1
|
Marshall O, McGrory R, Songsri S, Thomson AR, Sutherland A. Expedient discovery of fluorogenic amino acid-based probes via one-pot palladium-catalysed arylation of tyrosine. Chem Sci 2025; 16:3490-3497. [PMID: 39886437 PMCID: PMC11775655 DOI: 10.1039/d5sc00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
To overcome the limitations of using large extrinsic chromophores for biological imaging, fluorescent unnatural α-amino acids have been widely adopted as intrinsic peptidic probes. Although various classes have been successfully utilised for imaging applications, novel amino acid probes readily prepared through operationally simple synthetic methodology are still required. Here, we report a new approach for the synthesis of unnatural α-amino acids via a one-pot process involving activation and palladium-catalysed arylation of tyrosine. Rapid access to a small library of novel α-amino acids has allowed the discovery of a dimethylaminobiphenyl analogue that displays strong charge transfer-based fluorescent properties and is both solvatochromic and pH sensitive with a significant hypsochromic shift in emission under acidic conditions. The imaging potential of the dimethylaminobiphenyl α-amino acid was demonstrated via its application as a FRET donor in a novel decapeptide substrate for monitoring and evaluating the kinetics of a serine protease.
Collapse
Affiliation(s)
- Olivia Marshall
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Rochelle McGrory
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Sineenard Songsri
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
2
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Marmorstein JG, Pagar VV, Hummingbird E, Saleh IG, Phan HAT, Chang Y, Shaffer KD, Venkatesh Y, Dmochowski IJ, Stebe KJ, Petersson EJ. Improved Large-Scale Synthesis of Acridonylalanine for Diverse Peptide and Protein Applications. Bioconjug Chem 2024; 35:1913-1922. [PMID: 39531540 DOI: 10.1021/acs.bioconjchem.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluorescent unnatural amino acids give biochemists, biophysicists, and bioengineers new ways to probe the properties of proteins and peptides. Here, the synthesis of acridon-2-ylalanine (Acd) is optimized for large-scale production to enable ribosomal incorporation through genetic code expansion (GCE), and fluorenylmethoxycarbonyl (Fmoc)-protected Acd is prepared for solid-phase peptide synthesis (SPPS). We demonstrate the utility of Acd in several applications: first, Acd quenching by Tyr is used in the design of fluorescent protease sensors made by SPPS. Second, we demonstrate Acd incorporation into a lanthanide-binding peptide that is generated either by GCE or by SPPS and demonstrate the utility of Acd for sensitizing the emission of Eu3+. Finally, Acd is inserted into the intrinsically disordered protein, α-synuclein, using GCE and used to study ion binding and aggregation.
Collapse
Affiliation(s)
- Jason G Marmorstein
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Vinayak V Pagar
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eshe Hummingbird
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ibrahim G Saleh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yanan Chang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Eggan P, Gordon SE, Zagotta WN. Ligand-coupled conformational changes in a cyclic nucleotide-gated ion channel revealed by time-resolved transition metal ion FRET. eLife 2024; 13:RP99854. [PMID: 39656198 PMCID: PMC11630820 DOI: 10.7554/elife.99854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG. In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - William N Zagotta
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| |
Collapse
|
5
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
6
|
Centonze E, Kellenberger S. Voltage-clamp fluorometry for advancing mechanistic understanding of ion channel mechanisms with a focus on acid-sensing ion channels. Biochem Soc Trans 2024; 52:2167-2177. [PMID: 39400205 PMCID: PMC11555705 DOI: 10.1042/bst20240165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Voltage-clamp fluorometry (VCF) has revolutionized the study of ion channels by combining electrophysiology with fluorescence spectroscopy. VCF allows ion channel researchers to link dynamic structural changes, measured in real time, to function. Acid-sensing ion channels (ASICs) are Na+-permeable non-voltage-gated ion channels of the central and peripheral nervous system. They function as pH sensors, triggering neuronal excitation when pH decreases. Animal studies have shown the importance of ASICs for pain and fear sensation, learning, and neurodegeneration following ischaemic stroke. This review explores the technical bases and various developments of VCF, including fluorescence resonance energy transfer and the use of unnatural fluorescent amino acids. We provide an overview of VCF applications with a focus on ASICs, detailing how VCF has unveiled proton-induced conformational changes in key regions such as the acid pocket, wrist, and pore, crucial for understanding transitions between closed, open, and desensitized states.
Collapse
Affiliation(s)
- Eleonora Centonze
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
8
|
Eggan P, Gordon SE, Zagotta WN. Ligand-Coupled Conformational Changes in a Cyclic Nucleotide-Gated Ion Channel Revealed by Time-Resolved Transition Metal Ion FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591185. [PMID: 39411160 PMCID: PMC11475872 DOI: 10.1101/2024.04.25.591185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy ( ΔG ) and differences in free energy change ( ΔΔG ) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG . In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.
Collapse
Affiliation(s)
- Pierce Eggan
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - William N. Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
9
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
10
|
Choi JH, Kim S, Kang OY, Choi SY, Hyun JY, Lee HS, Shin I. Selective fluorescent labeling of cellular proteins and its biological applications. Chem Soc Rev 2024; 53:9446-9489. [PMID: 39109465 DOI: 10.1039/d4cs00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Sooin Kim
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - On-Yu Kang
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Seong Yun Choi
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
- Pharmaceutical Chemistry, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 04107 Seoul, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
11
|
Yi S, Kim D, Cho W, Lee JH, Kwon JH, Kim J, Park SB. Rational Design of Pyrido[3,2- b]indolizine as a Tunable Fluorescent Scaffold for Fluorogenic Bioimaging. JACS AU 2024; 4:2896-2906. [PMID: 39211616 PMCID: PMC11350592 DOI: 10.1021/jacsau.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Novel fluorescent scaffolds are highly demanding for a wide range of applications in biomedical investigation. To meet this demand, the pyrido[3,2-b]indolizine scaffold was designed as a versatile organic fluorophore. With the aid of computational modeling, fluorophores offering tunable emission colors (blue to red) were constructed. Notably, constructed fluorophores absorb lights in the visible range (>400 nm) despite their small sizes (<300 g/mol). Among the fluorophores was discovered a highly fluorogenic fluorophore with a unique turn-on property, 1, and it was developed into a washing-free bioprobe for visualizing cellular lipid droplets in living cells. Furthermore, motivated by the core's compact size and structural analogy to indole, unprecedented tryptophan-analogous fluorogenic unnatural amino acids were constructed and incorporated into fluorogenic peptide probes for monitoring peptide-protein interactions.
Collapse
Affiliation(s)
- Sihyeong Yi
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Dahham Kim
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Wansang Cho
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| | - Ji Hoon Kwon
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jonghoon Kim
- Department
of Chemistry and Integrative Institute of Basic Science, Department
of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Korea
| | - Seung Bum Park
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department
of Biophysics and Chemical Biology, Seoul
National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Zagotta WN, Evans EGB, Eggan P, Tessmer MH, Shaffer KD, Petersson EJ, Stoll S, Gordon SE. Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET. Biophys J 2024; 123:2050-2062. [PMID: 38303511 PMCID: PMC11309986 DOI: 10.1016/j.bpj.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Proteins are the workhorses of biology, orchestrating a myriad of cellular functions through intricate conformational changes. Protein allostery, the phenomenon where binding of ligands or environmental changes induce conformational rearrangements in the protein, is fundamental to these processes. We have previously shown that transition metal Förster resonance energy transfer (tmFRET) can be used to interrogate the conformational rearrangements associated with protein allostery and have recently introduced novel FRET acceptors utilizing metal-bipyridyl derivatives to measure long (>20 Å) intramolecular distances in proteins. Here, we combine our tmFRET system with fluorescence lifetime measurements to measure the distances, conformational heterogeneity, and energetics of maltose-binding protein, a model allosteric protein. Time-resolved tmFRET captures near-instantaneous snapshots of distance distributions, offering insights into protein dynamics. We show that time-resolved tmFRET can accurately determine distance distributions and conformational heterogeneity of proteins. Our results demonstrate the sensitivity of time-resolved tmFRET in detecting subtle conformational or energetic changes in protein conformations, which are crucial for understanding allostery. In addition, we extend the use of metal-bipyridyl compounds, showing that Cu(phen)2+ can serve as a spin label for pulse dipolar electron paramagnetic resonance (EPR) spectroscopy, a method that also reveals distance distributions and conformational heterogeneity. The EPR studies both establish Cu(phen)2+ as a useful spin label for pulse dipolar EPR and validate our time-resolved tmFRET measurements. Our approach offers a versatile tool for deciphering conformational landscapes and understanding the regulatory mechanisms governing biological processes.
Collapse
Affiliation(s)
- William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| | - Eric G B Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington; Department of Chemistry, University of Washington, Seattle, Washington
| | - Pierce Eggan
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| |
Collapse
|
13
|
Gordon SE, Evans EGB, Otto SC, Tessmer MH, Shaffer KD, Gordon MT, Petersson EJ, Stoll S, Zagotta WN. Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands. Biophys J 2024; 123:2063-2075. [PMID: 38350449 PMCID: PMC11309967 DOI: 10.1016/j.bpj.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.
Collapse
Affiliation(s)
- Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| | - Eric G B Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington; Department of Chemistry, University of Washington, Seattle, Washington
| | - Shauna C Otto
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Moshe T Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| |
Collapse
|
14
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
15
|
Zagotta WN, Evans EGB, Eggan P, Tessmer MH, Shaffer KD, Petersson EJ, Stoll S, Gordon SE. Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561594. [PMID: 37873384 PMCID: PMC10592786 DOI: 10.1101/2023.10.09.561594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Proteins are the workhorses of biology, orchestrating a myriad of cellular functions through intricate conformational changes. Protein allostery, the phenomenon where binding of ligands or environmental changes induce conformational rearrangements in the protein, is fundamental to these processes. We have previously shown that transition metal Förster resonance energy transfer (tmFRET) can be used to interrogate the conformational rearrangements associated with protein allostery and have recently introduced novel FRET acceptors utilizing metal-bipyridyl derivatives to measure long (>20 Å) intramolecular distances in proteins. Here, we combine our tmFRET system with fluorescence lifetime measurements to measure the distances, conformational heterogeneity, and energetics of maltose binding protein (MBP), a model allosteric protein. Time-resolved tmFRET captures near-instantaneous snapshots of distance distributions, offering insights into protein dynamics. We show that time-resolved tmFRET can accurately determine distance distributions and conformational heterogeneity of proteins. Our results demonstrate the sensitivity of time-resolved tmFRET in detecting subtle conformational or energetic changes in protein conformations, which are crucial for understanding allostery. In addition, we extend the use of metal-bipyridyl compounds, showing Cu(phen)2+ can serve as a spin label for pulse dipolar electron paramagnetic resonance (EPR) spectroscopy, a method which also reveals distance distributions and conformational heterogeneity. The EPR studies both establish Cu(phen)2+ as a useful spin label for pulse dipolar EPR and validate our time-resolved tmFRET measurements. Our approach offers a versatile tool for deciphering conformational landscapes and understanding the regulatory mechanisms governing biological processes.
Collapse
Affiliation(s)
- William N. Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Eric G. B. Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Pierce Eggan
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Kyle D. Shaffer
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
16
|
Gordon SE, Evans EGB, Otto SC, Tessmer MH, Shaffer KD, Gordon MT, Petersson EJ, Stoll S, Zagotta WN. Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561591. [PMID: 37873407 PMCID: PMC10592757 DOI: 10.1101/2023.10.09.561591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ~1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 Å to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.
Collapse
Affiliation(s)
- Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Eric G. B. Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Shauna C. Otto
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Kyle D. Shaffer
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Moshe T. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - William N. Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
17
|
Campbell JX, Schulte NB, Lai B, Harris HH, Franz KJ. Histatin-5 interacts with cellular copper to promote antifungal activity against Candida albicans. Metallomics 2023; 15:mfad070. [PMID: 38061812 PMCID: PMC10733623 DOI: 10.1093/mtomcs/mfad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Histatin-5 (Hist-5) is an antimicrobial peptide found in human saliva that functions to defend the oral cavity from microbial infections, such as those caused by the fungal pathogen Candida albicans (C. albicans). Hist-5 can bind Cu in multiple oxidation states, Cu2+ and Cu+in vitro, and supplemental Cu2+ has been shown to improve the fungicidal activity of the peptide against C. albicans in culture. However, the exact role of Cu on the antifungal activity of Hist-5 and whether direct peptide-Cu interactions occur intracellularly has yet to be fully determined. Here, we used a combination of fluorescence spectroscopy and confocal microscopy experiments to show reversible Cu-dependent quenching of a fluorescent Hist-5 analogue, Hist-5*, indicating a direct interaction between Hist-5 and intracellular Cu. X-ray fluorescence microscopy images revealed peptide-induced changes to cellular Cu distribution and cell-associated Cu content. These data support a model in which Hist-5 can facilitate the hyperaccumulation of Cu in C. albicans and directly interact with Cu intracellularly to increase the fungicidal activity of Hist-5.
Collapse
Affiliation(s)
| | | | - Barry Lai
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
18
|
Galesic A, Pan B, Ramirez J, Rhoades E, Pratt MR, Petersson EJ. Combining non-canonical amino acid mutagenesis and native chemical ligation for multiply modifying proteins: A case study of α-synuclein post-translational modifications. Methods 2023; 218:101-109. [PMID: 37549799 PMCID: PMC10657485 DOI: 10.1016/j.ymeth.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked β-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.
Collapse
Affiliation(s)
- Ana Galesic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
20
|
Li M, Peng T. Genetic Encoding of a Fluorescent Noncanonical Amino Acid as a FRET Donor for the Analysis of Deubiquitinase Activities. Methods Mol Biol 2023; 2676:55-67. [PMID: 37277624 DOI: 10.1007/978-1-0716-3251-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The genetic code expansion technology enables the genetic encoding of fluorescent noncanonical amino acids (ncAAs) for site-specific fluorescent labeling of proteins. These co-translational and internal fluorescent tags have been harnessed to establish genetically encoded Förster resonance energy transfer (FRET) probes for studying protein structural changes and interactions. Here, we describe the protocols for site-specific incorporation of an aminocoumarin-derived fluorescent ncAA into proteins in E. coli and preparation of a fluorescent ncAA-based FRET probe for assaying the activities of deubiquitinases, a key class of enzymes involved in ubiquitination. We also describe the deployment of an in vitro fluorescence assay to screen and analyze small-molecule inhibitors against deubiquitinases.
Collapse
Affiliation(s)
- Manjia Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
21
|
Avila-Crump S, Hemshorn ML, Jones CM, Mbengi L, Meyer K, Griffis JA, Jana S, Petrina GE, Pagar VV, Karplus PA, Petersson EJ, Perona JJ, Mehl RA, Cooley RB. Generating Efficient Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids. ACS Chem Biol 2022; 17:3458-3469. [PMID: 36383641 PMCID: PMC9833845 DOI: 10.1021/acschembio.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic code expansion (GCE) technologies commonly use the pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei (Mm) and Methanosarcina barkeri (Mb) for site-specific incorporation of non-canonical amino acids (ncAAs) into proteins. Recently a homologous PylRS/tRNAPyl pair from Candidatus Methanomethylophilus alvus Mx1201 (Ma) was developed that, lacking the N-terminal tRNA-recognition domain of most PylRSs, overcomes insolubility, instability, and proteolysis issues seen with Mb/Mm PylRSs. An open question is how to alter Ma PylRS specificity to encode specific ncAAs with high efficiency. Prior work focused on "transplanting" ncAA substrate specificity by reconstructing the same active site mutations found in functional Mm/Mb PylRSs in Ma PylRS. Here, we found that this strategy produced low-efficiency Ma PylRSs for encoding three structurally diverse ncAAs: acridonyl-alanine (Acd), 3-nitro-tyrosine, and m-methyl-tetrazinyl-phenylalanine (Tet3.0-Me). On the other hand, efficient Ma PylRS variants were generated by a conventional life/death selection process from a large library of active site mutants: for Acd encoding, one variant was highly functional in HEK293T cells at just 10 μM Acd; for nitroY encoding, two variants also encoded 3-chloro, 3-bromo-, and 3-iodo-tyrosine at high efficiency; and for Tet-3.0-Me, all variants were more functional at lower ncAA concentrations. All Ma PylRS variants identified through selection had at least two different active site residues when compared with their Mb PylRS counterparts. We conclude that Ma and Mm/Mb PylRSs are sufficiently different that "active site transplantation" yields suboptimal Ma GCE systems. This work establishes a paradigm for expanding the utility of the promising Ma PylRS/tRNAPyl GCE platform.
Collapse
Affiliation(s)
- Savanna Avila-Crump
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Marcus L. Hemshorn
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Chloe M. Jones
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lea Mbengi
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Kyle Meyer
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Joshua A. Griffis
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Grace E. Petrina
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Vinayak V. Pagar
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - John J. Perona
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| |
Collapse
|
22
|
Campbell JX, Gao S, Anand KS, Franz KJ. Zinc Binding Inhibits Cellular Uptake and Antifungal Activity of Histatin-5 in Candida albicans. ACS Infect Dis 2022; 8:1920-1934. [PMID: 35997625 PMCID: PMC9671271 DOI: 10.1021/acsinfecdis.2c00289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Histatin-5 (Hist-5) is a polycationic, histidine-rich antimicrobial peptide with potent antifungal activity against the opportunistic fungal pathogen Candida albicans. Hist-5 can bind metals in vitro, and metals have been shown to alter the fungicidal activity of the peptide. Previous reports on the effect of Zn2+ on Hist-5 activity have been varied and seemingly contradictory. Here, we present data elucidating the dynamic role Zn2+ plays as an inhibitory switch to regulate Hist-5 fungicidal activity. A novel fluorescently labeled Hist-5 peptide (Hist-5*) was developed to visualize changes in internalization and localization of the peptide as a function of metal availability in the growth medium. Hist-5* was verified for use as a model peptide and retained antifungal activity and mode of action similar to native Hist-5. Cellular growth assays showed that Zn2+ had a concentration-dependent inhibitory effect on Hist-5 antifungal activity. Imaging by confocal microscopy revealed that equimolar concentrations of Zn2+ kept the peptide localized along the cell periphery rather than internalizing, thus preventing cytotoxicity and membrane disruption. However, the Zn-induced decrease in Hist-5 activity and uptake was rescued by decreasing the Zn2+ availability upon addition of a metal chelator EDTA or S100A12, a Zn-binding protein involved in the innate immune response. These results lead us to suggest a model wherein commensal C. albicans may exist in harmony with Hist-5 at concentrations of Zn2+ that inhibit peptide internalization and antifungal activity. Activation of host immune processes that initiate Zn-sequestering mechanisms of nutritional immunity could trigger Hist-5 internalization and cell killing.
Collapse
|
23
|
Li M, Wang F, Yan L, Lu M, Zhang Y, Peng T. Genetically encoded fluorescent unnatural amino acids and FRET probes for detecting deubiquitinase activities. Chem Commun (Camb) 2022; 58:10186-10189. [PMID: 36000311 DOI: 10.1039/d2cc03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present the genetic encoding of 7-aminocoumarin-based lysine derivatives, ACouK and AFCouK, into proteins in both bacterial and mammalian cells and the characterization of FRET pairs comprising ACouK or AFCouK as the donor and GFP as the acceptor. We further report the application of the FRET pairs to construct fully genetically encoded ratiometric probes for detecting deubiquitinases and screening for inhibitors.
Collapse
Affiliation(s)
- Manjia Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Feifei Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Long Yan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
24
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
25
|
Wang P, Zhang G, Xu Z, Chen Z, Liu X, Wang C, Zheng C, Wang J, Zhang H, Yan A. Whole-cell FRET monitoring of transcription factor activities enables functional annotation of signal transduction systems in living bacteria. J Biol Chem 2022; 298:102258. [PMID: 35839853 PMCID: PMC9396075 DOI: 10.1016/j.jbc.2022.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria adapt to their constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor TF–promoter interactions in situ in living bacteria are lacking. Herein, we developed a whole-cell TF–promoter binding assay based on the intermolecular FRET between an unnatural amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine, which labels TFs with bright fluorescence through genetic encoding (donor fluorophore) and the live cell nucleic acid stain SYTO 9 (acceptor fluorophore). We show that this new FRET pair monitors the intricate TF–promoter interactions elicited by various types of signal transduction systems, including one-component (CueR) and two-component systems (BasSR and PhoPQ), in bacteria with high specificity and sensitivity. We demonstrate that robust CouA incorporation and FRET occurrence is achieved in all these regulatory systems based on either the crystal structures of TFs or their simulated structures, if 3D structures of the TFs were unavailable. Furthermore, using CueR and PhoPQ systems as models, we demonstrate that the whole-cell FRET assay is applicable for the identification and validation of complex regulatory circuit and novel modulators of regulatory systems of interest. Finally, we show that the FRET system is applicable for single-cell analysis and monitoring TF activities in Escherichia coli colonizing a Caenorhabditis elegans host. In conclusion, we established a tractable and sensitive TF–promoter binding assay, which not only complements currently available approaches for DNA–protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria–host interface.
Collapse
Affiliation(s)
- Pengchao Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Guangming Zhang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Zhe Chen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Hongmin Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
26
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
27
|
Araki Y, Shirakata H, Nakagawa T, Ubukata T, Yokoyama Y, Kawamura I. Fluorescent hydrogel based on self-assembling acridonylalanine-phenylalanine. CHEM LETT 2022. [DOI: 10.1246/cl.220170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuzuha Araki
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Hiroki Shirakata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Tetsuya Nakagawa
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yasushi Yokoyama
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
28
|
Mukherjee D, Ahmed IA, Gai F. Site-Specific Interrogation of Protein Structure and Stability. Methods Mol Biol 2022; 2376:65-87. [PMID: 34845603 DOI: 10.1007/978-1-0716-1716-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To execute their function or activity, proteins need to possess variability in local electrostatic environment, solvent accessibility, structure, and stability. However, assessing any protein property in a site-specific manner is not easy since native spectroscopic signals often lack the needed specificity. One strategy that overcomes this limitation is to use unnatural amino acids that exhibit distinct spectroscopic features. In this chapter, we describe several such unnatural amino acids (UAAs) and their respective applications in site-specific interrogation of protein structure and stability using standard biophysical methods, including circular dichroism (CD), infrared (IR), and fluorescence spectroscopies.
Collapse
Affiliation(s)
| | - Ismail A Ahmed
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Kim S, Yi H, Kim YT, Lee HS. Engineering Translation Components for Genetic Code Expansion. J Mol Biol 2021; 434:167302. [PMID: 34673113 DOI: 10.1016/j.jmb.2021.167302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The expansion of the genetic code consisting of four bases and 20 amino acids into diverse building blocks has been an exciting topic in synthetic biology. Many biochemical components are involved in gene expression; therefore, adding a new component to the genetic code requires engineering many other components that interact with it. Genetic code expansion has advanced significantly for the last two decades with the engineering of several components involved in protein synthesis. These components include tRNA/aminoacyl-tRNA synthetase, new codons, ribosomes, and elongation factor Tu. In addition, biosynthesis and enhanced uptake of non-canonical amino acids have been attempted and have made meaningful progress. This review discusses the efforts to engineer these translation components, to improve the genetic code expansion technology.
Collapse
Affiliation(s)
- Sooin Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hanbin Yi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Yurie T Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Republic of Korea.
| |
Collapse
|
30
|
Zagotta WN, Sim BS, Nhim AK, Raza MM, Evans EG, Venkatesh Y, Jones CM, Mehl RA, Petersson EJ, Gordon SE. An improved fluorescent noncanonical amino acid for measuring conformational distributions using time-resolved transition metal ion FRET. eLife 2021; 10:e70236. [PMID: 34623258 PMCID: PMC8500717 DOI: 10.7554/elife.70236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022] Open
Abstract
With the recent explosion in high-resolution protein structures, one of the next frontiers in biology is elucidating the mechanisms by which conformational rearrangements in proteins are regulated to meet the needs of cells under changing conditions. Rigorously measuring protein energetics and dynamics requires the development of new methods that can resolve structural heterogeneity and conformational distributions. We have previously developed steady-state transition metal ion fluorescence resonance energy transfer (tmFRET) approaches using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor to probe conformational rearrangements in soluble and membrane proteins. Here, we show that the fluorescent noncanonical amino acid Acd has superior photophysical properties that extend its utility as a donor for tmFRET. Using maltose-binding protein (MBP) expressed in mammalian cells as a model system, we show that Acd is comparable to Anap in steady-state tmFRET experiments and that its long, single-exponential lifetime is better suited for probing conformational distributions using time-resolved FRET. These experiments reveal differences in heterogeneity in the apo and holo conformational states of MBP and produce accurate quantification of the distributions among apo and holo conformational states at subsaturating maltose concentrations. Our new approach using Acd for time-resolved tmFRET sets the stage for measuring the energetics of conformational rearrangements in soluble and membrane proteins in near-native conditions.
Collapse
Affiliation(s)
- William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Brandon S Sim
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Anthony K Nhim
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Marium M Raza
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Eric Gb Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Chloe M Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
31
|
Jones CM, Robkis DM, Blizzard RJ, Munari M, Venkatesh Y, Mihaila TS, Eddins AJ, Mehl RA, Zagotta WN, Gordon SE, Petersson EJ. Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells. Chem Sci 2021; 12:11955-11964. [PMID: 34976337 PMCID: PMC8634729 DOI: 10.1039/d1sc01914g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 01/28/2023] Open
Abstract
Acridonylalanine (Acd) is a fluorescent amino acid that is highly photostable, with a high quantum yield and long fluorescence lifetime in water. These properties make it superior to existing genetically encodable fluorescent amino acids for monitoring protein interactions and conformational changes through fluorescence polarization or lifetime experiments, including fluorescence lifetime imaging microscopy (FLIM). Here, we report the genetic incorporation of Acd using engineered pyrrolysine tRNA synthetase (RS) mutants that allow for efficient Acd incorporation in both E. coli and mammalian cells. We compare protein yields and amino acid specificity for these Acd RSs to identify an optimal construct. We also demonstrate the use of Acd in FLIM, where its long lifetime provides strong contrast compared to endogenous fluorophores and engineered fluorescent proteins, which have lifetimes less than 5 ns.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - Robert J Blizzard
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Mika Munari
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tiberiu S Mihaila
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Alex J Eddins
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - E James Petersson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| |
Collapse
|
32
|
Lee S, Kim J, Koh M. Recent Advances in Fluorescence Imaging by Genetically Encoded Non-canonical Amino Acids. J Mol Biol 2021; 434:167248. [PMID: 34547330 DOI: 10.1016/j.jmb.2021.167248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/09/2023]
Abstract
Technical innovations in protein labeling with a fluorophore at the specific residue have played a significant role in studying protein dynamics. The genetic code expansion (GCE) strategy enabled the precise installation of fluorophores at the tailored site of proteins in live cells with minimal perturbation of native functions. Considerable advances have been achieved over the past decades in fluorescent imaging using GCE strategies along with bioorthogonal chemistries. In this review, we discuss advances in the GCE-based strategies to site-specifically introduce fluorophore at a defined position of the protein and their bio-imaging applications.
Collapse
Affiliation(s)
- Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
33
|
Giannakoulias S, Shringari SR, Ferrie JJ, Petersson EJ. Biomolecular simulation based machine learning models accurately predict sites of tolerability to the unnatural amino acid acridonylalanine. Sci Rep 2021; 11:18406. [PMID: 34526629 PMCID: PMC8443755 DOI: 10.1038/s41598-021-97965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
The incorporation of unnatural amino acids (Uaas) has provided an avenue for novel chemistries to be explored in biological systems. However, the successful application of Uaas is often hampered by site-specific impacts on protein yield and solubility. Although previous efforts to identify features which accurately capture these site-specific effects have been unsuccessful, we have developed a set of novel Rosetta Custom Score Functions and alternative Empirical Score Functions that accurately predict the effects of acridon-2-yl-alanine (Acd) incorporation on protein yield and solubility. Acd-containing mutants were simulated in PyRosetta, and machine learning (ML) was performed using either the decomposed values of the Rosetta energy function, or changes in residue contacts and bioinformatics. Using these feature sets, which represent Rosetta score function specific and bioinformatics-derived terms, ML models were trained to predict highly abstract experimental parameters such as mutant protein yield and solubility and displayed robust performance on well-balanced holdouts. Model feature importance analyses demonstrated that terms corresponding to hydrophobic interactions, desolvation, and amino acid angle preferences played a pivotal role in predicting tolerance of mutation to Acd. Overall, this work provides evidence that the application of ML to features extracted from simulated structural models allow for the accurate prediction of diverse and abstract biological phenomena, beyond the predictivity of traditional modeling and simulation approaches.
Collapse
Affiliation(s)
- Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA, 19104, USA
| | - Sumant R Shringari
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Molecular & Cell Biology, University of California, Berkeley, 475B Li Ka Shing Center, Berkeley, CA, 94720, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Gleason PR, Kolbaba-Kartchner B, Henderson JN, Stahl EP, Simmons CR, Mills JH. Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid. Biochemistry 2021; 60:2577-2585. [PMID: 34415744 DOI: 10.1021/acs.biochem.1c00291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent noncanonical amino acids (fNCAAs) could serve as starting points for the rational design of protein-based fluorescent sensors of biological activity. However, efforts toward this goal are likely hampered by a lack of atomic-level characterization of fNCAAs within proteins. Here, we describe the spectroscopic and structural characterization of five streptavidin mutants that contain the fNCAA l-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) at sites proximal to the binding site of its substrate, biotin. Many of the mutants exhibited altered fluorescence spectra in response to biotin binding, which included both increases and decreases in fluorescence intensity as well as red- or blue-shifted emission maxima. Structural data were also obtained for three of the five mutants. The crystal structures shed light on interactions between 7-HCAA and functional groups, contributed either by the protein or by the substrate, that may be responsible for the observed changes in the 7-HCAA spectra. These data could be used in future studies aimed at the rational design of fluorescent, protein-based sensors of small molecule binding or dissociation.
Collapse
|
35
|
Singh H, Verma S. Visualization of third-level information in latent fingerprints by a new fluorogenic L-tyrosine analogue. Chem Commun (Camb) 2021; 57:5290-5293. [PMID: 33942826 DOI: 10.1039/d1cc01910d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Incorporation of fluorescent α-amino acids in peptide/protein sequences, at desired positions, is eminently useful for non-invasive detection of cellular events, without impacting their native properties. As an extension to such an approach, we describe the design of two stable, fluorescent l-tyrosine analogs, FHBY and BHBY, exhibiting photophysical properties associated with the AIE-coupled ESIPT mechanism, for fluorescent reporting of latent fingerprints. Notably, FHBY selectively adheres to the papillary ridges of latent fingerprints and reveals up to the third-level of information at one of the lowest reported concentrations of 25 μM.
Collapse
Affiliation(s)
- Harminder Singh
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Sandeep Verma
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
36
|
Jones CM, Petersson GA, Petersson EJ. Synthesis and characterization of fluorescent amino acid dimethylaminoacridonylalanine. ARKIVOC 2021; 2021:97-109. [PMID: 33967634 PMCID: PMC8104435 DOI: 10.24820/ark.5550190.p011.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescent amino acids are powerful biophysical tools as they can be used in structural or imaging studies of a given protein without significantly perturbing its native fold or function. Here, we have synthesized and characterized 7-(dimethylamino)acridon-2-ylalanine (Dad), a red-shifted derivative of the genetically-incorporable amino acid, acridon-2-ylalanine. Alkylation increases the quantum yield and fluorescence lifetime of Dad relative to a previously published amino acid, 7-aminoacridon-2-ylalanine (Aad). These properties of Dad make it a potentially valuable protein label, and we have performed initial testing of its ability to be genetically incorporated using an evolved aminoacyl tRNA synthetase.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104-6323, USA
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - George A Petersson
- Temple University Institute for Computational Molecular Science, 1925 N. 12th Street, Philadelphia, PA 19122, USA
| | - E James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
37
|
Rocchi D, Gómez-Carpintero J, González JF, Menéndez JC. Sustainable Access to Acridin-9-(10 H)ones with an Embedded m-Terphenyl Moiety Based on a Three-Component Reaction. Molecules 2020; 25:molecules25235565. [PMID: 33260917 PMCID: PMC7731126 DOI: 10.3390/molecules25235565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
A Ce(IV)-catalyzed three-component reaction between chalcones, anilines and β-ketoesters followed by a microwave-assisted thermal cyclization afforded 1,3-diaryl-1,2-dihydroacridin-9(10H)-ones. Their microwave irradiation in nitrobenzene, acting both as solvent and oxidant, afforded fully unsaturated 1,3-diarylacridin-9(10H)-ones, which combine acridin-9-(10H)one and m-terphenyl moieties. Overall, the route generates three C-C and one C-N bond and has the advantage of requiring a single chromatographic separation.
Collapse
|
38
|
Yoon J, Ferrie JJ, Petersson EJ. Improved Modeling of Thioamide FRET Quenching by Including Conformational Restriction and Coulomb Coupling. J Phys Chem B 2020; 124:10653-10662. [PMID: 33196192 DOI: 10.1021/acs.jpcb.0c06865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioamide-containing amino acids have been shown to quench a wide range of fluorophores through distinct mechanisms. Here, we quantitatively analyze the mechanism through which the thioamide functional group quenches the fluorescence of p-cyanophenylalanine (Cnf), tyrosine (Tyr), and tryptophan (Trp). By comparing PyRosetta simulations to published experiments performed on polyproline ruler peptides, we corroborate previous findings that both Cnf and Tyr quenching occurs via Förster resonance energy transfer (FRET), while Trp quenching occurs through an alternate mechanism such as Dexter transfer. Additionally, optimization of the peptide sampling scheme and comparison of thioamides attached to the peptide backbone and side chain revealed that the significant conformational restriction associated with the thioamide moiety results in a high sensitivity of the apparent FRET efficiency to underlying conformational differences. Moreover, by computing FRET efficiencies from structural models using a variety of approaches, we find that quantitative accuracy in the role of Coulomb coupling is required to explain contributions to the observed quenching efficiency from individual structures on a detailed level. Last, we demonstrate that these additional considerations improve our ability to predict thioamide quenching efficiencies observed during binding of thioamide-labeled peptides to fluorophore-labeled variants of calmodulin.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
40
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
41
|
Henderson JN, Simmons CR, Fahmi NE, Jeffs JW, Borges CR, Mills JH. Structural Insights into How Protein Environments Tune the Spectroscopic Properties of a Noncanonical Amino Acid Fluorophore. Biochemistry 2020; 59:3401-3410. [PMID: 32845612 DOI: 10.1021/acs.biochem.0c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded fluorescent noncanonical amino acids (fNCAAs) could be used to develop novel fluorescent sensors of protein function. Previous efforts toward this goal have been limited by the lack of extensive physicochemical and structural characterizations of protein-based sensors containing fNCAAs. Here, we report the steady-state spectroscopic properties and first structural analyses of an fNCAA-containing Fab fragment of the 5c8 antibody, which binds human CD40L. A previously reported 5c8 variant in which the light chain residue IleL98 is replaced with the fNCAA l-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA) exhibits a 1.7-fold increase in fluorescence upon antigen binding. Determination and comparison of the apparent pKas of 7-HCAA in the unbound and bound forms indicate that the observed increase in fluorescence is not the result of perturbations in pKa. Crystal structures of the fNCAA-containing Fab in the apo and bound forms reveal interactions between the 7-HCAA side chain and surrounding residues that are disrupted upon antigen binding. This structural characterization not only provides insight into the manner in which protein environments can modulate the fluorescence properties of 7-HCAA but also could serve as a starting point for the rational design of new fluorescent protein-based reporters of protein function.
Collapse
Affiliation(s)
- J Nathan Henderson
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Chad R Simmons
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Nour Eddine Fahmi
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua W Jeffs
- The Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chad R Borges
- The Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jeremy H Mills
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
42
|
2-Aminobenzaldehyde, a common precursor to acridines and acridones endowed with bioactivities. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 2020; 18:5747-5763. [PMID: 32691820 PMCID: PMC7453994 DOI: 10.1039/d0ob01131b] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Gleason PR, Kelly PI, Grisingher DW, Mills JH. An intrinsic FRET sensor of protein-ligand interactions. Org Biomol Chem 2020; 18:4079-4084. [PMID: 32427252 PMCID: PMC7313717 DOI: 10.1039/d0ob00793e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe an approach for the development of fluorescent sensors of metabolite binding in which a genetically encoded fluorescent non-canonical amino acid (fNCAA) containing a 7-hydroxycoumarin moiety (7-HCAA) forms a FRET pair with native tryptophan residues. Although previous studies demonstrated the potential for using 7-HCAA as an acceptor for tryptophan, this approach has not yet been explored within a single protein containing multiple tryptophan residues. A structure-based analysis of a hexokinase enzyme with multiple native tryptophan residues identified glutamate 50 as a potential site of 7-HCAA incorporation; Glu50 moves closer to the native tryptophans upon substrate binding. Substitution of 7-HCAA at residue 50 led to an increase in FRET efficiency in the presence of the substrate; this effect was not observed in a control protein where no change in distance between 7-HCAA and the native tryptophans occurs on substrate binding. This system was then used to directly observe differences in binding affinity of the hexokinase that occur at a number of pH values. Our approach builds on previous research in that it eliminates the need for the incorporation of multiple fNCAAs or fluorescent labels within a target protein and can be used to study substrate binding with native ligands. As such, it serves to expand the versatility of FRET-based techniques.
Collapse
Affiliation(s)
- Patrick R Gleason
- School of Molecular Sciences and The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
45
|
Hostetler ZM, Cory MB, Jones CM, Petersson EJ, Kohli RM. The Kinetic and Molecular Basis for the Interaction of LexA and Activated RecA Revealed by a Fluorescent Amino Acid Probe. ACS Chem Biol 2020; 15:1127-1133. [PMID: 31999086 PMCID: PMC7230020 DOI: 10.1021/acschembio.9b00886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterial DNA damage response (the SOS response) is a key pathway involved in antibiotic evasion and a promising target for combating acquired antibiotic resistance. Activation of the SOS response is controlled by two proteins: the repressor LexA and the DNA damage sensor RecA. Following DNA damage, direct interaction between RecA and LexA leads to derepression of the SOS response. However, the exact molecular details of this interaction remain unknown. Here, we employ the fluorescent unnatural amino acid acridonylalanine (Acd) as a minimally perturbing probe of the E. coli RecA:LexA complex. Using LexA labeled with Acd, we report the first kinetic model for the reversible binding of LexA to activated RecA. We also characterize the effects that specific amino acid truncations or substitutions in LexA have on RecA:LexA binding strength and demonstrate that a mobile loop encoding LexA residues 75-84 comprises a key recognition interface for RecA. Beyond insights into SOS activation, our approach also further establishes Acd as a sensitive fluorescent probe for investigating the dynamics of protein-protein interactions in other complex systems.
Collapse
Affiliation(s)
- Zachary M. Hostetler
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael B. Cory
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Chloe M. Jones
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
46
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
47
|
Abstract
Site-specific protein labeling can be used to monitor protein motions and interactions in real time using Förster resonance energy transfer (FRET). While there are many fluorophores available for protein labeling, few FRET pairs are suitable for monitoring intramolecular protein motions without being disruptive to protein folding and function. Here, we describe the synthesis and use of a minimally perturbing FRET pair comprised of methoxycoumarin maleimide (Mcm-Mal) and acridonylalanine (Acd). Acd can be incorporated into a protein through unnatural amino acid mutagenesis. Mcm-Mal is fluorogenic when reacted with cysteine and can label cysteine/Acd double mutant proteins. This labeling strategy provides an easy to install FRET pair with a working range or 15-40Å, making it ideal for monitoring most intramolecular motions. Additionally, Mcm/Acd FRET can be combined with tryptophan fluorescence for monitoring multiple protein motions via three color FRET.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
48
|
Bell JD, Harkiss AH, Nobis D, Malcolm E, Knuhtsen A, Wellaway CR, Jamieson AG, Magennis SW, Sutherland A. Conformationally rigid pyrazoloquinazoline α-amino acids: one- and two-photon induced fluorescence. Chem Commun (Camb) 2020; 56:1887-1890. [DOI: 10.1039/c9cc09064a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conformationally rigid unnatural α-amino acids bearing a pyrazoloquinazoline ring system that are amenable to both one- and two-photon excitation have been developed as new fluorescent probes.
Collapse
Affiliation(s)
- Jonathan D. Bell
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Alexander H. Harkiss
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - David Nobis
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Eilidh Malcolm
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Astrid Knuhtsen
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | | | - Andrew G. Jamieson
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Steven W. Magennis
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Andrew Sutherland
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| |
Collapse
|
49
|
Saxena S, Pradeep A, Jayakannan M. Enzyme-Responsive Theranostic FRET Probe Based on l-Aspartic Amphiphilic Polyester Nanoassemblies for Intracellular Bioimaging in Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:5245-5262. [DOI: 10.1021/acsabm.9b00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Anu Pradeep
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
50
|
Park SH, Ko W, Lee HS, Shin I. Analysis of Protein–Protein Interaction in a Single Live Cell by Using a FRET System Based on Genetic Code Expansion Technology. J Am Chem Soc 2019; 141:4273-4281. [DOI: 10.1021/jacs.8b10098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seong-Hyun Park
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Injae Shin
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|