1
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Guo Y, Cheng L, Hu Y, Zhang M, Liu R, Wang Y, Jiang S, Xiao H. Biosynthesis of Halogenated Tryptophans for Protein Engineering Using Genetic Code Expansion. Chembiochem 2024; 25:e202400366. [PMID: 38958600 PMCID: PMC11483216 DOI: 10.1002/cbic.202400366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Genetic Code Expansion technology offers significant potential in incorporating noncanonical amino acids into proteins at precise locations, allowing for the modulation of protein structures and functions. However, this technology is often limited by the need for costly and challenging-to-synthesize external noncanonical amino acid sources. In this study, we address this limitation by developing autonomous cells capable of biosynthesizing halogenated tryptophan derivatives and introducing them into proteins using Genetic Code Expansion technology. By utilizing inexpensive halide salts and different halogenases, we successfully achieve the selective biosynthesis of 6-chloro-tryptophan, 7-chloro-tryptophan, 6-bromo-tryptophan, and 7-bromo-tryptophan. These derivatives are introduced at specific positions with corresponding bioorthogonal aminoacyl-tRNA synthetase/tRNA pairs in response to the amber codon. Following optimization, we demonstrate the robust expression of proteins containing halogenated tryptophan residues in cells with the ability to biosynthesize these tryptophan derivatives. This study establishes a versatile platform for engineering proteins with various halogenated tryptophans.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Yu Hu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Rui Liu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Shiyu Jiang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| |
Collapse
|
3
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
4
|
Ripoll M, Cahuzac H, Dovgan I, Ursuegui S, Neuberg P, Erb S, Cianférani S, Kichler A, Remy JS, Wagner A. Supramolecular Bioconjugation Strategy for Antibody-Targeted Delivery of siRNA. Bioconjug Chem 2024. [PMID: 39321037 DOI: 10.1021/acs.bioconjchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
RNA interference is a widely used biological process by which double-stranded RNA induces sequence-specific gene silencing by targeting mRNA for degradation. However, the physicochemical properties of siRNAs make their delivery extremely challenging, thus limiting their bioavailability at the target site. In this context, we developed a versatile and selective siRNA delivery system of a trastuzumab-conjugated nanocarrier. These immunoconjugates consist of the assembly by electrostatic interactions of an oligonucleotide-modified antibody with a cationic micelle for the targeted delivery of siRNA in HER2-overexpressing cancer cells. Results show that, when associated with the corresponding siRNA at the appropriate N/P ratio, our supramolecular assembly was able to efficiently induce luciferase and PLK-1 gene silencing in a cell-selective manner in vitro.
Collapse
Affiliation(s)
- Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Héloïse Cahuzac
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Stephane Erb
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, Strasbourg 67087, France
- IPHC, CNRS, UMR7178, University of Strasbourg, Strasbourg 67087, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, Strasbourg 67087, France
- IPHC, CNRS, UMR7178, University of Strasbourg, Strasbourg 67087, France
| | - Antoine Kichler
- Université de Strasbourg, Institut National de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Biomaterials and Bioengineering, UMR_S 1121 INSERM/EMR 7003 CNRS, Faculté de Pharmacie, Illkirch 67401, France
| | - Jean-Serge Remy
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
5
|
Li JH, Liu L, Zhao XH. Precision targeting in oncology: The future of conjugated drugs. Biomed Pharmacother 2024; 177:117106. [PMID: 39013223 DOI: 10.1016/j.biopha.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Coupled drugs, especially antibody-coupled drugs (ADCs), are a hot topic in oncology. As the development of ADCs has progressed, different coupling modes have emerged, inspired by their structural design have emerged. Technological advances have led to interweaving and collision of old and new concepts of coupled drugs, and have even challenged the concepts and techniques of coupled drugs at this stage. For example, antibody-oligonucleotide conjugates are a new class of chimeric biomolecules synthesized by coupling oligonucleotides with monoclonal antibodies through linkers, offering precise targeting and improved pharmacokinetic properties. This study aimed to elucidate the mechanism of action of coupled drugs and their current development status in antitumor therapy to provide better strategies for antitumor therapy.
Collapse
Affiliation(s)
- Jia-He Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Lei Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Xi-He Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China.
| |
Collapse
|
6
|
Guo QR, Cao YJ. Applications of genetic code expansion technology in eukaryotes. Protein Cell 2024; 15:331-363. [PMID: 37847216 PMCID: PMC11074999 DOI: 10.1093/procel/pwad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.
Collapse
Affiliation(s)
- Qiao-ru Guo
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Yang Y, Song Z, Tian T, Zhao Z, Chen J, Hu J, Jiang X, Yang G, Xue Q, Zhao X, Sha W, Yang Y, Li JP. Trimming Crystallizable Fragment (Fc) Glycans Enables the Direct Enzymatic Transfer of Biomacromolecules to Antibodies as Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202308174. [PMID: 37438983 DOI: 10.1002/anie.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Glycoengineering has provided powerful tools to construct site-specific antibody conjugates. However, only small-molecule payloads can be directly transferred to native or engineered antibodies using existing glycoengineering strategies. Herein, we demonstrate that reducing the complexity of crystallizable fragment (Fc) glycans could dramatically boost the chemoenzymatic modification of immunoglobulin G (IgG) via an engineered fucosyltransferase. In this platform, antibodies with Fc glycans engineered to a simple N-acetyllactosamine (LacNAc) disaccharide are successfully conjugated to biomacromolecules, such as oligonucleotides and nanobodies, in a single step within hours. Accordingly, we synthesized an antibody-conjugate-based anti-human epidermal growth factor receptor 2 (HER2)/ cluster of differentiation 3 (CD3) bispecific antibody and used it to selectively destroy patient-derived cancer organoids by reactivating endogenous T lymphocyte cells (T cells) inside the organoid. Our results highlight that this platform is a general approach to construct antibody-biomacromolecule conjugates with translational values.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zhentao Song
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zihan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ji Chen
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jiangping Hu
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Xin Jiang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Guoli Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xinlu Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Wanxing Sha
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Yi Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
8
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
10
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
11
|
Subhan MA, Torchilin VP. Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010153. [PMID: 36678782 PMCID: PMC9861964 DOI: 10.3390/pharmaceutics15010153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanobiopolymers such as chitosan, gelatin, hyaluronic acid, polyglutamic acid, lipids, peptides, exosomes, etc., delivery systems have prospects to help overwhelmed physiological difficulties allied with the delivery of siRNA drugs to solid tumors, including breast cancer cells. Nanobiopolymers have favorable stimuli-responsive properties and therefore can be utilized to improve siRNA delivery platforms to undruggable MDR metastatic cancer cells. These biopolymeric siRNA drugs can shield drugs from pH degradation, extracellular trafficking, and nontargeted binding sites and are consequently suitable for drug internalization in a controlled-release fashion. In this review, the utilization of numerous biopolymeric compounds such as siRNA drug delivery systems for MDR solid tumors, including breast cancers, will be discussed.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
12
|
Melodia D, Di Pietro Z, Cao C, Stenzel MH, Chapman R. Traceless pH-Sensitive Antibody Conjugation Inspired by Citraconic Anhydride. Biomacromolecules 2022; 23:5322-5329. [PMID: 36395470 DOI: 10.1021/acs.biomac.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We introduce a pH-sensitive amide bond, inspired by citraconic anhydride, for the reversible conjugation of polymers to the lysine residues of proteins and antibodies. The pH sensitivity arises from a conformation lock at the end of the polymer, which we introduce by means of a Diels-Alder reaction, that positions a carboxylic acid close to the amide after conjugation occurs. The amide is stable over weeks at pH 7.4 but sensitive to hydrolysis at pH 5.5 and below, returning the amine to its original state. The pH sensitivity can be tuned by positioning secondary amide groups nearby. We use this approach to PEGylate an antibody to human serum albumin at high dilution and demonstrate successful recovery of the activity after hydrolysis at pH 5.5. These results offer a convenient and traceless approach to protein and antibody functionalization.
Collapse
Affiliation(s)
- Daniele Melodia
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Zachary Di Pietro
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Cao
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | | | - Robert Chapman
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
13
|
Preparation of Temperature-Responsive Antibody–Nanoparticles by RAFT-Mediated Grafting from Polymerization. Polymers (Basel) 2022; 14:polym14214584. [DOI: 10.3390/polym14214584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 10/31/2022] Open
Abstract
Herein, we report the preparation of temperature-responsive antibody–nanoparticles by the direct polymerization of N-isopropylacrylamide (NIPAAm) from immunoglobulin G (IgG). To this end, a chain transfer agent (CTA) was introduced into IgG, followed by the precipitation polymerization of NIPAAm in an aqueous medium via reversible addition–fragmentation chain transfer polymerization above the lower critical solution temperature (LCST). Consequently, antibody–polymer particles with diameters of approximately 100–200 nm were formed. Owing to the entanglement of the grafted polymers via partial chemical crosslinking, the antibody–nanoparticles maintained their stability even at temperatures below the LCST. Further, the dispersed nanoparticles could be collected by thermal precipitation above the LCST. Additionally, the antibody–nanoparticles formulation could maintain its binding constant and exhibited a good resistance against enzymatic treatment. Thus, the proposed antibody–nanoparticles can be useful for maximizing the therapeutic potential of antibody–drug conjugates or efficacies of immunoassays and antibody recovery and recycling.
Collapse
|
14
|
Abstract
The homeostasis of cellular activities is essential for the normal functioning of living organisms. Hence, the ability to regulate the fates of cells is of great significance for both fundamental chemical biology studies and therapeutic development. Despite the notable success of small-molecule drugs that normally act on cellular protein functions, current clinical challenges have highlighted the use of macromolecules to tune cell function for improved therapeutic outcomes. As a class of hybrid biomacromolecules gaining rapidly increasing attention, protein conjugates have exhibited great potential as versatile tools to manipulate cell function for therapeutic applications, including cancer treatment, tissue engineering, and regenerative medicine. Therefore, recent progress in the design and assembly of protein conjugates used to regulate cell function is discussed in this review. The protein conjugates covered here are classified into three different categories based on their mechanisms of action and relevant applications: (1) regulation of intercellular interactions; (2) intervention in intracellular biological pathways; (3) termination of cell proliferation. Within each genre, a variety of protein conjugate scaffolds are discussed, which contain a diverse array of grafted molecules, such as lipids, oligonucleotides, synthetic polymers, and small molecules, with an emphasis on their conjugation methodologies and potential biomedical applications. While the current generation of protein conjugates is focused largely on delivery, the next generation is expected to address issues of site-specific conjugation, in vivo stability, controllability, target selectivity, and biocompatibility.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
16
|
Yuan P, Yang F, Liew SS, Yan J, Dong X, Wang J, Du S, Mao X, Gao L, Yao SQ. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022; 281:121376. [DOI: 10.1016/j.biomaterials.2022.121376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
|
17
|
Zhang L, Wang Z, Wang Z, Luo F, Guan M, Xu M, Li Y, Zhang Y, Wang Z, Wang W. A Simple and Efficient Method to Generate Dual Site-Specific Conjugation ADCs with Cysteine Residue and an Unnatural Amino Acid. Bioconjug Chem 2021; 32:1094-1104. [PMID: 34013721 DOI: 10.1021/acs.bioconjchem.1c00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates (ADCs) are complex pharmaceutical molecules that combine monoclonal antibodies with biologically active drugs through chemical linkers. ADCs are designed to specifically kill disease cells by utilizing the target specificity of antibodies and the cytotoxicity of chemical drugs. However, the traditional ADCs were only applied to a few disease targets because of some limitations such as the huge molecular weight, the uncontrollable coupling reactions, and a single mechanism of action. Here we report a simple, one-pot, successive reaction method to produce dual payload conjugates with the site-specifically engineered cysteine and p-acetyl-phenylalanine using Herceptin (trastuzumab), an anti-HER2 antibody drug widely used for breast cancer treatment, as a tool molecule. This strategy enables antibodies to conjugate with two mechanistically distinct cytotoxic drugs through different functional groups sequentially, therefore, rendering the newly designed ADCs with functional diversity and the potential to overcome drug resistance and enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Lin Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zewei Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingfeng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meimei Xu
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yundong Li
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
18
|
Le PJ, Miersch S, Forbes MW, Jarvik N, Ku A, Sidhu SS, Reilly RM, Winnik MA. Site-Specific Conjugation of Metal-Chelating Polymers to Anti-Frizzled-2 Antibodies via Microbial Transglutaminase. Biomacromolecules 2021; 22:2491-2504. [PMID: 33961407 DOI: 10.1021/acs.biomac.1c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-chelating polymer-based radioimmunoconjugates (RICs) are effective agents for radioimmunotherapy but are currently limited by nonspecific binding and off-target organ uptake. Nonspecific binding appears after conjugation of the polymer to the antibody and may be related to random lysine conjugation since the polymers themselves do not bind to cells. To investigate the role of conjugation sites on nonspecific binding of polymer RICs, we developed a microbial transglutaminase reaction to prepare site-specific antibody-polymer conjugates. The reaction was enabled by introducing a Q-tag (i.e., 7M48) into antibody (i.e., Fab) fragments and synthesizing a polyglutamide-based metal-chelating polymer with a PEG amine block to yield substrates. Mass spectrometric analyses confirmed that the microbial transglutaminase conjugation reaction was site-specific. For comparison, random lysine conjugation analogs with an average of one polymer per Fab were prepared by bis-aryl hydrazone conjugation. Conjugates were prepared from an anti-frizzled-2 Fab to target the Wnt pathway, along with a nonbinding specificity control, anti-Luciferase Fab. Fabs were engineered from a trastuzumab-based IgG1 framework and lack lysines in the antigen-binding site. Conjugates were analyzed for thermal conformational stability by differential scanning fluorimetry, which showed that the site-specific conjugate had a similar melting temperature to the parent Fab. Binding assays by biolayer interferometry showed that the site-specific anti-frizzled-2 conjugate maintained high affinity to the antigen, while the random conjugate showed a 10-fold decrease in affinity, which was largely due to changes in association rates. Radioligand cell-binding assays on frizzled-2+ PANC-1 cells and frizzled-2- CHO cells showed that the site-specific anti-frizzled-2 conjugate had ca. 4-fold lower nonspecific binding compared to the random conjugate. Site-specific conjugation appeared to reduce nonspecific binding associated with random conjugation of the polymer in polymer RICs.
Collapse
Affiliation(s)
- Penny J Le
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Shane Miersch
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Matthew W Forbes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Nick Jarvik
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.,Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
19
|
Pan Q, Li K, Cheng X, Chen L, Yu Q, Fan H, Zheng L, Yang Z, Ni F. A photoactivatable antibody-Chlorin e6 conjugate enabling singlet oxygen production for tumor-targeting photodynamic therapy. Biomed Mater 2021; 16. [PMID: 32584266 DOI: 10.1088/1748-605x/ab9f57] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy is a new technology for disease diagnosis and treatment in modern medical clinics. The main advantages of photodynamic therapy are low toxicity and side effects, a wide range of applications, no drug resistance, and no obvious trauma in the treatment process. However, to achieve effective photodynamic therapy, new photosensitizer carriers need to be constructed, which can selectively deliver photosensitizers into tumor tissues. In this work, a photoactivatable antibody-Chlorin e6 conjugate with a dual-function to target tumor tissue and realize cancer photodynamic therapy is constructed. Bothin vitroandin vivoexperiments indicate that the antibody-Chlorin e6 conjugate has the ability to target tumors rapidly and efficiently, and has the ability to generate reactive oxygen species and kill tumor cells. Overall, this photoactivable antibody-Chlorin e6 conjugate may provide a promising strategy to address the current challenges of cancer photodynamic therapy.
Collapse
Affiliation(s)
- Qi Pan
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Kaixuan Li
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoyi Cheng
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Lin Chen
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - HengXin Fan
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Liang Zheng
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Zihua Yang
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| | - Feng Ni
- The second affiliated Hospital of Xi'an Medical University, No.167, Fangdong Street, Baqiao District, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
20
|
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J Clin Med 2021; 10:jcm10040838. [PMID: 33670689 PMCID: PMC7922418 DOI: 10.3390/jcm10040838] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
A summary of the key technological advancements in the preparation of antibody-oligonucleotide conjugates (AOCs) and the distinct advantages and disadvantages of AOCs as novel therapeutics are presented. The merits and demerits of the different approaches to conjugating oligonucleotides to antibodies, antibody fragments or other proteins, mainly from the perspective of AOC purification and analytical characterizations, are assessed. The lessons learned from in vitro and in vivo studies, especially the findings related to silencing, trafficking, and cytotoxicity of the conjugates, are also summarized.
Collapse
Affiliation(s)
- Julien Dugal-Tessier
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
- Correspondence: ; Tel.: +1-732-202-5664
| | | | - Nareshkumar Jain
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
| |
Collapse
|
21
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
22
|
Zavoiura O, Brunner B, Casteels P, Zimmermann L, Ozog M, Boutton C, Helms MW, Wagenaar T, Adam V, Peterka J, Metz-Weidmann C, Deschaght P, Scheidler S, Jahn-Hofmann K. Nanobody-siRNA Conjugates for Targeted Delivery of siRNA to Cancer Cells. Mol Pharm 2021; 18:1048-1060. [PMID: 33444501 DOI: 10.1021/acs.molpharmaceut.0c01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Targeted extrahepatic delivery of siRNA remains a challenging task in the field of nucleic acid therapeutics. An ideal delivery tool must internalize siRNA exclusively into the cells of interest without affecting the silencing activity of siRNA. Here, we report the use of anti-EGFR Nanobodies (trademark of Ablynx N.V.) as tools for targeted siRNA delivery. A straightforward procedure for site-specific conjugation of siRNA to an engineered C-terminal cysteine residue on the Nanobody (trademark of Ablynx N.V.) is described. We show that siRNA-conjugated Nanobodies (Nb-siRNA) retain their binding to EGFR and enter EGFR-positive cells via receptor-mediated endocytosis. The activity of Nb-siRNAs was assessed by measuring the knockdown of a housekeeping gene (AHSA1) in EGFR-positive and EGFR-negative cells. We demonstrate that Nb-siRNAs are active in vitro and induce mRNA cleavage in the targeted cell line. In addition, we discuss the silencing activity of siRNA conjugated to fused Nbs with various combinations of EGFR-binding building blocks. Finally, we compare the performance of Nb-siRNA joined by four different linkers and discuss the advantages and limitations of using cleavable and noncleavable linkers in the context of Nanobody-mediated siRNA delivery.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Bodo Brunner
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Peter Casteels
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Luciana Zimmermann
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Matthias Ozog
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Carlo Boutton
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Mike W Helms
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Timothy Wagenaar
- Sanofi, Research, 640 Memorial Drive, Cambridge, 02139 Massachusetts, United States
| | - Volker Adam
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Josefine Peterka
- Sanofi, TIDES platform, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | | | - Pieter Deschaght
- Ablynx, a Sanofi Company, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Sabine Scheidler
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Kerstin Jahn-Hofmann
- Sanofi, Biologics Research, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Nanna AR, Kel'in AV, Theile C, Pierson JM, Voo ZX, Garg A, Nair JK, Maier MA, Fitzgerald K, Rader C. Generation and validation of structurally defined antibody-siRNA conjugates. Nucleic Acids Res 2020; 48:5281-5293. [PMID: 32347936 PMCID: PMC7261152 DOI: 10.1093/nar/gkaa286] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Gene silencing by RNA interference (RNAi) has emerged as a powerful treatment strategy across a potentially broad range of diseases. Tailoring siRNAs to silence genes vital for cancer cell growth and function could be an effective treatment, but there are several challenges which must be overcome to enable their use as a therapeutic modality, among which efficient and selective delivery to cancer cells remains paramount. Attempts to use antibodies for siRNA delivery have been reported but these strategies use either nonspecific conjugation resulting in mixtures, or site-specific methods that require multiple steps, introduction of mutations, or use of enzymes. Here, we report a method to generate antibody–siRNA (1:2) conjugates (ARCs) that are structurally defined and easy to assemble. This ARC platform is based on engineered dual variable domain (DVD) antibodies containing a natural uniquely reactive lysine residue for site-specific conjugation to β-lactam linker-functionalized siRNA. The conjugation is efficient, does not compromise the affinity of the parental antibody, and utilizes chemically stabilized siRNA. For proof-of-concept, we generated DVD-ARCs targeting various cell surface antigens on multiple myeloma cells for the selective delivery of siRNA targeting β-catenin (CTNNB1). A set of BCMA-targeting DVD-ARCs at concentrations as low as 10 nM revealed significant CTNNB1 mRNA and protein knockdown.
Collapse
Affiliation(s)
- Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | - Zhi Xiang Voo
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ashish Garg
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | | | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
24
|
|
25
|
Huang CK, Bär C, Thum T. miR-21, Mediator, and Potential Therapeutic Target in the Cardiorenal Syndrome. Front Pharmacol 2020; 11:726. [PMID: 32499708 PMCID: PMC7243366 DOI: 10.3389/fphar.2020.00726] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Oligonucleotide-based therapies are currently gaining attention as a new treatment option for relatively rare as well as common diseases such as cardiovascular disease. With the remarkable progression of new sequencing technologies, a further step towards personalized precision medicine to target a disease at a molecular level was taken. Such therapies may employ antisense oligonucleotides to modulate the expression of both protein coding and non-coding RNAs, such as microRNAs. The cardiorenal syndrome (CRS) is a complex and severe clinical condition where heart and renal dysfunction mutually affect one another. The underlying mechanisms remain largely unknown and current treatments of CRS are mainly supportive therapies which slow down the progression of the disease, but hardly improve the condition. The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various heart and kidney diseases and has been repeatedly suggested as therapeutic target for the treatment of CRS. Impressive preclinical results have been achieved by an antisense oligonucleotide-based therapy to effectively block the pro-fibrotic traits of miR-21. Since microRNA-mediated pathways are generally very well-conserved, there is considerable commercial interest with regards to clinical translation. In this review, we will summarize the role of miR-21 within the heart–kidney axis and discuss the advantages and pitfalls of miR-21 targeting therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
26
|
Xia X, Pollock N, Zhou J, Rossi J. Tissue-Specific Delivery of Oligonucleotides. Methods Mol Biol 2020; 2036:17-50. [PMID: 31410789 DOI: 10.1007/978-1-4939-9670-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
From the initial discovery of short-interfering RNA (siRNA) and antisense oligonucleotides for specific gene knockdown at the posttranscriptional level to the current CRISPR-Cas9 system offering gene editing at the genomic level, oligonucleotides, in addition to their biological functions in storing and conveying genetic information, provide the most prominent solutions to targeted gene therapies. Nonetheless, looking into the future of curing cancer and acute diseases, researchers are only cautiously optimistic as the cellular delivery of these polyanionic biomacromolecules is still the biggest hurdle for their therapeutic realization. To overcome the delivery obstacle, oligonucleotides have been encapsulated within or conjugated with delivery vehicles for enhanced membrane penetration, improved payload, and tissue-specific delivery. Such delivery systems include but not limited to virus-based vehicles, gold-nanoparticle vehicles, formulated liposomes, and synthetic polymers. In this chapter, delivery challenges imposed by biological barriers are briefly discussed; followed by recent advances in tissue-specific oligonucleotide delivery utilizing both viral and nonviral delivery vectors, discussing their advantages, and how judicious design and formulation could improve and expand their potential as delivery vehicles.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nicolette Pollock
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
27
|
Ge Z, Guo L, Wu G, Li J, Sun Y, Hou Y, Shi J, Song S, Wang L, Fan C, Lu H, Li Q. DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904857. [PMID: 32191376 DOI: 10.1002/smll.201904857] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand-modified DNA origami nanostructure (DON) as an antibody-drug conjugate (ADC)-like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2-[3-(1,3-dicarboxy propyl)-ureido] pentanedioic acid (DUPA) against prostate-specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target-specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.
Collapse
Affiliation(s)
- Zhilei Ge
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linjie Guo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yunlong Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Li
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
28
|
Antibody Conjugates-Recent Advances and Future Innovations. Antibodies (Basel) 2020; 9:antib9010002. [PMID: 31936270 PMCID: PMC7148502 DOI: 10.3390/antib9010002] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.
Collapse
|
29
|
Miura Y. Controlled polymerization for the development of bioconjugate polymers and materials. J Mater Chem B 2020; 8:2010-2019. [DOI: 10.1039/c9tb02418b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of various biopolymers with synthetic polymers were preparedvialiving radical polymerization. The conjugates have precise structures and potential for novel biofunctional materials.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
30
|
Zhang ZQ, Kim YM, Song SC. Injectable and Quadruple-Functional Hydrogel as an Alternative to Intravenous Delivery for Enhanced Tumor Targeting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34634-34644. [PMID: 31475516 DOI: 10.1021/acsami.9b10182] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intravenous (IV) route is the most commonly used drug-delivery approach. However, the targeting efficiency to tumor through IV delivery is usually less than 10%. To address this limitation, we report a new systemic delivery method utilizing injectable and quadruple-functional hydrogels to improve targeting efficiency through passive, active, and magnetic targeting, and hydrogel-controlled sustained release. The hydrogels consist of a folate/polyethylenimine-conjugated poly(organophosphazene) polymer, which encapsulates small interfering RNA (siRNA) and Au-Fe3O4 nanoparticles to form a nanocapsule (NC) structure by a simple mixing. The hydrogels are localized as a long-term "drug-release depot" after a single subcutaneous injection and sol-gel phase transition. NCs released from the hydrogels enter the circulatory systems and then target the tumor through enhanced permeability and retention/folate/magnetism triple-targeting, over the course of circulation, itself prolonged by the controlled release. In vivo experiments show that 12% of NCs are successfully delivered to the tumor, which is a considerable improvement compared to most results through IV delivery. The sustained targeting of gold to tumor enables two cycles of photothermal therapy, resulting in an enhanced silencing effect of siRNA and considerable reduction of tumor volume, which we are unable to achieve via simple intravenous injection.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Cell Line, Tumor
- Delayed-Action Preparations/chemistry
- Delayed-Action Preparations/pharmacology
- Female
- Ferrosoferric Oxide/chemistry
- Ferrosoferric Oxide/pharmacology
- Gold/chemistry
- Gold/pharmacology
- Humans
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Hyperthermia, Induced
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Phototherapy
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Young-Min Kim
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- Department of Biomolecular Science , University of Science and Technology (UST) , Daejeon 305-350 , Republic of Korea
| |
Collapse
|
31
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
32
|
Liang C, Chang J, Jiang Y, Liu J, Mao L, Wang M. Selective RNA interference and gene silencing using reactive oxygen species-responsive lipid nanoparticles. Chem Commun (Camb) 2019; 55:8170-8173. [PMID: 31241120 DOI: 10.1039/c9cc04517a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipid-complexed small interfering RNA (siRNA) nanoparticles are promising gene regulation materials with excellent genetic, but little cellular, selectivity. Herein, we report a chemical strategy to enhance the gene silencing selectivity of these nanoparticles against cancer cells through the covalent integration of a reactive oxygen species (ROS)-degradable thioketal into the lipid nanoparticles. These lipid nanoparticles can efficiently deliver siRNA into cells, and selectively silence cancer cell gene expression in response to the high levels of intracellular ROS in cancer cells.
Collapse
Affiliation(s)
- Chunjing Liang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Chang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ji Liu
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecule Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Hwang D, Nilchan N, Nanna AR, Li X, Cameron MD, Roush WR, Park H, Rader C. Site-Selective Antibody Functionalization via Orthogonally Reactive Arginine and Lysine Residues. Cell Chem Biol 2019; 26:1229-1239.e9. [PMID: 31231031 DOI: 10.1016/j.chembiol.2019.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Homogeneous antibody-drug conjugates (ADCs) that use a highly reactive buried lysine (Lys) residue embedded in a dual variable domain (DVD)-IgG1 format can be assembled with high precision and efficiency under mild conditions. Here we show that replacing the Lys with an arginine (Arg) residue affords an orthogonal ADC assembly that is site-selective and stable. X-ray crystallography confirmed the location of the reactive Arg residue at the bottom of a deep pocket. As the Lys-to-Arg mutation is confined to a single residue in the heavy chain of the DVD-IgG1, heterodimeric assemblies that combine a buried Lys in one arm, a buried Arg in the other arm, and identical light chains, are readily assembled. Furthermore, the orthogonal conjugation chemistry enables the loading of heterodimeric DVD-IgG1s with two different cargos in a one-pot reaction and thus affords a convenient platform for dual-warhead ADCs and other multifaceted antibody conjugates.
Collapse
Affiliation(s)
- Dobeen Hwang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohai Li
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
34
|
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234:16724-16738. [PMID: 30908646 DOI: 10.1002/jcp.28490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody-siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Fishman JM, Zwick DB, Kruger AG, Kiessling LL. Chemoselective, Postpolymerization Modification of Bioactive, Degradable Polymers. Biomacromolecules 2019; 20:1018-1027. [PMID: 30608163 PMCID: PMC6690479 DOI: 10.1021/acs.biomac.8b01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradable polymers promote sustainability, mitigate environmental impact, and facilitate biological applications. Tailoring degradable polymers is challenging because installing functional group-rich side chains is difficult when the backbone itself is susceptible to degradation. A convenient means of side chain installation is through postpolymerization modification (PPM). In functionalizing polyoxazinones, a class of degradable polymers generated by the ring-opening metathesis polymerization (ROMP), we predictably found PPM challenging. Even the versatile azide-alkyne cycloaddition click reaction was ineffective. To solve this problem, we screened PPM reactions whose efficiencies could be assessed using photochemistry (excimer formation). The mildest, pH-neutral process was functionalization of a ketone-containing polymer to yield either oxime (acid labile)- or alkyoxylamine (stable)-substituted polymers. Using this approach, we equipped polymers with fluorophores, reporter groups, and bioactive epitopes. These modifications imbued the polymers with distinctive spectral properties and biological activities. Thus, polyoxazinones are now tunable through a modular method to diversify these macromolecules' function.
Collapse
Affiliation(s)
- Joshua M. Fishman
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Daniel B. Zwick
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
| | - Austin G. Kruger
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin
– Madison, Madison, WI 53706
- Department of Biochemisry, University of
Wisconsin – Madison, Madison, WI 53706
- Department of Chemistry, Massachusetts Institute
of Techology, Cambridge, MA 02139
| |
Collapse
|
36
|
Chandela A, Ueno Y. Systemic Delivery of Small Interfering RNA Therapeutics: Obstacles and Advances. ACTA ACUST UNITED AC 2019. [DOI: 10.7831/ras.7.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akash Chandela
- United Graduate School of Agricultural Science, Gifu University
| | - Yoshihito Ueno
- United Graduate School of Agricultural Science, Gifu University
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
37
|
Kang M, Lu Y, Chen S, Tian F. Harnessing the power of an expanded genetic code toward next-generation biopharmaceuticals. Curr Opin Chem Biol 2018; 46:123-129. [DOI: 10.1016/j.cbpa.2018.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
38
|
Hoshino Y, Jibiki T, Nakamoto M, Miura Y. Reversible p K a Modulation of Carboxylic Acids in Temperature-Responsive Nanoparticles through Imprinted Electrostatic Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31096-31105. [PMID: 30148598 DOI: 10.1021/acsami.8b11397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The acid dissociation constants (p Ka values) of Brønsted acids at the active sites of proteins are reversibly modulated by intramolecular electrostatic interactions with neighboring ions in a reaction cycle. The resulting p Ka shift is crucial for the proteins to capture, transfer, and release target ions. On the other hand, reversible p Ka modulation through electrostatic interactions in synthetic polymer materials has seldom been realized because the interactions are strongly shielded by solvation water molecules in aqueous media. Here, we prepared hydrogel nanoparticles (NPs) bearing carboxylic acid groups whose p Ka values can be reversibly modulated by electrostatic interactions with counterions in the particles. We found that the deprotonated states of the acids were stabilized by electrostatic interactions with countercations only when the acids and cations were both imprinted in hydrophobic microdomains in the NPs during polymerization. Cationic monomers, like primary amine- and guanidium group-containing monomers, which interacted strongly with growing NPs showed greater p Ka modulation than monomers that did not interact with the NPs, such as quaternary ammonium group-containing monomers. Modulation was enhanced when the guanidium moieties were protected with hydrophobic groups during polymerization, so that the guanidium ions were imprinted in the hydrophobic microdomains; the lowest p Ka of ∼4.0 was achieved as a result. The p Ka modulation of the acids could be reversibly removed by inducing a temperature-dependent volume phase transition of the gel NPs. These design principles are applicable to other stimuli-responsive materials and integral to the development of synthetic materials that can be used to capture, transport, and separate target ions.
Collapse
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Toshiki Jibiki
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yoshiko Miura
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
39
|
Exploring the role of polymeric conjugates toward anti-cancer drug delivery: Current trends and future projections. Int J Pharm 2018; 548:500-514. [DOI: 10.1016/j.ijpharm.2018.06.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
40
|
Yuan J, Zhang Y, Li Z, Wang Y, Lu H. A S-Sn Lewis Pair-Mediated Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides: Fast Kinetics, High Molecular Weight, and Facile Bioconjugation. ACS Macro Lett 2018; 7:892-897. [PMID: 35650961 DOI: 10.1021/acsmacrolett.8b00465] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid and controlled generation of polypeptides with ultrahigh molecular weight (MW) and well-defined chain end functionality has been a great challenge. To tackle this problem, we report here an initiation system based on a S-Sn Lewis pair, trimethylstannyl phenyl sulfide (PhS-SnMe3), for the ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). This initiator displays a strong solvent effect, and can yield polypeptides with high MW (>1.0 × 105 g·mol-1) and low polydispersity index within a few hours. The MWs of the obtained polypeptides are strongly dependent on the THF/DMF ratio. The polymerization follows a typical first-order kinetic character with respect to the monomer concentration in mixed THF and DMF. Moreover, a highly reactive phenyl thioester is in situ generated at the C-terminus of the polypeptides, which is readily accessible for native chemical ligation affording high MW and site-specific protein-polypeptide conjugates. Together, this initiator sheds light on regulating the ROP of NCAs via appropriate Lewis pair and solvent selection, and is particularly useful in preparing ultrahigh MW polypeptides within a short period of time.
Collapse
Affiliation(s)
- Jingsong Yuan
- Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yi Zhang
- Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zezhou Li
- Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yaoyi Wang
- Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
41
|
Nakamoto K, Akao Y, Furuichi Y, Ueno Y. Enhanced Intercellular Delivery of cRGD-siRNA Conjugates by an Additional Oligospermine Modification. ACS OMEGA 2018; 3:8226-8232. [PMID: 30087937 PMCID: PMC6072241 DOI: 10.1021/acsomega.8b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/07/2018] [Indexed: 05/07/2023]
Abstract
Small interfering RNA (siRNA), consisting a 21-mer duplex molecule, is often modified by conjugation with specific ligands to enhance its capacity for tissue-specific delivery. However, these attempts are hampered by the low permeability of negatively charged RNA molecules to enter the cell membrane. In this study, we designed and synthesized siRNA conjugates modified with cationic oligospermine and cyclic RGD (cRGD) to overcome the low-membrane permeability of siRNA. The siRNA conjugate, which contains 15 spermines and a cRGD peptide, showed sufficient gene-silencing activity at 250 nM final concentration without a transfection reagent. Under these conditions, the cationic oligospermine and cRGD-siRNA conjugate did not show any cytotoxicity.
Collapse
Affiliation(s)
- Kosuke Nakamoto
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yukihiro Akao
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Furuichi
- GeneCare
Research Institute Co., Ltd., 19-2 Kajiwara, Kamakura 247-0063, Japan
| | - Yoshihito Ueno
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center
of Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
- E-mail: . Phone: +81-58-293-2919. Fax: +81-58-293-2919 (Y.U.)
| |
Collapse
|
42
|
|
43
|
Chou CH, Lin PC. Glycan-Directed Grafting-from Polymerization of Immunoglobulin G: Site-Selectively Modified IgG-Polymer Conjugates with Preserved Biological Activity. Biomacromolecules 2018; 19:3086-3095. [PMID: 29890078 DOI: 10.1021/acs.biomac.8b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antibody and related antibody drugs for the treatment of malignancies have led to progress in targeted cancer therapy. Preparation of diverse antibody conjugates is critical for preclinical and clinical applications. However, precise control in tagging molecules at specific locations on antibodies is essential to preserve their native function. In this study, a synthetic boronic acid (BA)-tosyl initiator was used to trigger a glycan-directed modification of IgGs, and the obtained IgG macroinitiators allowed a growth of the poly N-isopropylacrylamide (PNIPAAm) chains specifically at Fc-domains. Therefore, the PNIPAAm chains are located away from the critical antigen-binding domains (Fab), which could reasonably prevent the loss of biological activity after the attachment of polymer chains. According to the proposed strategy, a site-selectively modified anticoncanavalin A (Con A) antibody-PNIPAAm conjugate showed 6-times higher efficiency in the binding of targeted Con A antigen to a randomly conjugated anti-Con A antibody-PNIPAAm conjugate. In this study, we developed the first chemical strategy for the site-specific preparation of IgG-polymer conjugates with conserved biological activity as well as intact glycan structures.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| | - Po-Chiao Lin
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| |
Collapse
|
44
|
Gao S, Liu X, Wang Z, Jiang S, Wu M, Tian Y, Niu Z. Fluorous interaction induced self-assembly of tobacco mosaic virus coat protein for cisplatin delivery. NANOSCALE 2018; 10:11732-11736. [PMID: 29911244 DOI: 10.1039/c8nr03748e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tobacco mosaic virus coat protein was modified with a small molecular fluorous ponytail at specific sites, and self-assembled into spherical nanoparticles through fluorous interaction induced self-assembly. By loading the anti-cancer drug cisplatin through metal-ligand coordination, this spherical assembly with high stability has potential as a drug carrier.
Collapse
Affiliation(s)
- Sijia Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Li D, Mo F, Wu J, Huang Y, Zhou H, Ding S, Chen W. A multifunctional DNA nano-scorpion for highly efficient targeted delivery of mRNA therapeutics. Sci Rep 2018; 8:10196. [PMID: 29976947 PMCID: PMC6033943 DOI: 10.1038/s41598-018-28542-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
The highly efficient cancer cell targeted delivery plays an important role in precise targeted therapies. Herein, a multifunctional DNA nano-scorpion nanostructure (termed AptDzy-DNS) functioned with aptamers and DNAzyme is developed for highly efficient targeted delivery of mRNA therapeutics in gene therapy. The designed AptDzy-DNS is self-assembled with specific aptamers as “scorpion stingers” for targeting tumor cell and DNAzymes as “scorpion pincers” for targeted gene therapy by cleaving mRNA into fragments. The as-prepared AptDzy-DNS can effectively distinguish cancer cells from normal cells by specific cross-talking between aptamers on AptDzy-DNS and overexpressed cell-surface receptors. In the process of gene therapy, by reacting with Mg2+-dependent DNAzyme on AptDzy-DNS, the mRNA oligonucleotide in cancer cell is auto-cleaved into broken strand, failing to be translated into corresponding protein. Following, the downregulation protein can block cancer cell growth and realize highly efficient targeted therapies. The results demonstrate that the multifunctional AptDzy-DNS shows promise for targeted cancer cell discrimination, highly efficient targeted delivery of mRNA therapeutics in gene therapy. Thus, this developed strategy provides impressive improvement on gene targeted therapy and paves the way for application of AptDzy-DNS in human cancer targeted therapies.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Fei Mo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jiangling Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yong Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Huihao Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
46
|
Ma Y, Sha M, Cheng S, Yao W, Li Z, Qi XR. Construction of Hyaluronic Tetrasaccharide Clusters Modified Polyamidoamine siRNA Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E433. [PMID: 29899207 PMCID: PMC6027316 DOI: 10.3390/nano8060433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022]
Abstract
The CD44 protein, as a predominant receptor for hyaluronan (HA), is highly expressed on the surface of multiple tumor cells. HA, as a targeting molecule for a CD44-contained delivery system, increases intracellular drug concentration in tumor tissue. However, due to the weak binding ability of hyaluronan oligosaccharide to CD44, targeting for tumor drug delivery has been restricted. In this study, we first use a HA tetrasaccharide cluster as the target ligand to enhance the binding ability to CD44. A polyamidoamine (PAMAM) dendrimer was modified by a HA tetrasaccharide cluster as a nonviral vector for small interfering RNA (siRNA) delivery. The dendrimer/siRNA nanocomplexes increased the cellular uptake capacity of siRNA through the CD44 receptor-mediated endocytosis pathway, allowing the siRNA to successfully escape the endosome/lysosome. Compared with the control group, nanocomplexes effectively reduced the expression of GFP protein and mRNA in MDA-MB-231-GFP cells. This delivery system provides a foundation to increase the clinical applications of PAMAM nanomaterials.
Collapse
Affiliation(s)
- Yingcong Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Meng Sha
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shixuan Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
47
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
48
|
Lyu Z, Kang L, Buuh ZY, Jiang D, McGuth JC, Du J, Wissler HL, Cai W, Wang RE. A Switchable Site-Specific Antibody Conjugate. ACS Chem Biol 2018; 13:958-964. [PMID: 29461804 DOI: 10.1021/acschembio.8b00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic incorporation of unnatural amino acids (UAAs) provides a unique approach to the synthesis of site-specific antibody conjugates that are homogeneous and better defined constructs than random conjugates. Yet, the yield varies for every antibody, and the process is costly and time-consuming. We have developed a switchable αGCN4-Fab conjugate that incorporates UAA p-acetylphenylalanine. The GCN4 peptide is used as a switch, and antibodies fused by GCN4 can direct the αGCN4-Fab conjugate to target different cancer cells for diagnosis, imaging, or therapeutic treatment. More importantly, this switchable conjugate demonstrated an impressive potential for pretargeted imaging in vivo. This approach illustrates the utility of an orthogonal switch as a general strategy to endow versatility to a single antibody conjugate, which should facilitate the application of UAA-based site-specific conjugates for a host of biomedical uses in the future.
Collapse
Affiliation(s)
- Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jeffrey C. McGuth
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Juanjuan Du
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Haley L. Wissler
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Rongsheng E. Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
49
|
Zhou Q. Site-Specific Antibody Conjugation for ADC and Beyond. Biomedicines 2017; 5:biomedicines5040064. [PMID: 29120405 PMCID: PMC5744088 DOI: 10.3390/biomedicines5040064] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have become a promising class of antitumor agents with four conjugates being approved by regulatory agencies for treating cancer patients. To improve the conventional conjugations that are currently applied to generate these heterogeneous products, various site-specific approaches have been developed. These methods couple cytotoxins or chemotherapeutic drugs to specifically defined sites in antibody molecules including cysteine, glutamine, unnatural amino acids, short peptide tags, and glycans. The ADCs produced showed high homogeneity, increased therapeutic index, and strong antitumor activities in vitro and in vivo. Moreover, there are recent trends in using these next generation technologies beyond the cytotoxin-conjugated ADC. These site-specific conjugations have been applied for the generation of many different immunoconjugates including bispecific Fab or small molecule–antibody conjugates, immunosuppressive antibodies, and antibody–antibiotic conjugates. Thus, it is likely that additional technologies and related site-specific conjugates will emerge in the near future, with various chemicals or small molecular weight proteins in addition to cytotoxin for better treatment of many challenging diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Protein Engineering, Biologics Research, Sanofi, Framingham, MA 01701, USA.
| |
Collapse
|
50
|
Targeted Delivery of siRNA Therapeutics to Malignant Tumors. JOURNAL OF DRUG DELIVERY 2017; 2017:6971297. [PMID: 29218233 PMCID: PMC5700508 DOI: 10.1155/2017/6971297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/10/2017] [Indexed: 01/11/2023]
Abstract
Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.
Collapse
|