1
|
Liu Y, Jin L, Mao J, Deng R, Lin F, Cheng Y, Li M, Dai J. Signal amplified colorimetric nucleic acid detection based on autocatalytic hairpin assembly. RSC Adv 2024; 14:17152-17157. [PMID: 38808241 PMCID: PMC11130644 DOI: 10.1039/d4ra01982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Herein, a nucleic acid assay based on autocatalytic hairpin assembly (ACHA) was proposed. In this system, two split G-quadruplex sequences were integrated into H1 and H2, respectively. And a DNA strand with the same sequence to target DNA was integrated into the assistant hairpin H3. In the presence of target DNA, the hairpin structure of H1 was opened and catalytic hairpin assembly (CHA) was activated, and then a series of DNA assembly steps based on the toehold-mediated DNA strand displacement were triggered and the product H1-H2 with sticky ends on both sides was formed. On the one side of H1-H2, the split two G-quadruplex sequences were close enough to form the intact G-quadruplex for the signal readout. At the same time, two sticky ends on the other side of H1-H2 hybridized with H3 and a new sticky end with the sequence same to the target DNA was exposed, which can immediately trigger the autocatalytic hairpin assembly reaction, and then the reaction rate of CHA was effectively accelerated and the colorimetric signal was significantly amplified. This ACHA signal amplified strategy has been successfully applied for the rapid and colorimetric nucleic acid detection.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Chemical Engineering, Guizhou Institute of Technology Guiyang 550000 China +86-13458610501
| | - Limin Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College Tianjin 300192 China
| | - Jianfei Mao
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Ru Deng
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Fengyi Lin
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Yuxin Cheng
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Min Li
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| | - Jianyuan Dai
- College of Chemistry, Sichuan University Chengdu 610064 China +86-18380216833
| |
Collapse
|
2
|
Li S, Zhao D, Yang F, Liu S. Dynamic monitoring of an enzymatically driven dissipative toehold-mediated strand displacement reaction. Chem Commun (Camb) 2024; 60:570-573. [PMID: 38093688 DOI: 10.1039/d3cc05061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A general strategy to program self-resettable and dissipative toehold-mediated strand displacement reactions was proposed, using DNA strands as the fuel and lambda exonuclease as the fuel-consuming unit. This non-equilibrium system is reversible and temporally controllable. Furthermore, it can be well integrated into a DNA network to temporally control its cascade reaction or dynamic behaviour.
Collapse
Affiliation(s)
- Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Disong Zhao
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
3
|
Agarwal S, Dizani M, Osmanovic D, Franco E. Light-controlled growth of DNA organelles in synthetic cells. Interface Focus 2023; 13:20230017. [PMID: 37577006 PMCID: PMC10415744 DOI: 10.1098/rsfs.2023.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Living cells regulate many of their vital functions through dynamic, membraneless compartments that phase separate (condense) in response to different types of stimuli. In synthetic cells, responsive condensates could similarly play a crucial role in sustaining their operations. Here we use DNA nanotechnology to design and characterize artificial condensates that respond to light. These condensates form via the programmable interactions of star-shaped DNA subunits (nanostars), which are engineered to include photo-responsive protection domains. In the absence of UV irradiation, the nanostar interactions are not conducive to the formation of condensates. UV irradiation cleaves the protection domains, increases the nanostar valency and enables condensation. We demonstrate that this approach makes it possible to tune precisely the kinetics of condensate formation by dosing UV exposure time. Our experimental observations are complemented by a computational model that characterizes phase transitions of mixtures of particles of different valency, under changes in the mixture composition and bond interaction energy. In addition, we illustrate how UV activation is a useful tool to control the formation and size of DNA condensates in emulsion droplets, as a prototype organelle in a synthetic cell. This research expands our capacity to remotely control the dynamics of DNA-based components via physical stimuli and is particularly relevant to the development of minimal artificial cells and responsive biomaterials.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Mahdi Dizani
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Dino Osmanovic
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Wang J, Raito H, Shimada N, Maruyama A. A Cationic Copolymer Enhances Responsiveness and Robustness of DNA Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304091. [PMID: 37340578 DOI: 10.1002/smll.202304091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/12/2012] [Indexed: 06/22/2023]
Abstract
Toehold-mediated DNA circuits are extensively employed to construct diverse DNA nanodevices and signal amplifiers. However, operations of these circuits are slow and highly susceptive to molecular noise such as the interference from bystander DNA strands. Herein, this work investigates the effects of a series of cationic copolymers on DNA catalytic hairpin assembly, a representative toehold-mediated DNA circuit. One copolymer, poly(L -lysine)-graft-dextran, significantly enhances the reaction rate by 30-fold due to its electrostatic interaction with DNA. Moreover, the copolymer considerably alleviates the circuit's dependency on the length and GC content of toehold, thereby enhancing the robustness of circuit operation against molecular noise. The general effectiveness of poly(L -lysine)-graft-dextran is demonstrated through kinetic characterization of a DNA AND logic circuit. Therefore, use of a cationic copolymer is a versatile and efficient approach to enhance the operation rate and robustness of toehold-mediated DNA circuits, paving the way for more flexible design and broader application.
Collapse
Affiliation(s)
- Jun Wang
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Hayashi Raito
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-57, Midori, Yokohama, 226-8501, Japan
| |
Collapse
|
5
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Zhang QL, Wang Y, Wang LL, Xie F, Wu RY, Ma XY, Li H, Liu Y, Yao S, Xu L. Programming Non-Nucleic Acid Molecules into Computational Nucleic Acid Systems. Angew Chem Int Ed Engl 2023; 62:e202214698. [PMID: 36373715 DOI: 10.1002/anie.202214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid (NA) computation has been widely developed in the past years to solve kinds of logic and mathematic issues in both information technologies and biomedical analysis. However, the difficulty to integrate non-NA molecules limits its power as a universal platform for molecular computation. Here, we report a versatile prototype of hybridized computation integrated with both nucleic acids and non-NA molecules. Employing the conformationally controlled ligand converters, we demonstrate that non-NA molecules, including both small molecules and proteins, can be computed as nucleic acid strands to construct the circuitry with increased complexity and scalability, and can be even programmed to solve arithmetical calculations within the computational nucleic acid system. This study opens a new door for molecular computation in which all-NA circuits can be expanded with integration of various ligands, and meanwhile, ligands can be precisely programmed by the nuclei acid computation.
Collapse
Affiliation(s)
- Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xu-Yang Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Han Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shunchun Yao
- School of Electric Power Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
9
|
Kennelly SA, Moorthy R, Otero RS, Harki DA. Expanding Catch and Release DNA Decoy (CRDD) Technology with Pyrimidine Mimics. Chemistry 2022; 28:e202201355. [PMID: 35849314 PMCID: PMC9588621 DOI: 10.1002/chem.202201355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Catch and release DNA decoys (CRDDs) utilize photochemically responsive nucleoside analogues that generate abasic sites upon exposure to light. Herein, we describe the synthesis and evaluation of four candidate CRDD monomers containing nucleobases that mimic endogenous pyrimidines: 2-nitroimidazole (2-NI), 2-nitrobenzene (2-NB), 2-nitropyrrole (2-NP) and 3-nitropyrrole (3-NP). Our studies reveal that 2-NI and 2-NP can function as CRDDs, whereas 3-NP and 2-NB undergo decomposition and transformation to a higher-ordered structure upon photolysis, respectively. When incorporated into DNA, 2-NP undergoes rapid photochemical cleavage of the anomeric bond (1.8 min half-life) to yield an abasic site. Finally, we find that all four pyrimidine mimics show significantly greater stability when base-paired against the previously reported 7-nitroindole CRDD monomer. Our work marks the expansion of CRDD technology to both purine and pyrimidine scaffolds.
Collapse
Affiliation(s)
- Samantha A. Kennelly
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ramkumar Moorthy
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ruben Silva Otero
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Daniel A. Harki
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| |
Collapse
|
10
|
Kankanamalage DVDW, Tran JHT, Beltrami N, Meng K, Zhou X, Pathak P, Isaacs L, Burin AL, Ali MF, Jayawickramarajah J. DNA Strand Displacement Driven by Host-Guest Interactions. J Am Chem Soc 2022; 144:16502-16511. [PMID: 36063395 PMCID: PMC9479067 DOI: 10.1021/jacs.2c05726] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length). Further, for a given input sequence, competing small-molecule guests can serve as effective regulators (with fine and coarse control) of HG-TMSD. To show integration into functional devices, we have incorporated HG-TMSD into machines that control enzyme activity and layered reactions that detect specific microRNA.
Collapse
Affiliation(s)
| | - Jennifer H T Tran
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | - Noah Beltrami
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Kun Meng
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Xiao Zhou
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Pravin Pathak
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, 2015 Percival Stern Hall, New Orleans, Louisiana 70118, United States
| | - Mehnaaz F Ali
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana 70125, United States
| | | |
Collapse
|
11
|
Yin B, Zhang Q, Xia X, Li C, Ho WKH, Yan J, Huang Y, Wu H, Wang P, Yi C, Hao J, Wang J, Chen H, Wong SHD, Yang M. A CRISPR-Cas12a integrated SERS nanoplatform with chimeric DNA/RNA hairpin guide for ultrasensitive nucleic acid detection. Theranostics 2022; 12:5914-5930. [PMID: 35966585 PMCID: PMC9373821 DOI: 10.7150/thno.75816] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
Background: CRISPR-Cas12a has been integrated with nanomaterial-based optical techniques, such as surface-enhanced Raman scattering (SERS), to formulate a powerful amplification-free nucleic acid detection system. However, nanomaterials impose steric hindrance to limit the accessibility of CRISPR-Cas12a to the narrow gaps (SERS hot spots) among nanoparticles (NPs) for producing a significant change in signals after nucleic acid detection. Methods: To overcome this restriction, we specifically design chimeric DNA/RNA hairpins (displacers) that can be destabilized by activated CRISPR-Cas12a in the presence of target DNA, liberating excessive RNA that can disintegrate a core-satellite nanocluster via toehold-mediated strand displacement for orchestrating a promising "on-off" nucleic acid biosensor. The core-satellite nanocluster comprises a large gold nanoparticle (AuNP) core surrounded by small AuNPs with Raman tags via DNA hybridization as an ultrabright Raman reporter, and its disassembly leads to a drastic decrease of SERS intensity as signal readouts. We further introduce a magnetic core to the large AuNPs that can facilitate their separation from the disassembled nanostructures to suppress the background for improving detection sensitivity. Results: As a proof-of-concept study, our findings showed that the application of displacers was more effective in decreasing the SERS intensity of the system and attained a better limit of detection (LOD, 10 aM) than that by directly using activated CRISPR-Cas12a, with high selectivity and stability for nucleic acid detection. Introducing magnetic-responsive functionality to our system further improves the LOD to 1 aM. Conclusion: Our work not only offers a platform to sensitively and selectively probe nucleic acids without pre-amplification but also provides new insights into the design of the CRISPR-Cas12a/SERS integrated system to resolve the steric hindrance of nanomaterials for constructing biosensors.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Willis Kwun Hei Ho
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Pui Wang
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Honglin Chen
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| |
Collapse
|
12
|
Jin C, EI‐Sagheer AH, Li S, Vallis KA, Tan W, Brown T. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angew Chem Int Ed Engl 2022; 61:e202114016. [PMID: 34953094 PMCID: PMC9306542 DOI: 10.1002/anie.202114016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 12/04/2022]
Abstract
Oligonucleotides containing cleavable linkers have emerged as versatile tools to achieve stimulus-responsive and site-specific cleavage of DNA. However, the limitations of previously reported cleavable linkers including photolabile and disulfide linkers have restricted their applications in vivo. Inspired by the cathepsin B-sensitive dipeptide linkers in antibody-drug conjugates (ADCs) such as Adcetris, we have developed Val-Ala-02 and Val-Ala-Chalcone phosphoramidites for the automated synthesis of enzyme-cleavable oligonucleotides. Cathepsin B digests Val-Ala-02 and Val-Ala-Chalcone linkers efficiently, enabling cleavage of oligonucleotides into two components or release of small-molecule payloads. Based on the prior success of dipeptide linkers in ADCs, we believe that these dipeptide linker phosphoramidites will promote new clinical applications of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Afaf H. EI‐Sagheer
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of Science and MathematicsSuez University, Faculty of Petroleum and Mining EngineeringSuez43721Egypt
| | - Siqi Li
- Medical Research CouncilOxford Institute for Radiation OncologyDepartment of OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Katherine A. Vallis
- Medical Research CouncilOxford Institute for Radiation OncologyDepartment of OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Tom Brown
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
13
|
Jin C, EI‐Sagheer AH, Li S, Vallis KA, Tan W, Brown T. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202114016. [PMID: 38505643 PMCID: PMC10946720 DOI: 10.1002/ange.202114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Oligonucleotides containing cleavable linkers have emerged as versatile tools to achieve stimulus-responsive and site-specific cleavage of DNA. However, the limitations of previously reported cleavable linkers including photolabile and disulfide linkers have restricted their applications in vivo. Inspired by the cathepsin B-sensitive dipeptide linkers in antibody-drug conjugates (ADCs) such as Adcetris, we have developed Val-Ala-02 and Val-Ala-Chalcone phosphoramidites for the automated synthesis of enzyme-cleavable oligonucleotides. Cathepsin B digests Val-Ala-02 and Val-Ala-Chalcone linkers efficiently, enabling cleavage of oligonucleotides into two components or release of small-molecule payloads. Based on the prior success of dipeptide linkers in ADCs, we believe that these dipeptide linker phosphoramidites will promote new clinical applications of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Afaf H. EI‐Sagheer
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Department of Science and MathematicsSuez University, Faculty of Petroleum and Mining EngineeringSuez43721Egypt
| | - Siqi Li
- Medical Research CouncilOxford Institute for Radiation OncologyDepartment of OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Katherine A. Vallis
- Medical Research CouncilOxford Institute for Radiation OncologyDepartment of OncologyUniversity of OxfordOxfordOX3 7DQUK
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Tom Brown
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
14
|
Weng Z, Yu H, Luo W, Guo Y, Liu Q, Zhang L, Zhang Z, Wang T, Dai L, Zhou X, Han X, Wang L, Li J, Yang Y, Xie G. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement. ACS NANO 2022; 16:3135-3144. [PMID: 35113525 DOI: 10.1021/acsnano.1c10797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA strand displacement plays an essential role in the field of dynamic DNA nanotechnology. However, flexible regulation of strand displacement remains a significant challenge. Most previous regulatory tools focused on controllable activation of toehold and thus limited the design flexibility. Here, we introduce a regulatory tool termed cooperative branch migration (CBM), through which DNA strand displacement can be controlled by regulating the complementarity of branch migration domains. CBM shows perfect compatibility with the majority of existing regulatory tools, and when combined with forked toehold, it permits continuous fine-tuning of the strand displacement rate spanning 5 orders of magnitude. CBM manifests multifunctional regulation ability, including rate fine-tuning, continuous dynamic regulation, reaction resetting, and selective activation. To exemplify the powerful function, we also constructed a nested if-function signal processing system on the basis of cascading CBM reactions. We believe that the proposed regulatory strategy would effectively enrich the DNA strand displacement toolbox and ultimately promote the construction of DNA machines of higher complexity in nucleic acid research and biomedical applications.
Collapse
Affiliation(s)
- Zhi Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, PR China
| | - Qian Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhang Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ting Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ling Dai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Luojia Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
15
|
Zhang C, Ma X, Zheng X, Ke Y, Chen K, Liu D, Lu Z, Yang J, Yan H. Programmable allosteric DNA regulations for molecular networks and nanomachines. SCIENCE ADVANCES 2022; 8:eabl4589. [PMID: 35108052 PMCID: PMC8809682 DOI: 10.1126/sciadv.abl4589] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Structure-based molecular regulations have been widely adopted to modulate protein networks in cells and recently developed to control allosteric DNA operations in vitro. However, current examples of programmable allosteric signal transmission through integrated DNA networks are stringently constrained by specific design requirements. Developing a new, more general, and programmable scheme for establishing allosteric DNA networks remains challenging. Here, we developed a general strategy for programmable allosteric DNA regulations that can be finely tuned by varying the dimensions, positions, and number of conformational signals. By programming the allosteric signals, we realized fan-out/fan-in DNA gates and multiple-layer DNA cascading networks, as well as expanding the approach to long-range allosteric signal transmission through tunable DNA origami nanomachines ~100 nm in size. This strategy will enable programmable and complex allosteric DNA networks and nanodevices for nanoengineering, chemical, and biomedical applications displaying sense-compute-actuate molecular functionalities.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing 100871, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Xueying Ma
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Bio-evidence Sciences Academy, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Kuiting Chen
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author. (C.Z.); (J.Y.); (H.Y.)
| |
Collapse
|
16
|
Chen M, Duan R, Xu S, Duan Z, Yuan Q, Xia F, Huang F. Photoactivated DNA Walker Based on DNA Nanoflares for Signal-Amplified MicroRNA Imaging in Single Living Cells. Anal Chem 2021; 93:16264-16272. [PMID: 34797071 DOI: 10.1021/acs.analchem.1c04505] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific and sensitive detection and imaging of cancer-related miRNA in living cells are desirable for cancer diagnosis and treatment. Because of the spatiotemporal variability of miRNA expression level during different cell cycles, signal amplification strategies that can be activated by external stimuli are required to image miRNAs on demand at desired times and selected locations. Herein, we develop a signal amplification strategy termed as the photoactivated DNA walker based on DNA nanoflares, which enables photocontrollable signal amplification imaging of cancer-related miRNA in single living cells. The developed method is achieved via combining photoactivated nucleic acid displacement reaction with the traditional exonuclease III (EXO III)-assisted DNA walker based on DNA nanoflares. This method is capable of on-demand activation of the DNA walker for dictated signal amplification imaging of cancer-related miRNA in single living cells. The developed method was demonstrated as a proof of concept to achieve photoactivated signal amplification imaging of miRNA-21 in single living HeLa cells via selective two-photon irradiation (λ = 740 nm) of single living HeLa cells by using confocal microscopy equipped with a femtosecond laser.
Collapse
Affiliation(s)
- Mengxi Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ruilin Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shijun Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhijuan Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
17
|
Duan Z, Tan L, Duan R, Chen M, Xia F, Huang F. Photoactivated Biosensing Process for Dictated ATP Detection in Single Living Cells. Anal Chem 2021; 93:11547-11556. [PMID: 34374521 DOI: 10.1021/acs.analchem.1c02049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The subcellular distribution of adenosine 5'-triphosphate (ATP) and the concentration of ATP in living cells dynamically fluctuate with time during different cell cycles. The dictated activation of the biosensing process in living cells enables the spatiotemporal target detection in single living cells. Herein, a kind of o-nitrobenzylphosphate ester hairpin nucleic acid was introduced as a photoresponsive DNA probe for light-activated ATP detection in single living cells. Two methods to spatiotemporally activate the probe in single living cells were discussed. One method was the usage of the micrometer-sized optical fiber (about 5 μm) to guide the UV light (λ = 365 nm) to selectively activate the photoresponsive DNA probe in single living cells. The second method involved a two-photon laser confocal scanning microscope to selectively irradiate the photoresponsive DNA probes confined in single living cells via two-photon irradiation (λ = 740 nm). ATP aptamer integrated in the activated DNA probes selectively interacted with the target ATP, resulting in dictated signal generation. Furthermore, the photoactivated biosensing process enables dictated dual-model ATP detection in single living cells with "Signal-ON" fluorescence signal and "Signal-OFF" electrochemical signal outputs. The developed photoactivated biosensor for dictated ATP detection with high spatiotemporal resolution in single living cells at a desired time and desired place suggests the possibility to monitor biomarkers during different cell cycles.
Collapse
Affiliation(s)
- Zhijuan Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Liuxi Tan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ruilin Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Mengxi Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Abstract
DNA-based Boolean logic gates (for example, AND, OR, and NOT) can be assembled into complex computational circuits that generate an output signal in response to specific patterns of oligonucleotide inputs. However, the fundamental nature of NOT gates, which convert the absence of an input into an output, makes their implementation within DNA-based circuits difficult. Premature execution of a NOT gate before completion of its upstream computation introduces an irreversible error into the circuit. By utilizing photocaging groups, we developed a novel DNA gate design that prevents gate function until irradiation at a certain time point. Optical activation provides temporal control over circuit performance by preventing premature computation and is orthogonal to all other components of DNA computation devices. Using this approach, we designed NAND and NOR logic gates that respond to synthetic microRNA sequences. We further demonstrate the utility of the NOT gate within multilayer circuits in response to a specific pattern of four microRNAs.
Collapse
Affiliation(s)
- Cole Emanuelson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Wang LL, Zhang QL, Wang Y, Liu Y, Lin J, Xie F, Xu L. Controllable DNA strand displacement by independent metal-ligand complexation. Chem Sci 2021; 12:8698-8705. [PMID: 34257868 PMCID: PMC8246113 DOI: 10.1039/d1sc01041g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction of artificial metal-ligand base pairs can enrich the structural diversity and functional controllability of nucleic acids. In this work, we revealed a novel approach by placing a ligand-type nucleoside as an independent toehold to control DNA strand-displacement reactions based on metal-ligand complexation. This metal-mediated artificial base pair could initiate strand invasion similar to the natural toehold DNA, but exhibited flexible controllability to manipulate the dynamics of strand displacement that was only governed by its intrinsic coordination properties. External factors that influence the intrinsic properties of metal-ligand complexation, including metal species, metal concentrations and pH conditions, could be utilized to regulate the strand dynamics. Reversible control of DNA strand-displacement reactions was also achieved through combination of the metal-mediated artificial base pair with the conventional toehold-mediated strand exchange by cyclical treatments of the metal ion and the chelating reagent. Unlike previous studies of embedded metal-mediated base pairs within natural base pairs, this metal-ligand complexation is not integrated into the nucleic acid structure, but functions as an independent toehold to regulate strand displacement, which would open a new door for the development of versatile dynamic DNA nanotechnologies.
Collapse
Affiliation(s)
- Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jiao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
20
|
Xiong Y, Dai J, Zhang Y, Zhou C, Yuan H, Xiao D. A label-free fluorescent biosensor based on a catalyzed hairpin assembly for HIV DNA and lead detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2391-2395. [PMID: 33972958 DOI: 10.1039/d1ay00410g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a label-free fluorescent signal amplification system based on a catalyzed hairpin assembly (CHA) is reported. In this system, two hairpin probes, H1 and H2, were well-designed in which G-quadruplex sequences were integrated into H2. The CHA reaction was triggered by target/trigger DNA and G-quadruplex sequences were released, which can bind the fluorescent amyloid dye thioflavin T (ThT) to provide fluorescence signals. At the same time, target/trigger DNA was released from the product of the CHA reaction (H1-H2), which continued to initiate the next CHA cycle, and the signal was eventually amplified. This signal amplification approach has been successfully used to develop a label-free fluorescent sensing platform for sensitive detection of human immunodeficiency virus (HIV) DNA and Pb2+.
Collapse
Affiliation(s)
- Yu Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | |
Collapse
|
21
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|
22
|
Lin M, Wan H, Zhang J, Huang F, Li S, Xia F. Bioinspired Programmable Engineering of a Color-Change Biointerface based on Dual-Stimulation Regulation. ACS APPLIED BIO MATERIALS 2020; 3:8970-8977. [DOI: 10.1021/acsabm.0c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
23
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
24
|
Deng J, Bezold D, Jessen HJ, Walther A. Multiple Light Control Mechanisms in ATP-Fueled Non-equilibrium DNA Systems. Angew Chem Int Ed Engl 2020; 59:12084-12092. [PMID: 32232894 PMCID: PMC7384039 DOI: 10.1002/anie.202003102] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Fuel-driven self-assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign light control. Even more challenging is to use different wavelengths to modulate the reactivity of different components of the system, for example, as fuel or building blocks. Success would enable such systems to navigate along different trajectories in a wavelength-dependent fashion. Herein, we introduce the first examples of light control in ATP-fueled, dynamic covalent DNA polymerization systems organized in an enzymatic reaction network of concurrent ATP-powered ligation and restriction. We demonstrate concepts for light activation and modulation by introducing caged ATP derivatives and caged DNA building blocks, making it possible to realize light-activated fueling, self-sorting in structure and behavior, and transition across different wavelength-dependent dynamic steady states.
Collapse
Affiliation(s)
- Jie Deng
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT)University of FreiburgGeorge-Köhler-Allee 10579110FreiburgGermany
| | - Dominik Bezold
- Institute of Organic ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of FreiburgAlbertstrasse 2179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Andreas Walther
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Strasse 3179104FreiburgGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Strasse 2179104FreiburgGermany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT)University of FreiburgGeorge-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
25
|
Abstract
In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
Collapse
Affiliation(s)
- Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
26
|
Lin M, Yi X, Wan H, Zhang J, Huang F, Xia F. Photoresponsive Electrochemical DNA Biosensors Achieving Various Dynamic Ranges by Using Only-One Capture Probe. Anal Chem 2020; 92:9963-9970. [DOI: 10.1021/acs.analchem.0c01571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
27
|
Huang F, Duan R, Zhou Z, Vázquez-González M, Xia F, Willner I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem Sci 2020; 11:5592-5600. [PMID: 32874503 PMCID: PMC7441577 DOI: 10.1039/d0sc00863j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The spatiotemporal stimulation of liposome-liposome or liposome-membrane fusion processes attracts growing interest as a means to mimic cell-cell interactions in nature and for using these processes for biomedical applications. We report the use of o-nitrobenzyl phosphate functionalized-cholesterol tethered nucleic acid-modified liposomes as functional photoresponsive units for inducing, by NIR-irradiation, spatiotemporal liposome-liposome or liposome-membrane fusion processes. The liposomes are loaded with upconversion nanoparticles (UCNPs) and their NIR irradiation (λ = 980 nm) yields luminescence at λ = 365 nm, providing a localized light-source to deprotect the o-nitrobenzyl phosphate groups and resulting in the fragmentation of the nucleic acid structures. In one system, the NIR-triggered fusion of two liposomes, L1 and L2, is exemplified. Liposome L1 is loaded with UCNPs and Tb3+ ions, and the liposome boundary is functionalized with a cholesterol-tethered, o-nitrobenzyl phosphate caged hairpin nucleic acid structure. Liposome L2 is loaded with 2,6-pyridinedicarboxylic acid, DPA, and its boundary is modified with a cholesterol-tethered nucleic acid, complementary to a part of the caged hairpin, associated with L1. NIR-irradiation of the L1/L2 mixture resulted in the photocleavage of the hairpin structure, associated with L1, and the resulting fragmented nucleic acid associated with L1 hybridized with the nucleic acid linked to L2, leading to the fusion of the two liposomes. The fusion process was followed by dynamic light scattering, and by monitoring the fluorescence of the Tb3+-DPA complex generated upon the fusion of the liposomes and their exchange of contents (fusion efficiency 30%). In a second system, the fusion of the liposomes L1, loaded with UCNPs and doxorubicin (DOX), with HeLa cancer cells functionalized with nucleic acid tethers, complementary to the hairpin units associated with the boundary of L1, and linked to the MUC-1 receptor sites associated with the HeLa cells, through a MUC-1 aptamer unit is exemplified. The effect of DOX-loaded L1/HeLa cell fusion on the cytotoxicity towards HeLa cells is addressed. The NIR UCNP-stimulated cleavage of the o-nitrobenzyl phosphate caged hairpin units associated with L1 leads to the fragmentation of the hairpin units and the resulting nucleic acid tethers hybridize with the nucleic acid-modified HeLa cells, resulting in the liposome-HeLa cell fusion and the release of DOX into the HeLa cells. Selective spatiotemporal cytotoxicity towards HeLa cells is demonstrated (ca. 40% cell killing within two days). The study presents a comprehensive stepwise set of experiments directed towards the development of NIR-driven liposome-liposome or liposome-membrane fusion processes.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Zhixin Zhou
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Margarita Vázquez-González
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Itamar Willner
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| |
Collapse
|
28
|
Deng J, Bezold D, Jessen HJ, Walther A. Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jie Deng
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Strasse 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT) University of Freiburg George-Köhler-Allee 105 79110 Freiburg Germany
| | - Dominik Bezold
- Institute of Organic Chemistry University of Freiburg Albertstrasse 21 79104 Freiburg Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry University of Freiburg Albertstrasse 21 79104 Freiburg Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Strasse 31 79104 Freiburg Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Strasse 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials & Bioinspired Technologies (FIT) University of Freiburg George-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
29
|
DNA framework-engineered electrochemical biosensors. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1130-1141. [PMID: 32253588 DOI: 10.1007/s11427-019-1621-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Self-assembled DNA nanostructures have shown remarkable potential in the engineering of biosensing interfaces, which can improve the performance of various biosensors. In particular, by exploiting the structural rigidity and programmability of the framework nucleic acids with high precision, molecular recognition on the electrochemical biosensing interface has been significantly enhanced, leading to the development of highly sensitive and specific biosensors for nucleic acids, small molecules, proteins, and cells. In this review, we summarize recent advances in DNA framework-engineered biosensing interfaces and the application of corresponding electrochemical biosensors.
Collapse
|
30
|
Duan R, Li T, Duan Z, Huang F, Xia F. Near-Infrared Light Activated Nucleic Acid Cascade Recycling Amplification for Spatiotemporally Controllable Signal Amplified mRNA Imaging. Anal Chem 2020; 92:5846-5854. [DOI: 10.1021/acs.analchem.9b05494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tao Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
31
|
Xing C, Chen Z, Dai J, Zhou J, Wang L, Zhang KL, Yin X, Lu C, Yang H. Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6336-6342. [PMID: 31918539 DOI: 10.1021/acsami.9b21778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by cytoskeletal structures that respond sensitively to environmental changes and chemical inputs, we report a strategy to trigger and finely control the assembly of stimulus-responsive DNA nanostructures with light under isothermal conditions. The strategy is achieved via integrating an upstream light-controlled, toehold-mediated DNA strand displacement circuit with a downstream DNA tile self-assembly process. By rationally designing an upstream DNA strand module, we further transform the upstream DNA strand displacement circuit to an "AND gate" circuit to control the assembly of DNA nanostructures. This example represents the demonstration of the spatial and temporal assembly of DNA nanostructures using a noninvasive chemical input. Such a light-controlled DNA logic circuit not only adds a new element to the tool box of DNA nanotechnology but also inspires us to assemble complex and responsive nanostructures.
Collapse
Affiliation(s)
- Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
- Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors , Minjiang University , Fuzhou 350108 , P. R. China
| | - Ziyi Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Kai-Long Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Xiaofei Yin
- First Institute of Oceanography, Ministry of Natural Resources , Qingdao 266061 , P. R. China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| |
Collapse
|
32
|
Bader A, Cockroft SL. Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices. Chem Commun (Camb) 2020; 56:5135-5138. [DOI: 10.1039/d0cc00882f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Simple design principles improve conformational stability and decrease strand leakage by two orders of magnitude.
Collapse
Affiliation(s)
- Antoine Bader
- EaStCHEM School of Chemistry
- University of Edinburgh
- Joseph Black Building
- Edinburgh EH9 3FJ
- UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry
- University of Edinburgh
- Joseph Black Building
- Edinburgh EH9 3FJ
- UK
| |
Collapse
|
33
|
Valsangkar VA, Chandrasekaran AR, Zhuo L, Mao S, Lee GW, Kizer M, Wang X, Halvorsen K, Sheng J. Click and photo-release dual-functional nucleic acid nanostructures. Chem Commun (Camb) 2019; 55:9709-9712. [PMID: 31353371 PMCID: PMC6687541 DOI: 10.1039/c9cc03806j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We functionalize nucleic acid nanostructures with click chemistry (for attachment of cargos) and a photocleavable linker (for release). We demonstrate cargo attachment using a fluorescein dye and release using UV trigger from an RNA three-way junction, a DNA star motif and a DNA tetrahedron. Such multifunctional nucleic acid nanostructures have potential in targeted drug delivery.
Collapse
Affiliation(s)
- Vibhav A Valsangkar
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | - Lifeng Zhuo
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Song Mao
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Goh Woon Lee
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Megan Kizer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xing Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA. and Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
34
|
Yang J, Wu R, Li Y, Wang Z, Pan L, Zhang Q, Lu Z, Zhang C. Entropy-driven DNA logic circuits regulated by DNAzyme. Nucleic Acids Res 2019; 46:8532-8541. [PMID: 30053158 PMCID: PMC6144864 DOI: 10.1093/nar/gky663] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
The catalytic DNA circuits play a critical role in engineered biological systems and molecular information processing. Actually, some of the natural or synthetic DNA circuits were triggered by covalent modifications, where conformational changes were induced to facilitate complex DNA engineering functions and signal transmissions. However, most of the reported artificial catalytic DNA circuits were regulated by the toehold-mediated reaction. Therefore, it is significant to propose a strategy to regulate the catalytic DNA circuit not only by the toehold-mediated mechanism, but also by involving the conformational changes induced by the covalent modification. In this study, we developed the catalytic DNA logic circuits regulated by DNAzyme. Here, a regulation strategy based on the covalent modification was proposed to control the DNA circuit, combing two reaction mechanisms: DNAzyme digestion and entropy-driven strand displacement. The DNAzyme and DNA catalyst can participate into the reactions alternatively, thus realizing the cascading catalytic circuits. Using the DNAzyme regulation, a series of logic gates (YES, OR and AND) were constructed. In addition, a two-layer cascading circuit and a feedback self-catalysis circuit were also established. The proposed DNAzyme-regulated strategy shows great potentials as a reliable and feasible method for constructing more complex catalytic DNA circuits.
Collapse
Affiliation(s)
- Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Ranfeng Wu
- College of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yifan Li
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiang Zhang
- College of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, China
| | - Cheng Zhang
- Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Yu Y, Jin B, Li Y, Deng Z. Stimuli-Responsive DNA Self-Assembly: From Principles to Applications. Chemistry 2019; 25:9785-9798. [PMID: 30931536 DOI: 10.1002/chem.201900491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/01/2023]
Abstract
Stimuli-responsive DNA self-assembly shares the advantages of both designed stimuli-responsiveness and the molecular programmability of DNA structures, offering great opportunities for basic and applied research in dynamic DNA nanotechnology. In this minireview, we summarize the most recent progress in this rapidly developing field. The trigger mechanisms of the responsive DNA systems are first divided into six categories, which are then explained with illustrative examples following this classification. Subsequently, proof-of-concept applications in terms of biosensing, in vivo pH-mapping, drug delivery, and therapy are discussed. Finally, we provide some remarks on the challenges and opportunities of this highly promising research direction in DNA nanotechnology.
Collapse
Affiliation(s)
- Yang Yu
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Bang Jin
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
36
|
Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H. Rational Design of Framework Nucleic Acids for Bioanalytical Applications. Chempluschem 2019; 84:512-523. [DOI: 10.1002/cplu.201900118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yuwei Su
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Bingyi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
- Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| |
Collapse
|
37
|
Huang Z, Chen J, Luo Z, Wang X, Duan Y. Label-Free and Enzyme-Free Colorimetric Detection of Pb 2+ Based on RNA Cleavage and Annealing-Accelerated Hybridization Chain Reaction. Anal Chem 2019; 91:4806-4813. [PMID: 30834746 DOI: 10.1021/acs.analchem.9b00410] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free and enzyme-free colorimetric sensor for rapid detection of Pb2+ is reported, which is based on the strategy of DNAzyme-mediated RNA cleavage combined with an annealing-accelerated DNA hybridization chain reaction (HCR). As a trigger DNA, the substrate strand (STM) of DNAzyme can initiate HCR effectively. However, when it is cleaved by DNAzyme in the presence of Pb2+, the separation of DNA functional domains leads to a serious decrease in HCR efficiency. As a result, the difference in Pb2+ concentration converts into the difference of DNA assembly, which eventually leads to the color change of colloidal gold nanoparticles (AuNPs). In this work, a DNA strand (cGR5) completely complementary to the catalytic strand (GR5) of DNAzyme is used to improve the dissociation of STM to enhance the HCR efficiency. In addition, the simple operation of DNA annealing is first used to accelerate the HCR process, enabling the Pb2+ detection to be completed in about 30 min. As advantages of high sensitivity, good selectivity, strong anti-interference ability, and good practical performance are achieved, it is anticipated that the cheap and simple colorimetric sensor will be helpful for on-site detection of environmental and food samples.
Collapse
Affiliation(s)
- Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Xiaqing Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| |
Collapse
|
38
|
Li F, Xiao M, Pei H. DNA‐Based Chemical Reaction Networks. Chembiochem 2019; 20:1105-1114. [DOI: 10.1002/cbic.201800721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Fan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringHealth Science CenterShenzhen University Nanhai Avenue 3688 518060 Shenzhen Guangzhou P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road 200241 Shanghai P.R. China
| |
Collapse
|
39
|
Lu H, Yang F, Liu B, Zhang K, Cao Y, Dai W, Li W, Dong H. Intracellular low-abundance microRNA imaging by a NIR-assisted entropy-driven DNA system. NANOSCALE HORIZONS 2019; 4:472-479. [PMID: 32254100 DOI: 10.1039/c8nh00330k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intracellular microRNA (miRNA) imaging remains a key challenge due to its low abundance. Herein, we integrate a rationally designed elegant entropy-driven DNA probe with assisted DNA fuel on hollow copper sulfide nanoparticles (HCuSNPs) for intracellular miRNA imaging. The anchored assisted DNA fuel strand could be efficiently released by a NIR-II laser irradiation induced photothermal effect of the HCuSNPs. The DNA machine was activated by target miRNA binding and powered by NIR-responsive released DNA fuel through toehold-mediated strand displacement reactions, accomplished by strong fluorescence recovery. It demonstrated 2 orders of magnitude improvement in the detection sensitivity compared to molecular beacons (MBs). Reliable intracellular low-abundance miRNA imaging among different cells and monitoring of down-regulated miRNA was realized without external enzyme or fuel addition. Oncogenic miRNA imaging in vivo was also realized. The entropy-driven DNA machine system provides a facile and powerful tool for intracellular miRNA analysis and related biomedical applications.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin M, Yi X, Huang F, Ma X, Zuo X, Xia F. Photoactivated Nanoflares for mRNA Detection in Single Living Cells. Anal Chem 2019; 91:2021-2027. [DOI: 10.1021/acs.analchem.8b04434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Yi
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xin Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
41
|
Huang F, Zhang J, Li T, Duan R, Xia F, Willner I. Two-Photon Lithographic Patterning of DNA-Coated Single-Microparticle Surfaces. NANO LETTERS 2019; 19:618-625. [PMID: 30585496 DOI: 10.1021/acs.nanolett.8b04975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The spatially defined functionalization of microparticles with asymmetric shape-controlled nucleic acid patterns is a major challenge in materials science. The asymmetric patterning of microparticles is important to allow the controlled fabrication of crystalline lattices or controlled aggregates of microparticles. We present the combination of two-photon lithography and photocleavable o-nitrobenzylphosphate ester nucleic acid coating-modified microparticles as a versatile means to asymmetrically pattern single microparticle surfaces. The two-photon patterning of microparticles with predesigned nucleic acid structures of different sizes (700 nm to 2.8 μm) and shapes (circles, rings, triangles, and squares) are demonstrated. In addition, complex patterned domains consisting of two different asymmetric nucleic acid domains are fabricated by the controlled Z-positioning of the microparticles in respect to the two-photon irradiation sources. In addition, the two-photon lithographic patterning of the photocleavable DNA coating allows the generation of functional nucleic acid domains for the photostimulated activation of the catalytic hybridization assembly (CHA) of branched nucleic acid structures on single microparticles.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Juan Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Tao Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
42
|
Wang H, Zheng J, Sun Y, Li T. Cellular environment-responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens Bioelectron 2018; 117:729-735. [DOI: 10.1016/j.bios.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
|
43
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Li C, Ma J, Shi H, Hu X, Xiang Y, Li Y, Li G. Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies. Anal Chim Acta 2018; 1041:102-107. [PMID: 30340681 DOI: 10.1016/j.aca.2018.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Advanced methods for developing and applying responsive DNA nanodevices are of great interest. Herein, we report a stretchable DNAzyme that allows simple, multiplexed and sensitive fluorescent detection of antibodies. We find that rigid antibody can tightly stretch soft, antigen-labelled DNAzyme strand and disrupt the hybridization between DNAzyme and its substrate. Based on this finding, we develop a novel strategy to detect antibodies. Due to the robustness and high activity of DNAzyme, this assay can easily detect target as low as 1 ± 0.25 pM and achieve multiplexed detection by using a cocktail of DNAzymes. The proposed assay not only provides a new approach to readily measure antibody, but broadens the application of DNAzyme that is usually employed to detect metal ions or indirectly analyze biomolecules without the cumbersome design.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Jiehua Ma
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; State Key Laboratory of Reproductive Medicine, Department of Reproductive Health, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, PR China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Xiaolu Hu
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Yuanyang Li
- Department of Neurosurgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
45
|
Huang F, Lin M, Duan R, Lou X, Xia F, Willner I. Photoactivated Specific mRNA Detection in Single Living Cells by Coupling "Signal-on" Fluorescence and "Signal-off" Electrochemical Signals. NANO LETTERS 2018; 18:5116-5123. [PMID: 29998736 DOI: 10.1021/acs.nanolett.8b02004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The spatiotemporal detection of a target mRNA in a single living cell is a major challenge in nanoscience and nanomedicine. We introduce a versatile method to detect mRNA at a single living cell level that uses photocleavable hairpin probes as functional units for the optical (fluorescent) and electrochemical (voltammetric) detection of MnSOD mRNA in single MCF-7 cancer cells. The fluorescent probe is composed of an ortho-nitrophenylphosphate ester functionalized hairpin that includes the FAM fluorophore in a caged configuration quenched by Dabcyl. The fluorescent probe is further modified with the AS1411 aptamer to facilitate the targeting and internalization of the probe into the MCF-7 cells. Under UV irradiation, the hairpin is cleaved, leading to the intracellular mRNA toehold-stimulated displacement of the FAM-functionalized strand resulting in a switched-on fluorescence signal upon the detection of the mRNA in a single cell. In addition, a nanoelectrode functionalized with a methylene blue (MB) redox-active photocleavable hairpin is inserted into the cytoplasm of a single MCF-7 cell. Photocleavage of the hairpin leads to the mRNA-mediated toehold displacement of the redox-active strand associated with the probe, leading to the depletion of the voltammetric response of the probe. The parallel optical and electrochemical detection of the mRNA at a single cell level is demonstrated.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
46
|
Hu P, Li M, Wei X, Yang B, Li Y, Li CY, Du J. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors. Anal Chem 2018; 90:9751-9760. [PMID: 30040891 DOI: 10.1021/acs.analchem.8b01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toehold-mediated DNA strand displacement has proven powerful in the construction of various DNA circuits, DNA machines, and biosensors. So far, many new toehold activation mechanisms have been developed to achieve programmed DNA strand displacement behaviors. However, almost all those toeholds are inflexible via either a covalently attached manner or a complementary hybridization strategy, which limit the versatility of DNA devices. To solve this problem, we developed a new toehold, named "cooperative toehold", to activate DNA strand displacement. On the basis of a base stacking mechanism, the cooperative toehold is comprised of two moieties with completely independent DNA sequences between each other. The cooperative toehold enabled one to continuously tune the rate of DNA strand displacement, as well as more sophisticated strand displacement reactions. The cooperative toehold has also been employed as a universal signal translator for biosensors to qualitatively determine RNA and ATP. Moreover, as a novel specific PCR monitoring system, cooperative toehold-mediated DNA strand displacement can detect the pUC18 plasmid in genomic DNA samples with an aM detection limit.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Mengmeng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Xijiao Wei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Jun Du
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| |
Collapse
|
47
|
Lai W, Ren L, Tang Q, Qu X, Li J, Wang L, Li L, Fan C, Pei H. Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS NANO 2018; 12:7093-7099. [PMID: 29906089 DOI: 10.1021/acsnano.8b02864] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
Collapse
Affiliation(s)
- Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Lei Ren
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai , 200241 , P. R. China
| |
Collapse
|
48
|
Zhang Z, Zhong C, Yuan T, Zhou X, Zhao M, Qian H, Cheng W, Chen T. A hybridization chain reaction amplification strategy for fluorescence imaging of human telomerase activity in living cells. Methods Appl Fluoresc 2018; 6:045003. [PMID: 29924741 DOI: 10.1088/2050-6120/aacded] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hybridized chain reaction (HCR)-based biosensing method has been developed for the imaging detection of intracellular telomerase activity. The telomerase-targeting responder-transmitter DNA complex (HPT) consisting of telomerase primer sequence (HP) and a HCR initiator (trigger) is transfected into cell plasma. In the presence of telomerase, HPT can be recognized and extended, producing plenty of triggers which initiate HCR amplification reaction. Finally, a long nicked dsDNA with a lot of outstretched single chains was formed by hybridizing with Q of the reporter complex, generating an enhanced fluorescence signal. The developed biosensing approach can be used for the detection of telomerase activity in cell lysate with the detection limit of 578 cells/100 μl. In addition, this strategy has been successfully applied not only for the sensitive and specific imaging of telomerase activity in living cells but also for comparing of telomerase activity among different cell lines. Therefore, the method might become a potential alternative tool for telomerase-related cancer diagnosis and therapy in medical research and early clinical diagnosis.
Collapse
Affiliation(s)
- Zhiqian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu M, Jiang S, Loza O, Fahmi NE, Šulc P, Stephanopoulos N. Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Minghui Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Omar Loza
- Department of Physics Arizona State University Physical Sciences Building, Room 470, PO Box 871504 Tempe AZ 85287-1504 USA
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| | - Nicholas Stephanopoulos
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| |
Collapse
|
50
|
Liu M, Jiang S, Loza O, Fahmi NE, Šulc P, Stephanopoulos N. Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angew Chem Int Ed Engl 2018; 57:9341-9345. [DOI: 10.1002/anie.201804264] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Minghui Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Omar Loza
- Department of Physics Arizona State University Physical Sciences Building, Room 470, PO Box 871504 Tempe AZ 85287-1504 USA
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
| | - Petr Šulc
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| | - Nicholas Stephanopoulos
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85281 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building, Room D-102, PO Box 871604 Tempe AZ 85287-1604 USA
| |
Collapse
|