-free Perkow reaction between low-cost 4-chloroacetoacetates and phosphites. Versatile β,β-disubstituted (E)-α,β-unsaturated esters were thus afforded with full (E)-stereoretentivity by cleavage of the phosphoenol linkage via Negishi cross-coupling. Moreover, a stereoretentive (E)-rich mixture of a α,β-unsaturated ester derived from 2-chloroacetoacetate was obtained and both isomers were easily afforded in one operation.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Huichuang Guo
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Qian Wu
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Junhua Xiao
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| |
Collapse
|
8
|
Li Y, Zhang W, Yang S, Wang X, Liu Y, Ji D, Chen Q. Nickel‐Catalyzed Unsymmetrical Bis‐Allylation of Alkynes. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Sa‐Na Yang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Li Y, Zhang WS, Yang SN, Wang XY, Liu Y, Ji DW, Chen QA. Nickel-Catalyzed Unsymmetrical Bis-Allylation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300036. [PMID: 36826223 DOI: 10.1002/anie.202300036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a β-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.
Collapse
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sa-Na Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
11
|
Li H, Yang C, Wang D, Deng L. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of Alk-2-ynes with Tertiary Silanes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfang Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
12
|
Design, development and applications of copper-catalyzed regioselective (4 + 2) annulations between diaryliodonium salts and alkynes. Commun Chem 2022; 5:145. [PMID: 36697744 PMCID: PMC9814649 DOI: 10.1038/s42004-022-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Diaryliodonium salts have been extensively applied in organic synthesis as aryl cation equivalents. However, in the electrophilic reactions with alkenes or alkynes, only the electrophilic carbon of the diaryliodonium salts was involved while the other part of the aryl ring was not utilized. Herein, a reaction pattern of diaryliodonium was reported as oxa-1,4-dipoles to undergo (4 + 2) cycloaddition reactions with alkynes. Broad spectrum of the two reaction partners could be utilized in this protocol, enabling an operationally simple, high yielding, and regioselective synthetic approach to isocoumarins. Particularly, good to excellent regioselectivities were achieved for the sterically unbiased unsymmetrical diaryl acetylenes, which was challenging for other transition metal-catalyzed processes. The reaction could be scaled up with the ideal 1:1 stoichiometry and the isocoumarin type natural products Oospolactone and Thunberginol A could be obtained in one or three steps through this methodology.
Collapse
|
13
|
Tang M, Wei Y, Huang S, Xie LG. Regio- and Stereoselective Synthesis of β-Methylthio Vinyl Triflates. Org Lett 2022; 24:7026-7030. [PMID: 36129306 DOI: 10.1021/acs.orglett.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl triflates are commonly employed as electrophilic vinyl sources in complex synthesis. The triflation of enolates is commonly required for the preparation of vinyl triflates, generally under strongly basic conditions. Herein, the reaction between alkynes and dimethyl(methylthio)sulfonium trifluoromethanesulfonate is presented, which leads to the development of a facile synthesis of β-methylthio vinyl triflates in a chemo-, regio-, and stereoselective manner under neutral and extremely simple conditions.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongjiao Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Anil DA. An Unexpended Stereocontrolled Rearrangement of Ethyl 4‐Hydroxy‐4‐(substituted phenyl)‐2‐butynoate to Tetrasubstituted Alkenes with MeSOCl
2. ChemistrySelect 2022. [DOI: 10.1002/slct.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Derya Aktas Anil
- Department of Chemistry and Chemical Process Technologies Atatürk University Technical Sciences Vocational College 25240 Erzurum Turkey
| |
Collapse
|
15
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe III and Fe IV Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano-Transfer One-Electron Oxidants. Angew Chem Int Ed Engl 2022; 61:e202201699. [PMID: 35285116 PMCID: PMC9313551 DOI: 10.1002/anie.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/12/2022]
Abstract
We disclose a new reactivity mode for electrophilic cyano λ3 -iodanes as group transfer one-electron oxidants to synthesize FeIII and FeIV cyanide complexes. The inherent thermal instability of high-valent FeIV compounds without π-donor ligands (such as oxido (O2- ), imido (RN2- ) or nitrido (N3- )) makes their isolation and structural characterization a very challenging task. We report the synthesis of an FeIV cyanide complex [(N3 N')FeCN] (4) by two consecutive single electron transfer (SET) processes from FeII precursor [(N3 N')FeLi(THF)] (1) with cyanobenziodoxolone (CBX). The FeIV complex can also be prepared by reaction of [(N3 N')FeIII ] (3) with CBX. In contrast, the oxidation of FeII with 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (CDBX) enables the preparation of FeIII cyanide complex [(N3 N')FeIII (CN)(Li)(THF)3 ] (2-LiTHF ). Complexes 4 and 2-LiTHF have been structurally characterized by single crystal X-ray diffraction and their electronic structure has been examined by Mössbauer, EPR spectroscopy, and computational analyses.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Sergei Ivlev
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Marcel Swart
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
- Institut de Química Computacional i Catàlisi, Facultat de CiènciesUniversitat de Gironac/ M.A. Capmany 6917003GironaSpain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Alicia Casitas
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
16
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe
III
and Fe
IV
Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano‐Transfer One‐Electron Oxidants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Sergei Ivlev
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Marcel Swart
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
- Institut de Química Computacional i Catàlisi, Facultat de Ciències Universitat de Girona c/ M.A. Capmany 69 17003 Girona Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Alicia Casitas
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
17
|
Wang W, Wang Y. Copper-Catalyzed Chemo-, Regio-, and Stereoselective Multicomponent 1,2,3-Trifunctionalization of Internal Alkynes. Org Lett 2022; 24:1871-1875. [PMID: 35238207 DOI: 10.1021/acs.orglett.2c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report the first diaryliodonium salts promoted multicomponent 1,2,3-trifunctionalization of alkynes, where both the acetylenic bond and the adjacent nonactivated propargylic C(sp3)-H bond were functionalized synergistically to generate α-arylated enones with high chemo-, regio-, and stereoselectivity. A broad spectrum of diaryliodonium salts and internal alkynes could be utilized in this protocol, and a diverse collection of highly substituted and stereochemically defined linear and cyclic complex structures could be elaborated from the enone products.
Collapse
Affiliation(s)
- Weilin Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
18
|
Karandikar SS, Stuart DR. Refining boron-iodane exchange to access versatile arylation reagents. Chem Commun (Camb) 2022; 58:1211-1214. [PMID: 34982811 DOI: 10.1039/d1cc06341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aryl(Mes)iodonium salts, which are multifaceted aryl transfer reagents, are synthesized via boron-iodane exchange. Modification to both the nucleophilic (aryl boron) and electrophilic (mesityl-λ3-iodane) reaction components results in improved yield and faster reaction time compared to previous conditions. Mechanistic studies reveal a pathway that is more like transmetallation than SEAr.
Collapse
Affiliation(s)
- Shubhendu S Karandikar
- Portland State University, Chemistry, 1719 SW 10th Ave, Science Research and Teaching Center, Portland, Oregon 97201, USA.
| | - David R Stuart
- Portland State University, Chemistry, 1719 SW 10th Ave, Science Research and Teaching Center, Portland, Oregon 97201, USA.
| |
Collapse
|
19
|
Moon HW, Cornella J. Bismuth Redox Catalysis: An Emerging Main-Group Platform for Organic Synthesis. ACS Catal 2022; 12:1382-1393. [PMID: 35096470 PMCID: PMC8787757 DOI: 10.1021/acscatal.1c04897] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Indexed: 12/11/2022]
Abstract
![]()
Bismuth has recently
been shown to be able to maneuver between
different oxidation states, enabling access to unique redox cycles
that can be harnessed in the context of organic synthesis. Indeed,
various catalytic Bi redox platforms have been discovered and revealed
emerging opportunities in the field of main group redox catalysis.
The goal of this perspective is to provide an overview of the synthetic
methodologies that have been developed to date, which capitalize on
the Bi redox cycling. Recent catalytic methods via low-valent Bi(II)/Bi(III),
Bi(I)/Bi(III), and high-valent Bi(III)/Bi(V) redox couples are covered
as well as their underlying mechanisms and key intermediates. In addition,
we illustrate different design strategies stabilizing low-valent and
high-valent bismuth species, and highlight the characteristic reactivity
of bismuth complexes, compared to the lighter p-block
and d-block elements. Although it is not redox catalysis
in nature, we also discuss a recent example of non-Lewis acid, redox-neutral
Bi(III) catalysis proceeding through catalytic organometallic steps.
We close by discussing opportunities and future directions in this
emerging field of catalysis. We hope that this Perspective will provide
synthetic chemists with guiding principles for the future development
of catalytic transformations employing bismuth.
Collapse
Affiliation(s)
- Hye Won Moon
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
20
|
Alatat K, Abbasi Kejani A, Nikbakht A, Bijanzadeh HR, Balalaie S. A metal-free tandem dehydrogenative α-arylation reaction of propargylic alcohols with 2-alkynylbenzaldoximes toward the synthesis of α-(4-bromo-isoquinolin-1-yl)-propenone skeletons. Org Biomol Chem 2022; 20:579-583. [PMID: 34985097 DOI: 10.1039/d1ob02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem reaction of 2-alkynylbenzaldoximes with propargylic alcohols has been developed for the synthesis of α-(4-bromo-isoquinolin-1-yl)-propenones. Employing 2-alkynylbenzaldoximes as a precursor in the presence of Br2 generates 4-bromo-isoquinoline-N-oxides. Subsequently, dehydroxylation of propargylic alcohols gives carbocation intermediates, which are trapped using the N-oxides, affording aryl-substituted α-enones.
Collapse
Affiliation(s)
- Khalil Alatat
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Alireza Abbasi Kejani
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Ali Nikbakht
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran. .,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Peng H, Liu Q, Sun Y, Luo B, Yu T, Huang P, Zhu D, Wen S. Tandem cyclization/arylation of diaryliodoniums via in situ constructed benzoxazole as a directing group for atom-economical transformation. Org Chem Front 2022. [DOI: 10.1039/d1qo01463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear diaryliodoniums often undergo only single arylation and leave equivalent aryl iodide as waste.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Qian Liu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Tianyian Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| |
Collapse
|
22
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
23
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origin of Ligand Effects on Stereoinversion in Pd-Catalyzed Synthesis of Tetrasubstituted Olefins. J Org Chem 2021; 86:18128-18138. [PMID: 34878798 DOI: 10.1021/acs.joc.1c02400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism and origin of ligand effects on stereoinversion of Pd-catalyzed synthesis of tetrasubstituted olefins were investigated using DFT calculations and the approach of energy decomposition analysis (EDA). The results reveal that the stereoselectivity-determining steps are different when employing different phosphine ligands. This is mainly due to the steric properties of ligands. With the bulkier Xantphos ligand, the syn/anti-to-Pd 1,2-migrations determine the stereoselectivity. While using the less hindered P(o-tol)3 ligand, the 1,3-migration is the stereoselectivity-determining step. The EDA results demonstrate that Pauli repulsion and polarization are the dominant factors for controlling the stereochemistry in 1,2- and 1,3-migrations, respectively. The origins of differences of Pauli repulsion and polarization between the two stereoselective transition states are further identified.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Laboratory for Materials of Energy Conversion and Storage of Shanxi Province and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
24
|
Boehm P, Martini T, Lee YH, Cacherat B, Morandi B. Palladium-Catalyzed Decarbonylative Iodination of Aryl Carboxylic Acids Enabled by Ligand-Assisted Halide Exchange. Angew Chem Int Ed Engl 2021; 60:17211-17217. [PMID: 34013616 PMCID: PMC8362116 DOI: 10.1002/anie.202103269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Indexed: 11/08/2022]
Abstract
We report an efficient and broadly applicable palladium-catalyzed iodination of inexpensive and abundant aryl and vinyl carboxylic acids via in situ activation to the acid chloride and formation of a phosphonium salt. The use of 1-iodobutane as iodide source in combination with a base and a deoxychlorinating reagent gives access to a wide range of aryl and vinyl iodides under Pd/Xantphos catalysis, including complex drug-like scaffolds. Stoichiometric experiments and kinetic analysis suggest a unique mechanism involving C-P reductive elimination to form the Xantphos phosphonium chloride, which subsequently initiates an unusual halogen exchange by outer sphere nucleophilic substitution.
Collapse
Affiliation(s)
- Philip Boehm
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Tristano Martini
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
| | - Yong Ho Lee
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Bastien Cacherat
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Bill Morandi
- Laboratorium für Organische ChemieETH ZürichVladimir-Prelog-Weg 3, HCI8093ZürichSwitzerland
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
25
|
Boehm P, Martini T, Lee YH, Cacherat B, Morandi B. Palladium‐katalysierte decarbonylierende Iodierung von Carbonsäuren, ermöglicht durch Ligand‐unterstützten Halogenaustausch. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philip Boehm
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Tristano Martini
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
| | - Yong Ho Lee
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Bastien Cacherat
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Schweiz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
26
|
Yang Y, Cheng L, Wang M, Yin L, Feng Y, Wang C, Li Y. Difunctionalization of Alkynones by Base-Mediated Reaction with α,α-Dithioketones. Org Lett 2021; 23:5339-5343. [PMID: 34228461 DOI: 10.1021/acs.orglett.1c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel 1,2-difunctionalization of alkynones via an umpolung strategy for the synthesis of tetrasubstituted olefins has been developed. This procedure is realized by a formal C-C σ-bond cleavage reaction of cyclic α,α-dithioketones and subsequent deprotection. Notable features of this approach include excellent yields, mild reaction conditions, a broad substrate scope, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengdan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Feng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
27
|
Medina-Mercado I, Colin-Molina A, Barquera-Lozada JE, Rodríguez-Molina B, Porcel S. Gold-Catalyzed Ascorbic Acid-Induced Arylative Carbocyclization of Alkynes with Aryldiazonium Tetrafluoroborates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ignacio Medina-Mercado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Abraham Colin-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - José Enrique Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
28
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
29
|
Takai R, Shimbo D, Tada N, Itoh A. Ligand-Enabled Copper-Catalyzed N-Alkynylation of Sulfonamide with Alkynyl Benziodoxolone: Synthesis of Amino Acid-Derived Ynamide. J Org Chem 2021; 86:4699-4713. [PMID: 33719425 DOI: 10.1021/acs.joc.1c00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ynamides are versatile building blocks in organic synthesis. However, the synthesis of amino acid-derived ynamides is difficult but in high demand. Herein, we disclose the copper-catalyzed Csp-N coupling of sulfonamide, including amino acid and peptide derivatives, to give ynamides by using alkynyl benziodoxolones with broad functional group tolerance under mild reaction conditions. The electron-rich bipyridine as a ligand and ethanol as solvent were used for the success of this reaction. The usefulness of the obtained amino acid-derived ynamide as building block was showcased by further derivatization to unique amino acid derivatives. A control experiment to elucidate the mechanistic insight was also described.
Collapse
Affiliation(s)
- Ryogo Takai
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Daisuke Shimbo
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
30
|
Xie R, Zhu J, Huang Y. Cu-Catalyzed highly selective silylation and borylation of alkenylsulfonium salts. Org Chem Front 2021. [DOI: 10.1039/d1qo00922b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Cu-catalyzed highly selective silylation and borylation of alkenylsulfonium salts under mild conditions is reported providing various alkenylsilanes and alkenylboranes.
Collapse
Affiliation(s)
- Rong Xie
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
31
|
Castoldi L, Di Tommaso EM, Reitti M, Gräfen B, Olofsson B. Electrophilic Vinylation of Thiols under Mild and Transition Metal-Free Conditions. Angew Chem Int Ed Engl 2020; 59:15512-15516. [PMID: 32395880 PMCID: PMC7497129 DOI: 10.1002/anie.202002936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Indexed: 01/28/2023]
Abstract
The iodine(III) reagents vinylbenziodoxolones (VBX) were employed to vinylate a series of aliphatic and aromatic thiols, providing E-alkenyl sulfides with complete chemo- and regioselectivity, as well as excellent stereoselectivity. The methodology displays high functional group tolerance and proceeds under mild and transition metal-free conditions without the need for excess substrate or reagents. Mercaptothiazoles could be vinylated under modified conditions, resulting in opposite stereoselectivity compared to previous reactions with vinyliodonium salts. Novel VBX reagents with substituted benziodoxolone cores were prepared, and improved reactivity was discovered with a dimethyl-substituted core.
Collapse
Affiliation(s)
- Laura Castoldi
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Ester Maria Di Tommaso
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Marcus Reitti
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Barbara Gräfen
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Berit Olofsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
32
|
Ielo L, Pace V, Pillari V, Miele M, Castiglione D. Carbenoid-Mediated Homologation Tactics for Assembling (Fluorinated) Epoxides and Aziridines. Synlett 2020. [DOI: 10.1055/s-0040-1706404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Homologation strategies provide highly versatile tools in organic synthesis for the introduction of a CH2 group into a given carbon skeleton. The operation can result in diverse structural motifs by tuning of the reaction conditions and the nature of the homologating agent. In this Account, concisely contextualizing our work with lithium carbenoids (LiCH2X, LiCHXY etc) for homologating carbon-centered electrophiles, we focus on the assembly of three-membered cycles featuring fluorinated substituents. Two illustrative case studies are considered: (1) the development and employment of fluorinated carbenoids en route to rare α-fluoroepoxides and aziridines, and (2) the installation of up to halomethylenic groups on trifluoroimidoylacetyl chlorides (TFAICs) for preparing CF3-containing halo- and halomethylaziridines. Collectively, we demonstrate that the initial homologation event generated by the installation of the carbenoid, upon modulation of the conditions, serves as a tool for creating fluorinated building blocks in a single operation.
Collapse
Affiliation(s)
- Laura Ielo
- University of Vienna, Department of Pharmaceutical Chemistry
| | | | | | | | | |
Collapse
|
33
|
Pisella G, Gagnebin A, Waser J. Three-Component Reaction for the Synthesis of Highly Functionalized Propargyl Ethers. Chemistry 2020; 26:10199-10204. [PMID: 32187739 DOI: 10.1002/chem.202001317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/27/2022]
Abstract
Multicomponent reactions provide efficient means to access molecular complexity. Herein, we report a copper-catalyzed three-component reaction of diazo compounds, alcohols and ethynyl benziodoxole (EBX) reagents for the synthesis of propargyl ethers. Extensive variations of the three partners of the reaction is possible, leading to highly functionalized and structurally diverse products under mild conditions. Alkynylation of a copper ylide intermediate is postulated as key step for this transformation.
Collapse
Affiliation(s)
- Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Alec Gagnebin
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Zhu D, Gan S, Bao RLY, Shi L. Copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents to generate alkenyl boronic esters. Org Biomol Chem 2020; 18:5567-5570. [PMID: 32662488 DOI: 10.1039/d0ob01121e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the synthesis of alkenyl boronic esters through the copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents is reported. This method is distinguished by its mild conditions and short reaction time of less than 30 min, which should provide an additional way for the construction of alkenyl boronic esters.
Collapse
Affiliation(s)
- Dan Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shaoyan Gan
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Robert Li-Yuan Bao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Lei Shi
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Nickel‐Catalyzed Allylmethylation of Alkynes with Allylic Alcohols and AlMe
3
: Facile Access to Skipped Dienes and Trienes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Li W, Yu S, Li J, Zhao Y. Nickel‐Catalyzed Allylmethylation of Alkynes with Allylic Alcohols and AlMe
3
: Facile Access to Skipped Dienes and Trienes. Angew Chem Int Ed Engl 2020; 59:14404-14408. [DOI: 10.1002/anie.202006322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Wanfang Li
- College of Science University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Shun Yu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jincan Li
- College of Science University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
37
|
Chai J, Ding W, Wu J, Yoshikai N. Fluorobenziodoxole−BF
3
Reagent for Iodo(III)etherification of Alkynes in Ethereal Solvent. Chem Asian J 2020; 15:2166-2169. [DOI: 10.1002/asia.202000653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jinkui Chai
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- College of ChemistryHenan Institute of Advanced TechnologyZhengzhou University Zhengzhou 450001 P.R. China
| | - Wei Ding
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Junliang Wu
- College of ChemistryHenan Institute of Advanced TechnologyZhengzhou University Zhengzhou 450001 P.R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
38
|
Planas O, Peciukenas V, Cornella J. Bismuth-Catalyzed Oxidative Coupling of Arylboronic Acids with Triflate and Nonaflate Salts. J Am Chem Soc 2020; 142:11382-11387. [PMID: 32536157 PMCID: PMC7315642 DOI: 10.1021/jacs.0c05343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Herein we present a Bi-catalyzed
cross-coupling of arylboronic
acids with perfluoroalkyl sulfonate salts based on a Bi(III)/Bi(V)
redox cycle. An electron-deficient sulfone ligand proved to be key
for the successful implementation of this protocol, which allows the
unusual construction of C(sp2)–O bonds using commercially
available NaOTf and KONf as coupling partners. Preliminary mechanistic
studies as well as theoretical investigations reveal the intermediacy
of a highly electrophilic Bi(V) species, which rapidly eliminates
phenyl triflate.
Collapse
Affiliation(s)
- Oriol Planas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Vytautas Peciukenas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
39
|
Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Pd-Catalyzed Cyanoselenylation of Internal Alkynes: Access to Tetrasubstituted Selenoenol Ethers. Org Lett 2020; 22:5025-5029. [PMID: 32610926 DOI: 10.1021/acs.orglett.0c01582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Castoldi L, Di Tommaso EM, Reitti M, Gräfen B, Olofsson B. Electrophilic Vinylation of Thiols under Mild and Transition Metal‐Free Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Laura Castoldi
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Ester Maria Di Tommaso
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Marcus Reitti
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Barbara Gräfen
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Berit Olofsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
41
|
Egorov DM, Babushkina AA, Piterskaya YL, Dogadina AV. Effective Synthesis of Dialkyl Z-1,2-Bis[(1,5-R-1H-imidazol-2-yl)sulfanyl]ethenylphosphonates. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220060262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ding W, Chai J, Wang C, Wu J, Yoshikai N. Stereoselective Access to Highly Substituted Vinyl Ethers via trans-Difunctionalization of Alkynes with Alcohols and Iodine(III) Electrophile. J Am Chem Soc 2020; 142:8619-8624. [DOI: 10.1021/jacs.0c04140] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jinkui Chai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chen Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Junliang Wu
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
43
|
Watanabe Y, Takagi T, Miyamoto K, Kanazawa J, Uchiyama M. Shelf-Stable ( E)- and ( Z)-Vinyl-λ 3-chlorane: A Stereospecific Hyper-vinylating Agent. Org Lett 2020; 22:3469-3473. [PMID: 32286078 DOI: 10.1021/acs.orglett.0c00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first stereoselective synthesis of stable (E)- and (Z)-β-chlorovinyl-λ3-chlorane via direct mesitylation of 1,2-dichloroethylene with mesityldiazonium tetrakis(pentafluorophenyl)borate under mild reaction conditions. The structure of the (E)-vinyl-λ3-chlorane was established by single-crystal X-ray analysis. Because of the enormously high leaving group ability of the aryl-λ3-chloranyl group, vinyl-λ3-chloranes undergo not only SNVσ-type reaction with extremely weak nucleophiles such as perfluoroalkanesulfonate, iodobenzene, and aromatic hydrocarbons but also coupling with phenylcopper(I) species.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisei Takagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan.,Cluster of Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Vázquez-Galiñanes N, Andón-Rodríguez M, Gómez-Roibás P, Fañanás-Mastral M. Copper-catalyzed O-alkenylation of phosphonates. Beilstein J Org Chem 2020; 16:611-615. [PMID: 32280389 PMCID: PMC7136550 DOI: 10.3762/bjoc.16.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Copper catalysis allows the direct oxygen alkenylation of dialkyl phosphonates with alkenyl(aryl)iodonium salts with selective transfer of the alkenyl group. This novel methodology proceeds with a wide range of phosphonates under mild conditions and gives straightforward access to valuable enol phosphonates in very good yields.
Collapse
Affiliation(s)
- Nuria Vázquez-Galiñanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mariña Andón-Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricia Gómez-Roibás
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
45
|
Shin M, Kim M, Hwang C, Lee H, Kwon H, Park J, Lee E, Cho SH. Facile Synthesis of α-Boryl-Substituted Allylboronate Esters Using Stable Bis[(pinacolato)boryl]methylzinc Reagents. Org Lett 2020; 22:2476-2480. [DOI: 10.1021/acs.orglett.0c00721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minkyeong Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Minjae Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Hyojae Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Hyunchul Kwon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Jinyoung Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| |
Collapse
|
46
|
Zhang G, Tan H, Chen W, Shen HC, Lu Y, Zheng C, Xu H. Synthesis of NH-Sulfoximines by Using Recyclable Hypervalent Iodine(III) Reagents under Aqueous Micellar Conditions. CHEMSUSCHEM 2020; 13:922-928. [PMID: 31950602 DOI: 10.1002/cssc.201903430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 05/28/2023]
Abstract
The synthesis of NH-sulfoximines from sulfides has been first developed under mild conditions in an aqueous solution with surfactant TPGS-750-M as the catalyst at room temperature. In this newly developed process, a simple and convenient recycling strategy to regenerate the indispensable hypervalent iodine(III) is used. The resulting 1,2,3-trifluoro-5-iodobezene can be recovered almost quantitively from the mixture by liquid-liquid extraction and then oxidized to give the corresponding iodine(III) species. This optimized procedure is compatible with a broad range of functional groups and can be easily performed on a gram scale, providing a green protocol for the synthesis of sulfoximines.
Collapse
Affiliation(s)
- Guocai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, 720 Cai Lun Road, Shanghai, 201203, P. R. China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Weichun Chen
- Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, 720 Cai Lun Road, Shanghai, 201203, P. R. China
| | - Hong C Shen
- Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, 720 Cai Lun Road, Shanghai, 201203, P. R. China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Hongxi Xu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| |
Collapse
|
47
|
Chen A, Yu H, Yan J, Huang H. Lewis Acid Catalyzed Electrophilic Aminomethyloxygenative Cyclization of Alkynols with N,O-Aminals. Org Lett 2020; 22:755-759. [DOI: 10.1021/acs.orglett.9b04630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Anrong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Houjian Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Jiaqi Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, P.R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
48
|
Wei YM, Ma XD, Wang L, Duan XF. Iron-catalyzed stereospecific arylation of enol tosylates using Grignard reagents. Chem Commun (Camb) 2020; 56:1101-1104. [DOI: 10.1039/c9cc09522e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iron-catalyzed stereospecific arylation of enol tosylates with Grignard reagents.
Collapse
Affiliation(s)
- Yi-Ming Wei
- College of Chemistry
- Beijing Normal University
- China
| | - Xiao-Di Ma
- College of Chemistry
- Beijing Normal University
- China
| | - Lei Wang
- College of Chemistry
- Beijing Normal University
- China
| | | |
Collapse
|
49
|
Yanada R, Okamoto N, Sueda T. One-Pot Synthesis of 9-Spirofluorenes via Tandem Copper-Catalyzed Arylative Cyclization and Spirocyclization of Biaryl-Substituted Alkynyl Alcohols. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Borrel J, Pisella G, Waser J. Copper-Catalyzed Oxyalkynylation of C–S Bonds in Thiiranes and Thiethanes with Hypervalent Iodine Reagents. Org Lett 2019; 22:422-427. [DOI: 10.1021/acs.orglett.9b04157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|