1
|
Wu R, Xie D, Du J. The binding pattern of ferric iron and iron-binding protein in Botrytis cinerea. Comput Biol Med 2024; 178:108686. [PMID: 38850956 DOI: 10.1016/j.compbiomed.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Iron-binding protein (Ibp) has protective effect on pathogen exposed to H2O2 in defense response of plants. Ibp in Botrytis cinerea (BcIbp) is related to its virulence. Bcibp mutation lead to virulence deficiencies in B. cinerea. BcIbp is involved in the Fe3+ homeostasis regulation. Recognition the binding site and binding pattern of ferric iron and iron-binding protein in B. cinerea are vital to understand its function. In this study, molecular dynamics (MD) simulations, gaussian accelerated molecular dynamics (GaMD) simulations, dynamic cross correlation analysis and quantum chemical energy calculation were used to explore binding pattern of ferric iron. MD results showed that the C-terminal region had little effect on the stability of residues in the Fe3+-binding pocket. Energy calculations suggested the most likely coordination pattern for ferric iron in iron-binding protein. These results will help to understand the binding of ferric iron to iron-binding protein and provide new ideas for regulating the virulence of B. cinerea.
Collapse
Affiliation(s)
- Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Donglin Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Zhou Z, Roelfes G. Synergistic Catalysis of Tandem Michael Addition/Enantioselective Protonation Reactions by an Artificial Enzyme. ACS Catal 2021; 11:9366-9369. [PMID: 34386272 PMCID: PMC8353628 DOI: 10.1021/acscatal.1c02298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Indexed: 12/16/2022]
Abstract
Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water. Herein, we report a tandem Michael addition/enantioselective protonation reaction catalyzed by an artificial enzyme employing two abiological catalytic sites in a synergistic fashion: a genetically encoded noncanonical p-aminophenylalanine residue and a Lewis acid Cu(II) complex. The exquisite stereocontrol achieved in the protonation of the transient enamine intermediate is illustrated by up to >20:1 dr and >99% ee of the product. These results illustrate the potential of exploiting synergistic catalysis in artificial enzymes for challenging reactions.
Collapse
Affiliation(s)
- Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Sodium Tetraphenylborate Displays Selective Bactericidal Activity against Neisseria meningitidis and N. gonorrhoeae and Is Effective at Reducing Bacterial Infection Load. Antimicrob Agents Chemother 2021; 65:AAC.00254-20. [PMID: 33168608 PMCID: PMC7848997 DOI: 10.1128/aac.00254-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae, two highly related species that might have emerged from a common commensal ancestor, constitute major human threats. Vaccines are available to prevent N. meningitidis infection, whereas there are only a limited number of antibiotics available for N. gonorrhoeae Unfortunately, some strains of these species are rapidly evolving and capable of escaping human interventions. Thus, it is now urgent to develop new avenues to fight these bacteria. This study reports that a boron-based salt, sodium tetraphenylborate (NaBPh4), displays high bactericidal activity and remarkable specificity against N. meningitidis and N. gonorrhoeae Other closely related commensal species such as Neisseria lactamica, which is found in the normal flora of healthy individuals, were found to be less affected even at 5-fold higher doses of NaBPh4 This specificity was further observed when much lower sensitivity was found for more distant Neisseriaceae species (such as Neisseria elongata or Kingella oralis) and completely unrelated species. Significant boron uptake by N. meningitidis cells was observed after incubation with 5 μM NaBPh4, as measured by inductively coupled plasma mass spectrometry, suggesting that this drug candidate's target(s) could be located intracellularly or within the cell envelope. Furthermore, mutants with slightly decreased susceptibility displayed alterations in genes coding for cell envelope elements, which reduced their virulence in an animal model of infection. Finally, a single dose of NaBPh4 resulted in a significant reduction in bacterial burden in a mouse model of N. meningitidis bacteremia. Although numerous boron-containing species were previously reported for their complex biological activities, the observation of this narrow selectivity is unprecedented and of potential importance from a therapeutic standpoint.
Collapse
|
4
|
Hunter JM, Nemzer BV, Rangavajla N, Biţă A, Rogoveanu OC, Neamţu J, Scorei IR, Bejenaru LE, Rău G, Bejenaru C, Mogoşanu GD. The Fructoborates: Part of a Family of Naturally Occurring Sugar-Borate Complexes-Biochemistry, Physiology, and Impact on Human Health: a Review. Biol Trace Elem Res 2019; 188:11-25. [PMID: 30343480 PMCID: PMC6373344 DOI: 10.1007/s12011-018-1550-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/11/2018] [Indexed: 01/13/2023]
Abstract
Sugar-borates (SBs) are mono- or di-sugar-borate esters (SBEs) comprised of one or two monosaccharide molecules linked to a boron (B) atom. SBEs occur naturally in commonly consumed herbs, vegetables, fruits, seeds, and nuts and, other than greatly varying levels of B found in local drinking water, are the primary natural dietary sources of B-containing molecules in humans. To date, the most studied SBE is calcium fructoborate (CaFB). CaFB represents an important example of how organic B-containing molecules are significantly distinct from their inorganic counterparts. During these past two decades, CaFB has been researched for its physical and biochemical characteristics, safety, and clinical outcomes. Results of these researches are presented and discussed herein. CaFB has been characterized using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), high-performance thin-layer chromatography (HPTLC), nuclear magnetic resonance (NMR), liquid chromatography-multistage accurate mass spectrometry (LC-MSn), X-ray diffraction (XRD), Raman spectroscopy, and inductively coupled plasma (ICP) in non-biological and biological specimens. Potential health benefits of CaFB have been clinically investigated in pilot and efficacy studies demonstrating (i) significant reductions in knee discomfort and improved flexibility within 7, 14, and 90 days and (ii) significant effect on blood levels of inflammatory, cardiovascular, and other biomarkers. These studies support the use of CaFB as a dietary supplement for the management of joint discomfort. CaFB is presented here in order to illustrate how physiological benefits are imparted by distinct organic boron-containing molecules rather than solely by the element B itself. Considering recent National Health and Nutrition Examination Survey (NHANES) data reporting increases in age-related joint pain and an increasing elderly demographic, SBEs offer potential for safe, natural, and effective management of joint discomfort and improved mobility in human and animal health applications. Several of these studies may also open new opportunities for use of SBEs for health benefits beyond joint health.
Collapse
Affiliation(s)
- John M Hunter
- VDF FutureCeuticals, 2692 North State Route 1-17, Momence, IL, 60954, USA
| | - Boris V Nemzer
- VDF FutureCeuticals, 2692 North State Route 1-17, Momence, IL, 60954, USA
| | | | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Otilia Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Johny Neamţu
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Ion Romulus Scorei
- BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari Commune, Dolj County, Romania.
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Cornelia Bejenaru
- Department of Vegetal & Animal Biology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| |
Collapse
|
5
|
Matsia S, Tsave O, Hatzidimitriou A, Gabriel C, Bertmer M, Salifoglou A. A Systematic Synthetic Study of the Aqueous Chemistry of Binary Boron–Hydroxycarboxylic Acid Systems: Boron Structural Speciation Correlation to the Biotoxicity Profile. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sevasti Matsia
- Laboratory of Inorganic Chemistry and Advanced Materials Aristotle University of Thessaloniki Department of Chemical Engineering 54124 Thessaloniki Greece
| | - Olga Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials Aristotle University of Thessaloniki Department of Chemical Engineering 54124 Thessaloniki Greece
| | - Antonios Hatzidimitriou
- Laboratory of Inorganic Chemistry Department of Chemistry Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Catherine Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials Aristotle University of Thessaloniki Department of Chemical Engineering 54124 Thessaloniki Greece
- Center for Research of the Structure of Matter, Magnetic Resonance Laboratory Department of Chemical Engineering Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Marko Bertmer
- Faculty of Physics and Earth Sciences Institute of Experimental Physics II Leipzig University 04103 Leipzig Germany
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials Aristotle University of Thessaloniki Department of Chemical Engineering 54124 Thessaloniki Greece
| |
Collapse
|
6
|
Mogoşanu GD, Biţă A, Bejenaru LE, Bejenaru C, Croitoru O, Rău G, Rogoveanu OC, Florescu DN, Neamţu J, Scorei ID, Scorei RI. Calcium Fructoborate for Bone and Cardiovascular Health. Biol Trace Elem Res 2016; 172:277-281. [PMID: 26686846 PMCID: PMC4930945 DOI: 10.1007/s12011-015-0590-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
Calcium fructoborate (CF), a natural sugar-borate ester found in fresh fruits and vegetables, is a source of soluble boron. CF contains three forms of borate (diester, monoester, and boric acid) and all are biologically active, both at the intracellular (as free boric acid) and extracellular level (as fructose-borate diester and monoester). At the cellular and molecular level, CF is superior to the boric acid/borate, exhibiting a complex "protective" effect against inflammatory response. CF is commercially available in the USA as a "nature-identical" complex, an active compound for dietary supplements. It provides effective and safe support against the discomfort and lack of flexibility associated with osteoarticular conditions (arthritis and joint degeneration), and improves Western Ontario and McMaster Universities Osteoarthritis (WOMAC) and McGill indexes. In addition, orally administered CF is effective in ameliorating symptoms of physiological response to stress, including inflammation of the mucous membranes, discomfort associated with osteoarthritis disorders, and bone loss, and also for supporting cardiovascular health. Clinical studies have exhibited the ability of CF to significantly modulate molecular markers associated with inflammatory mechanisms, mainly on the elevated serum levels of C-reactive protein (CRP).
Collapse
Affiliation(s)
- George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania.
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Cornelia Bejenaru
- Department of Vegetal & Animal Biology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Octavian Croitoru
- Department of Drug Control, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Otilia-Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Dan Nicolae Florescu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Johny Neamţu
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349, Craiova, Romania
| | - Iulia Daria Scorei
- BioBoron Research Institute, Mirceşti Street, Bldg. M4/1/1, 200506, Craiova, Romania
| | - Romulus Ion Scorei
- BioBoron Research Institute, Mirceşti Street, Bldg. M4/1/1, 200506, Craiova, Romania
| |
Collapse
|
7
|
Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320-39. [PMID: 25764171 PMCID: PMC4375017 DOI: 10.1039/c4dt03559c] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
8
|
Furnholm TR, Tisa LS. The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics 2014; 15:1092. [PMID: 25495525 PMCID: PMC4531530 DOI: 10.1186/1471-2164-15-1092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils.
Collapse
Affiliation(s)
- Teal R Furnholm
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|