1
|
Wu P, Zhu W, Chen Y, Wang Z, Kumar A, Wang B, Nam W. cis-Dihydroxylation by Synthetic Iron(III)-Peroxo Intermediates and Rieske Dioxygenases: Experimental and Theoretical Approaches Reveal the Key O-O Bond Activation Step. J Am Chem Soc 2024; 146:30231-30241. [PMID: 39436369 DOI: 10.1021/jacs.4c09354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Dioxygen (O2) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on cis-dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the cis-dihydroxylation reactions. We found a significant ring size effect of the TMC ligand in [FeIII(O2)(n-TMC)]+ (TMC = tetramethylated tetraazacycloalkane; n = 12, 13, and 14) on the cis-dihydroxylation reactivity order: [FeIII(O2)(12-TMC)]+ > [FeIII(O2)(13-TMC)]+ > [FeIII(O2)(14-TMC)]+. Additionally, we found that only [FeIII(O2)(n-TMC)]+, but not other metal-peroxo complexes such as [MIII(O2)(n-TMC)]+ (M = Mn, Co, and Ni), is reactive for the cis-dihydroxylation of olefins. Using density functional theory (DFT) calculations, we revealed that electron transfer from the Fe dxz orbital to the peroxo σ*(O-O) orbital facilitates the O-O bond homolysis, with the O-O bond cleavage barrier well correlated with the energy gap between the frontier molecular orbitals of dxz and σ*(O-O). Further computational studies showed that the reactivity of the synthetic [FeIII(O2)(12-TMC)]+ complex is comparable to that of Rieske dioxygenases in cis-dihydroxylation, providing compelling evidence of the potential involvement of Fe(III)-peroxo species in Rieske dioxygenases. Thus, the present results significantly advance our understanding of the cis-dihydroxylation mechanisms by Rieske dioxygenases and synthetic nonheme iron-peroxo models.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yanru Chen
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Akhilesh Kumar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Binju Wang
- Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
2
|
Sun F, Lu T, Feng J, Kang Y. Dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped Fe 3O 4@FeOOH for cyanide-containing wastewater treatment: Preparation, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123523. [PMID: 38331238 DOI: 10.1016/j.envpol.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
The dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped iron-based Fenton catalyst (Cu/Ti -Fe3O4@FeOOH, FCT) were successfully prepared by precipitation oxidation method and characterized by XRD, XPS and XAFS. The prepared Cu/Ti co-doped Fe3O4@FeOOH nanoparticles consisted of goethite nanorods and magnetite rod octahedral particles, with Cu and Ti replacing Fe in the catalyst crystal structure, leading to the formation of the goethite structure. The heterogeneous Fenton catalyst FCT exhibited excellent degradation activity for cyanide in wastewater and showed different reaction mechanisms at varying pH levels. When treating 100 mL of 12 mg L-1 NaCN solution, complete degradation occurred within 40 min at 30 °C and pH ranging from 6.5 to 12.5 without external energy. Compared to Fe3O4, FCT shows superior degradation activity for cyanide. The surface Cu(Ⅰ) facilitated the electron transfer and significantly improved the catalytic activity of the catalyst. Additionally, the magnetic properties of the Ti-doped catalyst samples were greatly enhanced compared to the Cu@FeOOH catalyst doped with Cu, making them favorable for recycling and reuse. FCT maintains 100% degradation of cyanogen after three cycles, indicating its excellent stability. Furthermore, electron spin resonance spectroscopy, free radical quenching experiments and fluorescence probe techniques using terephthalic acid (TA) and benzoic acid (BA) confirmed that the presence of •OH and FeⅣ=O reactive species was responsible for the catalysts exhibiting different mechanisms at different pH conditions. Compared with other heterogeneous Fenton catalysts, FCT exhibits intentional degradation activity for cyanide-containing wastewater under different acid-base conditions, which greatly broadened the pH range of the heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Fangkuan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Mukherjee G, Velmurugan G, Kerscher M, Kumar Satpathy J, Sastri CV, Comba P. Mechanistic Insights into Amphoteric Reactivity of an Iron-Bispidine Complex. Chemistry 2024; 30:e202303127. [PMID: 37942658 DOI: 10.1002/chem.202303127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
The reactivity of FeIII -alkylperoxido complexes has remained a riddle to inorganic chemists owing to their thermal instability and impotency towards organic substrates. These iron-oxygen adducts have been known as sluggish oxidants towards oxidative electrophilic and nucleophilic reactions. Herein, we report the synthesis and spectroscopic characterization of a relatively stable mononuclear high-spin FeIII -alkylperoxido complex supported by an engineered bispidine framework. Against the notion, this FeIII -alkylperoxido complex serves as a rare example of versatile reactivity in both electrophilic and nucleophilic reactions. Detailed mechanistic studies and computational calculations reveal a novel reaction mechanism, where a putative superoxido intermediate orchestrates the amphoteric property of the oxidant. The design of the backbone is pivotal to convey stability and reactivity to alkylperoxido and superoxido intermediates. Contrary to the well-known O-O bond cleavage that generates an FeIV -oxido species, the FeIII -alkylperoxido complex reported here undergoes O-C bond scission to generate a superoxido moiety that is responsible for the amphiphilic reactivity.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad, 500007, India
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| | - Jagnyesh Kumar Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Peter Comba
- Anorganisch-Chemisches Institut and, Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany)
| |
Collapse
|
4
|
Török P, Lakk-Bogáth D, Kaizer J. Effect of Redox Potential on Diiron-Mediated Disproportionation of Hydrogen Peroxide. Molecules 2023; 28:molecules28072905. [PMID: 37049667 PMCID: PMC10096046 DOI: 10.3390/molecules28072905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Heme and nonheme dimanganese catalases are widely distributed in living organisms to participate in antioxidant defenses that protect biological systems from oxidative stress. The key step in these processes is the disproportionation of H2O2 to O2 and water, which can be interpreted via two different mechanisms, namely via the formation of high-valent oxoiron(IV) and peroxodimanganese(III) or diiron(III) intermediates. In order to better understand the mechanism of this important process, we have chosen such synthetic model compounds that can be used to map the nature of the catalytically active species and the factors influencing their activities. Our previously reported μ-1,2-peroxo-diiron(III)-containing biomimics are good candidates, as both proposed reactive intermediates (FeIVO and FeIII2(μ-O2)) can be derived from them. Based on this, we have investigated and compared five heterobidentate-ligand-containing model systems including the previously reported and fully characterized [FeII(L1-4)3]2+ (L1 = 2-(2'-pyridyl)-1H-benzimidazole, L2 = 2-(2'-pyridyl)-N-methyl-benzimidazole, L3 = 2-(4-thiazolyl)-1H-benzimidazole and L4 = 2-(4'-methyl-2'-pyridyl)-1H-benzimidazole) and the novel [FeII(L5)3]2+ (L5 = 2-(1H-1,2,4-triazol-3-yl)-pyridine) precursor complexes with their spectroscopically characterized μ-1,2-peroxo-diiron(III) intermediates. Based on the reaction kinetic measurements and previous computational studies, it can be said that the disproportionation reaction of H2O2 can be interpreted through the formation of an electrophilic oxoiron(IV) intermediate that can be derived from the homolysis of the O-O bond of the forming μ-1,2-peroxo-diiron(III) complexes. We also found that the disproportionation rate of the H2O2 shows a linear correlation with the FeIII/FeII redox potential (in the range of 804 mV-1039 mV vs. SCE) of the catalysts controlled by the modification of the ligand environment. Furthermore, it is important to note that the two most active catalysts with L3 and L5 ligands have a high-spin electronic configuration.
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| |
Collapse
|
5
|
Fujisaki H, Okamura M, Hikichi S, Kojima T. Selective alkane hydroxylation and alkene epoxidation using H 2O 2 and Fe(II) catalysts electrostatically attached to a fluorinated surface. Chem Commun (Camb) 2023; 59:3265-3268. [PMID: 36820494 DOI: 10.1039/d2cc06998a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fe(II) complexes with pentadentate ligands, including N-heterocyclic carbene moieties, were prepared and electrostatically attached onto the perfluorinated surface of a mesoporous aluminosilicate. The heterogeneous catalysts were applied to the catalytic oxidation of cyclohexane and cyclohexene using H2O2 as an oxidant in CH3CN, demonstrating high performance and selectivity in alkane hydroxylation and cyclohexene epoxidation.
Collapse
Affiliation(s)
- Hiroto Fujisaki
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masaya Okamura
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.
| | - Shiro Hikichi
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
6
|
Singh DK, Natchimuthu Karuppusamy M, Shrivastava A, Palanisamy T, Sinha I, Ganesan V. Sulfonic Acid Functionalization-Boosted Ultrafast, Durable, and Selective Four-Electron Oxygen Reduction Reaction: Evidenced by EC-SHINERS and DFT Studies. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Devesh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Department of Chemistry, Kutir Post Graduate College, Chakkey, Jaunpur 222146, Uttar Pradesh, India
| | - Murugasenapathi Natchimuthu Karuppusamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamilnadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshu Shrivastava
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamilnadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Bohn A, Sénéchal‐David K, Rebilly J, Herrero C, Leibl W, Anxolabéhère‐Mallart E, Banse F. Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex. Chemistry 2022; 28:e202201600. [PMID: 35735122 PMCID: PMC9804275 DOI: 10.1002/chem.202201600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/05/2023]
Abstract
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEACNRS91198Gif-sur-YvetteFrance
| | | | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
8
|
Kejriwal A. Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H 2O 2) as powerful oxidant. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2085567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ambica Kejriwal
- Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
9
|
Zámbó GG, Schlagintweit JF, Reich RM, Kühn FE. Organometallic 3d transition metal NHC complexes in oxidation catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00127f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of processes for the selective oxidation of hydrocarbons is a major focus in catalysis research. Making this process simultaneously environmentally friendly is still challenging. 3d transition metals are...
Collapse
|
10
|
Cao X, Song H, Li XX, Zhao Y, Qiao Q, Wang Y. Which is the real oxidant in the competitive ligand self-hydroxylation and substrate oxidation, a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one? Dalton Trans 2022; 51:7571-7580. [DOI: 10.1039/d2dt00797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonheme iron(II)-hydroperoxo species (FeII-(η2-OOH)) 1 and the concomitant oxo-iron(IV)-hydroxyl one 2 are proposed as the key intermediates of a large class of 2-oxoglutarate dependent dioxygenases (e.g., isopenicillin N synthase). Extensive...
Collapse
|
11
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Disproportionation of H 2O 2 Mediated by Diiron-Peroxo Complexes as Catalase Mimics. Molecules 2021; 26:molecules26154501. [PMID: 34361652 PMCID: PMC8347308 DOI: 10.3390/molecules26154501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeII(L1-4)(solvent)3](ClO4)2 (1-4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4'-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4'-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5'-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-perroxo [FeIII2(μ-O)(μ-1,2-O2)(L1-L4)2(Solv)2]2+ (5-8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.
Collapse
|
13
|
Jian H, Yang F, Gao Y, Zhen K, Tang X, Zhang P, Wang Y, Wang C, Sun H. Efficient removal of pyrene by biochar supported iron oxide in heterogeneous Fenton-like reaction via radicals and high-valent iron-oxo species. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Jana RD, Das A, Paine TK. Enhancing Chemo- and Stereoselectivity in C-H Bond Oxygenation with H 2O 2 by Nonheme High-Spin Iron Catalysts: The Role of Lewis Acid and Multimetal Centers. Inorg Chem 2021; 60:5969-5979. [PMID: 33784082 DOI: 10.1021/acs.inorgchem.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Wei J, Wu L, Wang HX, Zhang X, Tse CW, Zhou CY, Huang JS, Che CM. Iron-Catalyzed Highly Enantioselective cis-Dihydroxylation of Trisubstituted Alkenes with Aqueous H 2 O 2. Angew Chem Int Ed Engl 2020; 59:16561-16571. [PMID: 32500643 DOI: 10.1002/anie.202002866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII (2-Me2 -BQPN)(OTf)2 ], which bears a tetradentate N4 ligand (Me2 -BQPN=(R,R)-N,N'-dimethyl-N,N'-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2 O2 ) as oxidant under mild conditions. Experimental studies (including 18 O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV (O)2 reaction intermediate as an active oxidant. This cis-[FeII (chiral N4 ligand)]2+ /H2 O2 method could be a viable green alternative/complement to the existing OsO4 -based methods for asymmetric alkene dihydroxylation reactions.
Collapse
Affiliation(s)
- Jinhu Wei
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiting Zhang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Wai Tse
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cong-Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
16
|
Wei J, Wu L, Wang H, Zhang X, Tse C, Zhou C, Huang J, Che C. Iron‐Catalyzed Highly Enantioselective
cis
‐Dihydroxylation of Trisubstituted Alkenes with Aqueous H
2
O
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhu Wei
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Xiting Zhang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chun‐Wai Tse
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
17
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
18
|
Chakraborty T, Mondal R, Ghanta R, Chakraborty A, Chattopadhyay T. Triton X‐100 functionalized Cu(II) dihydrazone based complex immobilized on Fe
3
O
4
@dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tonmoy Chakraborty
- Department of Chemistry University of Calcutta 92, A.P.C.Road Kolkata 700009 India
| | - Rimpa Mondal
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| | - Rinku Ghanta
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| | - Aratrika Chakraborty
- Department of Chemistry University of Calcutta 92, A.P.C.Road Kolkata 700009 India
| | - Tanmay Chattopadhyay
- Department of Chemistry Diamond Harbour Women's University Diamond Harbour Road, Sarisha, South 24 Parganas (S) West Bengal 743368 India
| |
Collapse
|
19
|
Kal S, Xu S, Que L. Bio-inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong C-H Bonds. Angew Chem Int Ed Engl 2020; 59:7332-7349. [PMID: 31373120 DOI: 10.1002/anie.201906551] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Indexed: 11/11/2022]
Abstract
Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C-H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron-oxygen intermediates like iron(III)-hydroperoxo and high-valent iron-oxo species have been trapped and identified in investigations of these bio-inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio-inspired nonheme iron systems to form the high-valent iron-oxo intermediates.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Shuangning Xu
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
20
|
Kal S, Xu S, Que L. Bioinspirierte Nicht‐Häm‐Eisenoxidationskatalyse: Beteiligung von Oxoeisen(V)‐Oxidantien an der Spaltung starker C‐H‐Bindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Subhasree Kal
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Shuangning Xu
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
21
|
Schlagintweit JF, Dyckhoff F, Nguyen L, Jakob CH, Reich RM, Kühn FE. Mixed tetradentate NHC/1,2,3-triazole iron complexes bearing cis labile coordination sites as highly active catalysts in Lewis and Brønsted acid mediated olefin epoxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Banerjee S, Draksharapu A, Crossland PM, Fan R, Guo Y, Swart M, Que L. Sc 3+-Promoted O-O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O 2 to Generate a Complex with an Fe IV2(μ-O) 2 Core. J Am Chem Soc 2020; 142:4285-4297. [PMID: 32017545 DOI: 10.1021/jacs.9b12081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Soluble methane monooxygenase (sMMO) carries out methane oxidation at 4 °C and under ambient pressure in a catalytic cycle involving the formation of a peroxodiiron(III) intermediate (P) from the oxygenation of the diiron(II) enzyme and its subsequent conversion to Q, the diiron(IV) oxidant that hydroxylates methane. Synthetic diiron(IV) complexes that can serve as models for Q are rare and have not been generated by a reaction sequence analogous to that of sMMO. In this work, we show that [FeII(Me3NTB)(CH3CN)](CF3SO3)2 (Me3NTB = tris((1-methyl-1H-benzo[d]imidazol-2-yl)methyl)amine) (1) reacts with O2 in the presence of base, generating a (μ-1,2-peroxo)diiron(III) adduct with a low O-O stretching frequency of 825 cm-1 and a short Fe···Fe distance of 3.07 Å. Even more interesting is the observation that the peroxodiiron(III) complex undergoes O-O bond cleavage upon treatment with the Lewis acid Sc3+ and transforms into a bis(μ-oxo)diiron(IV) complex, thus providing a synthetic precedent for the analogous conversion of P to Q in the catalytic cycle of sMMO.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Patrick M Crossland
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.,IQCC and Department of Chemistry, University of Girona, 17003 Girona, Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Jin Q, Chen Q, Kang J, Shen J, Guo F, Chen Z. Fabrication of iron-dipicolinamide catalyst with Fe-N bonds for enhancing non-radical reactive species under alkaline Fenton process. CHEMOSPHERE 2020; 241:125005. [PMID: 31605994 DOI: 10.1016/j.chemosphere.2019.125005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Iron dipicolinamide (Fedpa), as an efficient Fenton-like catalyst, was fabricated to excite hydrogen peroxide (H2O2) for the removal of 2,4-dichlorophenol (2,4-DCP). The unique structures and the electronic properties of Fedpa were contributed to its excellent catalytic performance in alkaline Fenton process. Fe was chelated with dpa by four Fe-N bonds leaved two labile sites, which reduced the oxidation potential of dpa[FeIII/FeII], dpa[FeV/FeIII] or dpa[FeIV/FeII] to 0.316 V and 1.189 V respectively, and made it easily be bound with H2O2 to initiate the reaction. The results showed that 99.5% removal rate of 2,4-DCP (0.58 mM) was achieved by using 0.027 g/L Fedpa and 5.8 mM H2O2 in 60 min at pH 9.9. The coordination between Fe and dpa enhanced the catalytic efficiency of FeII. The active species generated in Fedpa/H2O2 system contained the iron-oxo species (dpaFeV = O or dpaIV = O), O2- and HO. The iron-oxo species was the main non-radical reactive species for the degradation of 2,4-DCP and some degradation intermediates were detected by GC-QTOF. Furthermore, the influence of factors, such as Fedpa loading, solution pH, temperature and anions (F-, Cl-, SO42-, NO3- and PO43-) on the catalytic performance of Fedpa were also discussed. This process of complexation between Fe and dpa combined with a green oxidant H2O2 presents a new insight for the use of Fenton-like system in the degradation of refractory organics.
Collapse
Affiliation(s)
- Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
24
|
Gupta SK, Mandal T, Gangber T, Singh V, Choudhury J. Ancillary ligands switch the activity of Ru–NHC-based oxidation precatalysts. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Rogers MS, Lipscomb JD. Salicylate 5-Hydroxylase: Intermediates in Aromatic Hydroxylation by a Rieske Monooxygenase. Biochemistry 2019; 58:5305-5319. [PMID: 31066545 PMCID: PMC6856394 DOI: 10.1021/acs.biochem.9b00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rieske oxygenases (ROs) catalyze a large range of oxidative chemistry. We have shown that cis-dihydrodiol-forming Rieske dioxygenases first react with their aromatic substrates via an active site nonheme Fe(III)-superoxide; electron transfer from the Rieske cluster then completes the product-forming reaction. Alternatively, two-electron-reduced Fe(III)-peroxo or hydroxo-Fe(V)-oxo activated oxygen intermediates are possible and may be utilized by other ROs to expand the catalytic range. Here, the reaction of a Rieske monooxygenase, salicylate 5-hydroxylase, that does not form a cis-dihydrodiol is examined. Single-turnover kinetic studies show fast binding of salicylate and O2. Transfer of the Rieske electron required to form the gentisate product occurs through bonds over ∼12 Å and must also be very fast. However, the observed rate constant for this reaction is much slower than expected and sensitive to substrate type. This suggests that initial reaction with salicylate occurs using the same Fe(III)-superoxo-level intermediate as Rieske dioxygenases and that this reaction limits the observed rate of electron transfer. A transient intermediate (λmax = 700 nm) with an electron paramagnetic resonance (EPR) at g = 4.3 is observed after the product is formed in the active site. The use of 17O2 (I = 5/2) results in hyperfine broadening of the g = 4.3 signal, showing that gentisate binds to the mononuclear iron via its C5-OH in the intermediate. The chromophore and EPR signal allow study of product release in the catalytic cycle. Comparison of the kinetics of single- and multiple-turnover reactions shows that re-reduction of the metal centers accelerates product release ∼300-fold, providing insight into the regulatory mechanism of ROs.
Collapse
Affiliation(s)
- Melanie S. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Rebilly J, Zhang W, Herrero C, Dridi H, Sénéchal‐David K, Guillot R, Banse F. Hydroxylation of Aromatics by H
2
O
2
Catalyzed by Mononuclear Non‐heme Iron Complexes: Role of Triazole Hemilability in Substrate‐Induced Bifurcation of the H
2
O
2
Activation Mechanism. Chemistry 2019; 26:659-668. [DOI: 10.1002/chem.201903239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Wenli Zhang
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Hachem Dridi
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| |
Collapse
|
27
|
Xu C, Pan Y, Wan G, Liu H, Wang L, Zhou H, Yu SH, Jiang HL. Turning on Visible-Light Photocatalytic C-H Oxidation over Metal-Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. J Am Chem Soc 2019; 141:19110-19117. [PMID: 31707780 DOI: 10.1021/jacs.9b09954] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tailorable structure and electronic structure of metal-organic frameworks (MOFs) greatly facilitate their modulated light harvesting, redox power, and consequently photocatalysis. Herein, a representative MOF, UiO-66, was furnished by installing Fe3+ onto the Zr-oxo clusters, to give Fe-UiO-66, which features extended visible light harvesting, based on metal-to-cluster charge transfer (MCCT). The Fe-UiO-66 with unique electronic structure and strong oxidizing power exhibits visible light-driven water oxidation, which is impossible for pristine UiO-66. More strikingly, under visible irradiation, the generated holes over Fe-UiO-66 are able to exclusively convert H2O to hydroxide radicals, initiating and driving the activation of stubborn C-H bond, such as toluene oxidation. The electrons reduce O2 to O2•- radicals that further promote the oxidation reaction. The related catalytic mechanism and the structure-activity relationship have been investigated in detail. As far as we know, this is not only an unprecedented report on activating "inert" MOFs for photocatalytic C-H activation but also the first work on extended light harvesting and enhanced photocatalysis for MOFs by introducing an MCCT process.
Collapse
Affiliation(s)
- Caiyun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Yating Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Gang Wan
- SLAC National Accelerator Laboratory , 2575 Sand Hill Rd , Menlo Park , California 94025 , United States
| | - Hang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Liang Wang
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
28
|
Vo NT, Mekmouche Y, Tron T, Guillot R, Banse F, Halime Z, Sircoglou M, Leibl W, Aukauloo A. A Reversible Electron Relay to Exclude Sacrificial Electron Donors in the Photocatalytic Oxygen Atom Transfer Reaction with O 2 in Water. Angew Chem Int Ed Engl 2019; 58:16023-16027. [PMID: 31553518 DOI: 10.1002/anie.201907337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3 ]2+ , generating the highly oxidized chromophore and the powerful reductant methyl-viologen radical MV+. . MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2 .- in an aqueous medium to generate an active iron(III)-(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.
Collapse
Affiliation(s)
- Nhat Tam Vo
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France
| | - Yasmina Mekmouche
- Aix Marseille Université, Centrale Marseille, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - Régis Guillot
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France
| | - Frédéric Banse
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France
| | - Zakaria Halime
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France
| | - Marie Sircoglou
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- ICMMO, Université Paris Sud, Université Paris Saclay, CNRS, 91405, Orsay Cedex, France.,Institute for integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91191, Gif-sur-Yvette, France
| |
Collapse
|
29
|
Vo NT, Mekmouche Y, Tron T, Guillot R, Banse F, Halime Z, Sircoglou M, Leibl W, Aukauloo A. A Reversible Electron Relay to Exclude Sacrificial Electron Donors in the Photocatalytic Oxygen Atom Transfer Reaction with O
2
in Water. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nhat Tam Vo
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
| | - Yasmina Mekmouche
- Aix Marseille UniversitéCentrale Marseille, CNRS, ISM2 UMR 7313 13397 Marseille France
| | - Thierry Tron
- Aix Marseille UniversitéCentrale Marseille, CNRS, ISM2 UMR 7313 13397 Marseille France
| | - Régis Guillot
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
| | - Frédéric Banse
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
| | - Zakaria Halime
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
| | - Marie Sircoglou
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
| | - Winfried Leibl
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Saclay, UMR 9198 91191 Gif-sur-Yvette France
| | - Ally Aukauloo
- ICMMOUniversité Paris Sud, Université Paris Saclay, CNRS 91405 Orsay Cedex France
- Institute for integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Saclay, UMR 9198 91191 Gif-sur-Yvette France
| |
Collapse
|
30
|
Xu S, Draksharapu A, Rasheed W, Que L. Acid pKa Dependence in O–O Bond Heterolysis of a Nonheme FeIII–OOH Intermediate To Form a Potent FeV═O Oxidant with Heme Compound I-Like Reactivity. J Am Chem Soc 2019; 141:16093-16107. [DOI: 10.1021/jacs.9b08442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangning Xu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Piquette MC, Kryatov SV, Rybak-Akimova EV. Kinetic Studies on the Oxoiron(IV) Complex with Tetradentate Aminopyridine Ligand PDP*: Restoration of Catalytic Activity by Reduction with H2O2. Inorg Chem 2019; 58:13382-13393. [DOI: 10.1021/acs.inorgchem.9b02269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc C. Piquette
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Sergiy V. Kryatov
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Elena V. Rybak-Akimova
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
32
|
Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. Nat Catal 2019. [DOI: 10.1038/s41929-019-0332-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Erdogan H. One small step for cytochrome P450 in its catalytic cycle, one giant leap for enzymology. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intermediates operating in the cytochrome P450 catalytic cycle have been investigated for more than half a century, fascinating many enzymologists. Each intermediate has its unique role to carry out diverse oxidations. Natural time course of the catalytic cycle is quite fast, hence, not all of the reactive intermediates could be isolated during physiological catalysis. Different high-valent iron intermediates have been proposed as primary oxidants: the candidates are compound 0 (Cpd 0, [FeOOH][Formula: see text]P450) and compound I (Cpd I, Fe(IV)[Formula: see text]O por[Formula: see text]P450). Among them, the role of Cpd I in hydroxylation is fairly well understood due the discovery of the peroxide shunt. This review endeavors to put the outstanding research efforts conducted to isolate and characterize the intermediates together. In addition to spectral features of each intermediate in the catalytic cycle, the oxidizing powers of Cpd 0 and Cpd I will be discussed along with most recent scientific findings.
Collapse
Affiliation(s)
- Huriye Erdogan
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
34
|
Characterized cis-Fe V(O)(OH) intermediate mimics enzymatic oxidations in the gas phase. Nat Commun 2019; 10:901. [PMID: 30796210 PMCID: PMC6385299 DOI: 10.1038/s41467-019-08668-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 02/04/2023] Open
Abstract
FeV(O)(OH) species have long been proposed to play a key role in a wide range of biomimetic and enzymatic oxidations, including as intermediates in arene dihydroxylation catalyzed by Rieske oxygenases. However, the inability to accumulate these intermediates in solution has thus far prevented their spectroscopic and chemical characterization. Thus, we use gas-phase ion spectroscopy and reactivity analysis to characterize the highly reactive [FeV(O)(OH)(5tips3tpa)]2+ (32+) complex. The results show that 32+ hydroxylates C–H bonds via a rebound mechanism involving two different ligands at the Fe center and dihydroxylates olefins and arenes. Hence, this study provides a direct evidence of FeV(O)(OH) species in non-heme iron catalysis. Furthermore, the reactivity of 32+ accounts for the unique behavior of Rieske oxygenases. The use of gas-phase ion characterization allows us to address issues related to highly reactive intermediates that other methods are unable to solve in the context of catalysis and enzymology. FeV(O)(OH) species have long been thought to play a role in a range of enzymatic oxidations, but their characterization has remained elusive. Here, using gas-phase ion spectroscopy, the authors characterize an FeV(O)(OH) species and find that its reactivity mimics that of Rieske oxygenases.
Collapse
|
35
|
Jin Q, Chen Q, Shen J, Guo F, Chen Z, Tian J. Development of Fe(II) system based on N, N'-dipicolinamide for the oxidative removal of 4-chlorophenol. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:206-214. [PMID: 29753189 DOI: 10.1016/j.jhazmat.2018.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
A novel catalyst system was investigated based on Fe-N, N'-dipicolinamide complex for the degradation of 4-chlorophenol (4-CP) by using hydrogen peroxide as an oxidant under mild alkaline conditions. This complex was stabilized by a ligand that assembles pyridyl and amide groups with a suitable linker. The optimization of the synthesized catalysts was evaluated in terms of the removal efficiency of 4-CP, by using Fe(II) and N, N'-1,2-phenyl-enedipyridine-2-carboxamide with a molar ratio of 1:1. The effects of reaction parameters on the oxidation of 4-CP were investigated by applying the selected catalyst with 4-CP removal rate of 99%. The results indicated that the pH and catalyst concentration could significantly affect the degradation rate of 4-CP. The mineralization level of 4-CP during the reaction was also examined, and almost 62.5% of 4-CP was absolutely mineralized into carbon dioxide and water. The preliminary analysis on the degradation mechanism indicate that the main active species are not hydroxyl radicals, and another kind of active species, called iron-oxo species, were proposed. This study explores a resultful linker between pyridyl and amide and presents a new method to expand the application of pH range of Fenton-like system.
Collapse
Affiliation(s)
- Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
36
|
Kal S, Draksharapu A, Que L. Sc 3+ (or HClO 4) Activation of a Nonheme Fe III-OOH Intermediate for the Rapid Hydroxylation of Cyclohexane and Benzene. J Am Chem Soc 2018; 140:5798-5804. [PMID: 29618199 DOI: 10.1021/jacs.8b01435] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Fe(β-BPMCN)(CH3CN)2]2+ (1, BPMCN = N,N' -bis(pyridyl-2-methyl)- N,N' -dimethyl- trans-1,2-diaminocyclo-hexane) is a relatively poor catalyst for cyclohexane oxidation by H2O2 and cannot perform benzene hydroxylation. However, addition of Sc3+ activates the 1/H2O2 reaction mixture to be able to hydroxylate cyclohexane and benzene within seconds at -40 °C. A metastable S = 1/2 FeIII-(η1-OOH) intermediate 2 is trapped at -40 °C, which undergoes rapid decay upon addition of Sc3+ at rates independent of [substrate] but linearly dependent on [Sc3+]. HClO4 elicits comparable reactivity as Sc3+ at the same concentration. We thus postulate that these additives both facilitate O-O bond heterolysis of 2 to form a common highly electrophilic FeV═O oxidant that is comparably reactive to the fastest nonheme high-valent iron-oxo oxidants found to date.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
37
|
Du J, Miao C, Xia C, Lee YM, Nam W, Sun W. Mechanistic Insights into the Enantioselective Epoxidation of Olefins by Bioinspired Manganese Complexes: Role of Carboxylic Acid and Nature of Active Oxidant. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00874] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
38
|
Fan R, Serrano-Plana J, Oloo WN, Draksharapu A, Delgado-Pinar E, Company A, Martin-Diaconescu V, Borrell M, Lloret-Fillol J, García-España E, Guo Y, Bominaar EL, Que L, Costas M, Münck E. Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe V-Oxo Intermediate. J Am Chem Soc 2018; 140:3916-3928. [PMID: 29463085 DOI: 10.1021/jacs.7b11400] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of [(PyNMe3)FeII(CF3SO3)2], 1, with excess peracetic acid at -40 °C generates a highly reactive intermediate, 2b(PAA), that has the fastest rate to date for oxidizing cyclohexane by a nonheme iron species. It exhibits an intense 490 nm chromophore associated with an S = 1/2 EPR signal having g-values at 2.07, 2.01, and 1.94. This species was shown to be in a fast equilibrium with a second S = 1/2 species, 2a(PAA), assigned to a low-spin acylperoxoiron(III) center. Unfortunately, contaminants accompanying the 2(PAA) samples prevented determination of the iron oxidation state by Mössbauer spectroscopy. Use of MeO-PyNMe3 (an electron-enriched version of PyNMe3) and cyclohexyl peroxycarboxylic acid as oxidant affords intermediate 3b(CPCA) with a Mössbauer isomer shift δ = -0.08 mm/s that indicates an iron(V) oxidation state. Analysis of the Mössbauer and EPR spectra, combined with DFT studies, demonstrates that the electronic ground state of 3b(CPCA) is best described as a quantum mechanical mixture of [(MeO-PyNMe3)FeV(O)(OC(O)R)]2+ (∼75%) with some FeIV(O)(•OC(O)R) and FeIII(OOC(O)R) character. DFT studies of 3b(CPCA) reveal that the unbound oxygen of the carboxylate ligand, O2, is only 2.04 Å away from the oxo group, O1, corresponding to a Wiberg bond order for the O1-O2 bond of 0.35. This unusual geometry facilitates reversible O1-O2 bond formation and cleavage and accounts for the high reactivity of the intermediate when compared to the rates of hydrogen atom transfer and oxygen atom transfer reactions of FeIII(OC(O)R) ferric acyl peroxides and FeIV(O) complexes. The interaction of O2 with O1 leads to a significant downshift of the Fe-O1 Raman frequency (815 cm-1) relative to the 903 cm-1 value predicted for the hypothetical [(MeO-PyNMe3)FeV(O)(NCMe)]3+ complex.
Collapse
Affiliation(s)
- Ruixi Fan
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Joan Serrano-Plana
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Estefanía Delgado-Pinar
- Grup de Química Supramolecular, Institut de Ciència Molecular, Departament de Química Inorgànica , Universitat de València , 46980 Paterna , Valencia , Spain
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Vlad Martin-Diaconescu
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Margarida Borrell
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Spain
| | - Enrique García-España
- Grup de Química Supramolecular, Institut de Ciència Molecular, Departament de Química Inorgànica , Universitat de València , 46980 Paterna , Valencia , Spain
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Emile L Bominaar
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química , Universitat de Girona , C/M. Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Eckard Münck
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
39
|
de Aguiar SRMM, Öztopcu Ö, Troiani A, de Petris G, Weil M, Stöger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Formation of Mono Oxo Molybdenum(IV) PNP Pincer Complexes: Interplay between Water and Molecular Oxygen. Eur J Inorg Chem 2018; 2018:876-884. [PMID: 31057330 PMCID: PMC6485545 DOI: 10.1002/ejic.201701413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/11/2022]
Abstract
The synthesis of cationic mono oxo MoIV PNP pincer complexes of the type [Mo(PNPMe-iPr)(O)X]+ (X = I, Br) from [Mo(PNPMe-iPr)(CO)X2] is described. These compounds are coordinatively unsaturated and feature a strong Mo≡O triple bond. The formation of these complexes proceeds via cationic 14e intermediates [Mo(PNPMe-iPr)(CO)X]+ and requires both molecular oxygen and water. ESI MS measurements with 18O labeled water (H2 18O) and molecular oxygen (18O2) indicates that water plays a crucial role in the formation of the Mo≡O bond. A plausible mechanism based on DFT calculations is provided. The X-ray structure of [Mo(PNPMe-iPr)(O)I]SbF6 is presented.
Collapse
Affiliation(s)
- Sara R. M. M. de Aguiar
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Özgür Öztopcu
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità di Roma “La Sapienza”P. le Aldo Moro 500185RomaItaly
| | - Giulia de Petris
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità di Roma “La Sapienza”P. le Aldo Moro 500185RomaItaly
| | - Matthias Weil
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Berthold Stöger
- X‐ray CenterVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Günter Allmaier
- Institute of Chemical Technologies and AnalyticsVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| | - Luis F. Veiros
- Centro de Química EstruturalInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais No. 11049‐001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 91060ViennaAustria
| |
Collapse
|
40
|
Serrano-Plana J, Acuña-Parés F, Dantignana V, Oloo WN, Castillo E, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Basallote MG, Luis JM, Que L, Costas M, Company A. Acid-Triggered O-O Bond Heterolysis of a Nonheme Fe III (OOH) Species for the Stereospecific Hydroxylation of Strong C-H Bonds. Chemistry 2018; 24:5331-5340. [PMID: 29193378 DOI: 10.1002/chem.201704851] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/11/2022]
Abstract
A novel hydroperoxoiron(III) species [FeIII (OOH)(MeCN)(PyNMe3 )]2+ (3) has been generated by reaction of its ferrous precursor [FeII (CF3 SO3 )2 (PyNMe3 )] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low-spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C-H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C-H bonds with high stereospecificity. Stopped-flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic-acid-assisted heterolytic cleavage of the O-O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high-valent [(Porph. )FeIV (O)] (Compound I).
Collapse
Affiliation(s)
- Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Ferran Acuña-Parés
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Esther Castillo
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher J Whiteoak
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
41
|
Nesterov DS, Nesterova OV, Pombeiro AJ. Homo- and heterometallic polynuclear transition metal catalysts for alkane C H bonds oxidative functionalization: Recent advances. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Xu S, Veach JJ, Oloo WN, Peters KC, Wang J, Perry RH, Que L. Detection of a transient FeV(O)(OH) species involved in olefin oxidation by a bio-inspired non-haem iron catalyst. Chem Commun (Camb) 2018; 54:8701-8704. [PMID: 30028454 DOI: 10.1039/c8cc03990a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we provide direct evidence for the formation of an FeV(O)(OH) species in non-haem iron catalysis using ambient mass spectrometry.
Collapse
Affiliation(s)
- Shuangning Xu
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | | | - Williamson N. Oloo
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | | | - Junyi Wang
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| | - Richard H. Perry
- Department of Chemistry
- University of Illinois
- Urbana
- USA
- Department of Chemistry and Physics
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
43
|
Oloo WN, Banerjee R, Lipscomb JD, Que L. Equilibrating (L)Fe III-OOAc and (L)Fe V(O) Species in Hydrocarbon Oxidations by Bio-Inspired Nonheme Iron Catalysts Using H 2O 2 and AcOH. J Am Chem Soc 2017; 139:17313-17326. [PMID: 29136467 PMCID: PMC5768304 DOI: 10.1021/jacs.7b06246] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inspired by the remarkable chemistry of the family of Rieske oxygenase enzymes, nonheme iron complexes of tetradentate N4 ligands have been developed to catalyze hydrocarbon oxidation reactions using H2O2 in the presence of added carboxylic acids. The observation that the stereo- and enantioselectivity of the oxidation products can be modulated by the electronic and steric properties of the acid implicates an oxidizing species that incorporates the carboxylate moiety. Frozen solutions of these catalytic mixtures generally exhibit EPR signals arising from two S = 1/2 intermediates, a highly anisotropic g2.7 subset (gmax = 2.58 to 2.78 and Δg = 0.85-1.2) that we assign to an FeIII-OOAc species and a less anisotropic g2.07 subset (g = 2.07, 2.01, and 1.96 and Δg ≈ 0.11) we associate with an FeV(O)(OAc) species. Kinetic studies on the reactions of iron complexes supported by the TPA (tris(pyridyl-2-methyl)amine) ligand family with H2O2/AcOH or AcOOH at -40 °C reveal the formation of a visible chromophore at 460 nm, which persists in a steady state phase and then decays exponentially upon depletion of the peroxo oxidant with a rate constant that is substrate independent. Remarkably, the duration of this steady state phase can be modulated by the nature of the substrate and its concentration, which is a rarely observed phenomenon. A numerical simulation of this behavior as a function of substrate type and concentration affords a kinetic model in which the two S = 1/2 intermediates exist in a dynamic equilibrium that is modulated by the electronic properties of the supporting ligands. This notion is supported by EPR studies of the reaction mixtures. Importantly, these studies unambiguously show that the g2.07 species, and not the g2.7 species, is responsible for substrate oxidation in the (L)FeII/H2O2/AcOH catalytic system. Instead the g2.7 species appears to be off-pathway and serves as a reservoir for the g2.07 species. These findings will be helpful not only for the design of regio- and stereospecific nonheme iron oxidation catalysts but also for providing insight into the mechanisms of the remarkably versatile oxidants formed by nature's most potent oxygenases.
Collapse
Affiliation(s)
- Williamson N. Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 (United States)
| |
Collapse
|
44
|
Speciation in iron epoxidation catalysis: A perspective on the discovery and role of non-heme iron(III)-hydroperoxo species in iron-catalyzed oxidation reactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Oxidation chemistry of C–H bond by mononuclear iron complexes derived from tridentate ligands containing phenolato function. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Olivo G, Barbieri A, Dantignana V, Sessa F, Migliorati V, Monte M, Pascarelli S, Narayanan T, Lanzalunga O, Di Stefano S, D'Angelo P. Following a Chemical Reaction on the Millisecond Time Scale by Simultaneous X-ray and UV/Vis Spectroscopy. J Phys Chem Lett 2017; 8:2958-2963. [PMID: 28605898 DOI: 10.1021/acs.jpclett.7b01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An innovative approach aimed at disclosing the mechanism of chemical reactions occurring in solution on the millisecond time scale is presented. Time-resolved energy dispersive X-ray absorption and UV/vis spectroscopies with millisecond resolution are used simultaneously to directly follow the evolution of both the oxidation state and the local structure of the metal center in an iron complex. Two redox reactions are studied, the former involving the transformation of FeII into two subsequent FeIII species and the latter involving the more complex FeII-FeIII-FeIV-FeIII sequence. The structural modifications occurring around the iron center are correlated to the reaction mechanisms. This combined approach has the potential to provide unique insights into reaction mechanisms in the liquid phase and represents a new powerful tool to characterize short-lived intermediates that are silent to common spectroscopic techniques.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Barbieri
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| | - Valeria Dantignana
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| | - Francesco Sessa
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| | - Valentina Migliorati
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| | - Manuel Monte
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Sakura Pascarelli
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Theyencheri Narayanan
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione , P.le A. Moro 5, 00185 Roma, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
- Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione , P.le A. Moro 5, 00185 Roma, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università di Roma "La Sapienza" , P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
47
|
Zhang D, Bousquet B, Mulatier JC, Pitrat D, Jean M, Vanthuyne N, Guy L, Dutasta JP, Martinez A. Synthesis, Resolution, and Absolute Configuration of Chiral Tris(2-pyridylmethyl)amine-Based Hemicryptophane Molecular Cages. J Org Chem 2017; 82:6082-6088. [PMID: 28481535 DOI: 10.1021/acs.joc.7b00559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis, characterization, and chiroptical properties of a new class of hemicryptophane cages combining a cyclotriveratrylene unit and a tris(2-pyridylmethyl)amine (TPA) moiety are reported. Changing the linkers between these two units allows for the modification of the size and shape of the cavity. The synthesis is straightforward and efficient, providing gram-scale of cage compounds. The racemic mixture of each hemicryptophane host can be readily resolved by chiral HPLC, giving an easy access to the enantiopure molecular cages of which absolute configurations have been assigned by ECD spectroscopy. These new hemicryptophanes are available chemical platforms ready to use for various purposes due to the versatile metal complexation properties of the TPA unit. A Zn(II)@hemicryptophane complex has been obtained and used as a heteroditopic host for the selective recognition of zwitterionic guests.
Collapse
Affiliation(s)
- Dawei Zhang
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | - Benjamin Bousquet
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | - Delphine Pitrat
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | - Marion Jean
- Aix Marseille Univ, CNRS , Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS , Centrale Marseille, iSm2, Marseille, France
| | - Laure Guy
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie, F-69364 Lyon, France
| | | |
Collapse
|
48
|
Chen X, Gao B, Su Y, Huang H. Enantioselective Epoxidation of Electron-Deficient Alkenes Catalyzed by Manganese Complexes with Chiral N4
Ligands Derived from Rigid Chiral Diamines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangning Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale; Department of Chemistry; University of Science and Technology of China; Hefei 230026 People's Republic of China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Hanmin Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- Hefei National Laboratory for Physical Sciences at the Microscale; Department of Chemistry; University of Science and Technology of China; Hefei 230026 People's Republic of China
| |
Collapse
|
49
|
|
50
|
Oxidation of alkane and alkene moieties with biologically inspired nonheme iron catalysts and hydrogen peroxide: from free radicals to stereoselective transformations. J Biol Inorg Chem 2017; 22:425-452. [DOI: 10.1007/s00775-016-1434-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022]
|