1
|
Cheng X, Zhang W. Polymerization-induced Chiral Self-assembly for the In situ Construction, Modulation, Amplification and Applications of Asymmetric Suprastructures. Angew Chem Int Ed Engl 2024; 63:e202414332. [PMID: 39225627 DOI: 10.1002/anie.202414332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
In the polymerization-induced chiral self-assembly (PICSA) process, chiral functional monomers undergo spontaneous supramolecular self-assembly and asymmetric stacking during living polymerization, leading to the in situ generation of chiroptical polymer assemblies characterized by diverse morphologies. The PICSA strategy facilitates precise control and manipulation of both non-covalent supramolecular helices and covalent macromolecular helices within aggregated cores, thereby driving significant advancements in fields such as chiral recognition materials, asymmetric catalysts, nonlinear optical materials, and ferroelectric liquid crystals (LC). This minireview summarizes recent developments in the in situ chiroptical construction and modulation associated with the PICSA methodology. Furthermore, it seeks to elucidate emerging PICSA systems founded on various living polymerization mechanisms, exploring hierarchical chirality transfer processes and the pathway complexities in both equilibrium and non-equilibrium conditions. This minireview also presents several illustrative examples that demonstrate the practical applications of chiral polymer materials synthesized through the PICSA approach, thereby illuminating future opportunities in this innovative field.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
2
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
5
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
7
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Shi QQ, Zhou X, Xu J, Wang N, Zhang JL, Hu XL, Liu SY. Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Lu Z, Liu D, Wei P, Yi T. Activated aggregation strategies to construct size-increasing nanoparticles for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1848. [PMID: 36039701 DOI: 10.1002/wnan.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
The development of novel therapeutic strategies and modalities for tumors is still one of the important areas of current scientific research. Low permeability and short residence time of drugs in solid tumor areas are important reasons for the low efficiency of existing therapeutic strategies. Typically, nanoparticles with large size displayed enhanced residence time but low permeability. Therefore, to prolong the retention time of materials in solid tumors, size-increasing strategies have been developed to directly generate large-scale nanoparticles using small molecular compounds or increase the size of small nanoparticles in solid tumor areas. In this review, we summarize recently reported activatable aggregation systems that could be activated by cancer-related substances for cancer therapy and classify them by the mechanisms that lead to aggregation. In the end, we propose some potential challenges briefly from the view of our opinion. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Zhenni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Dongya Liu
- Department of Chemistry, Fudan University, Shanghai, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
10
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
11
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Salicylaldehyde and D-(+)-galactose functionalized chitosan oligosaccharide nanoparticles as carriers for sustained release of pesticide with enhanced UV stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
14
|
Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM. Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Top Curr Chem (Cham) 2022; 380:45. [PMID: 35951265 PMCID: PMC9366760 DOI: 10.1007/s41061-022-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Glycopolymer materials have emerged as a significant biopolymer class that has piqued the scientific community's attention due to their potential applications. Recently, they have been found to be a unique synthetic biomaterial; glycopolymer materials have also been used for various applications, including direct therapeutic methods, medical adhesives, drug/gene delivery systems, and biosensor applications. Therefore, for the next stage of biomaterial research, it is essential to understand current breakthroughs in glycopolymer-based materials research. This review discusses the most widely utilized synthetic methodologies for glycopolymer-based materials, their properties based on structure-function interactions, and the significance of these materials in biosensing applications, among other topics. When creating glycopolymer materials, contemporary polymerization methods allow precise control over molecular weight, molecular weight distribution, chemical activity, and polymer architecture. This review concludes with a discussion of the challenges and complexities of glycopolymer-based biosensors, in addition to their potential applications in the future.
Collapse
Affiliation(s)
- Mohammad R. Thalji
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 Gyeongbuk South Korea
| | - Amal Amin Ibrahim
- Polymers and pigments department, Chemical industries research institute, National Research Centre, El-Bohouth St, Dokki, Cairo, 12622 Egypt
| | - Kwok Feng Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Malaysia
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, Rostov-on-Don, Russian Federation
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| |
Collapse
|
15
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
17
|
Zhang J, Jiang J, Lin S, Cornel EJ, Li C, Du J. Polymersomes: from macromolecular self‐assembly to particle assembly. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiamin Zhang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jinhui Jiang
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Sha Lin
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Erik Jan Cornel
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Chang Li
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
| | - Jianzhong Du
- Department of Polymeric Materials School of Materials Science and Engineering, Tongji University 4800 Caoan Road Shanghai 201804 China
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine Tongji University Shanghai 200434 China
| |
Collapse
|
18
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
19
|
Kim S, Jana B, Go EM, Lee JE, Jin S, An EK, Hwang J, Sim Y, Son S, Kim D, Kim C, Jin JO, Kwak SK, Ryu JH. Intramitochondrial Disulfide Polymerization Controls Cancer Cell Fate. ACS NANO 2021; 15:14492-14508. [PMID: 34478266 DOI: 10.1021/acsnano.1c04015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Eun Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sehee Son
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
22
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Zhong F, Pan CY. Allylthioketone mediating radical polymerization of butyl acrylate. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco-Inside Nano-Assemblies through RAFT Dispersion Polymerization of Galactose-Decorated Monomer. Angew Chem Int Ed Engl 2021; 60:11098-11103. [PMID: 33565244 PMCID: PMC8252037 DOI: 10.1002/anie.202015692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| | - Thomas Bick
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Johannes Martin
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Alexander Böker
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Ulrich Glebe
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| |
Collapse
|
26
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco‐Inside Nano‐Assemblies through RAFT Dispersion Polymerization of Galactose‐Decorated Monomer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| | - Thomas Bick
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Johannes Martin
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Petra Wendler
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| |
Collapse
|
27
|
Progress on Preparation of pH/Temperature-Sensitive Intelligent Hydrogels and Applications in Target Transport and Controlled Release of Drugs. INT J POLYM SCI 2021. [DOI: 10.1155/2021/1340538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hydrogels with three-dimensional network structure, hydrophilic, and insoluble in water which are ideal carrier materials for intelligent drug delivery systems. Intelligent hydrogel has become a research frontier and hotspot because of its intelligence, high efficiency, safety, and convenience in drug controlled and prolonged release. It has a broad application prospect in the medicine and biomedicine fields and can lead the medicine fields into a new era of “precise treatment.” Based on the latest research progress, the main preparation methods of hydrogel and the development of the drug delivery system are briefly introduced. The most promising three intelligent hydrogels in the human physiological environment, namely, pH responsiveness, temperature responsiveness, and pH/temperature dual responsiveness, are emphatically reviewed. Their release mechanisms, targeting transport, and controlled-prolonged release of drug are also discussed. In addition, some suggestions for the main problems and future development were given.
Collapse
|
28
|
Abstract
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
Collapse
Affiliation(s)
- Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| |
Collapse
|
29
|
Banger A, Sindram J, Otten M, Kania J, Wilms D, Strzelczyk A, Miletic S, Marlovits TC, Karg M, Hartmann L. Synthesis and self-assembly of amphiphilic precision glycomacromolecules. Polym Chem 2021. [DOI: 10.1039/d1py00422k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Amphiphilic precision glycomacromolecules (APG) are synthesized using solid-phase synthesis and studied for their self-assembly behavior and as inhibitors of bacterial adhesion.
Collapse
Affiliation(s)
- Alexander Banger
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Julian Sindram
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marius Otten
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jessica Kania
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dimitri Wilms
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexander Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sean Miletic
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Thomas C. Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Matthias Karg
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
30
|
Dao TPT, Vezenkov L, Subra G, Ladmiral V, Semsarilar M. Nano-assemblies with core-forming hydrophobic polypeptide via polymerization-induced self-assembly (PISA). Polym Chem 2021. [DOI: 10.1039/d0py00793e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study is to produce self-assembled structures with hydrophobic polypeptide cores via Reversible Addition–Fragmentation chain Transfer (RAFT) – mediated Polymerisation-Induced Self-Assembly (PISA).
Collapse
Affiliation(s)
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron
- IBMM
- Univ Montpellier
- CNRS
- ENSCM
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM
- Univ Montpellier
- CNRS
- ENSCM
| | | |
Collapse
|
31
|
Tian M, Ma C, Huang X, Lu G, Feng C. Supramolecular-micelle-directed preparation of uniform magnetic nanofibers with length tunability, colloidal stability and capacity for surface functionalization. Polym Chem 2021. [DOI: 10.1039/d1py00168j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a versatile and efficient platform to prepare uniform magnetic nanofibers with length tunability, colloidal and morphological stability, capacity for surface functionalization and enhanced T2 contrast.
Collapse
Affiliation(s)
- Mingwei Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
32
|
Zhu C, Nicolas J. Towards nanoparticles with site-specific degradability by ring-opening copolymerization induced self-assembly in organic medium. Polym Chem 2021. [DOI: 10.1039/d0py01425g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radical ring-opening copolymerization-induced self-assembly (rROPISA) was successfully applied to the synthesis of core-, surface- or surface plus core-degradable nanoparticles in heptane, leading to site-specific degradability by rROPISA.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay
- CNRS
- Institut Galien Paris-Saclay
- 92296 Châtenay-Malabry
- France
| | - Julien Nicolas
- Université Paris-Saclay
- CNRS
- Institut Galien Paris-Saclay
- 92296 Châtenay-Malabry
- France
| |
Collapse
|
33
|
Rucco DJ, Barnes BE, Garrison JB, Sumerlin BS, Savin DA. Modular Genetic Code Expansion Platform and PISA Yield Well-Defined Protein-Polymer Assemblies. Biomacromolecules 2020; 21:5077-5085. [DOI: 10.1021/acs.biomac.0c01225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dominic J. Rucco
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brooke E. Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Bristol AN, Saha J, George HE, Das PK, Kemp LK, Jarrett WL, Rangachari V, Morgan SE. Effects of Stereochemistry and Hydrogen Bonding on Glycopolymer-Amyloid-β Interactions. Biomacromolecules 2020; 21:4280-4293. [PMID: 32786526 PMCID: PMC7847044 DOI: 10.1021/acs.biomac.0c01077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saccharide stereochemistry plays an important role in carbohydrate functions such as biological recognition processes and protein binding. Synthetic glycopolymers with pendant saccharides of controlled stereochemistry provide an attractive approach for the design of polysaccharide-inspired biomaterials. Acrylamide-based polymers containing either β,d-glucose or β,d-galactose pendant groups, designed to mimic GM1 ganglioside saccharides, and their small-molecule analogues were used to evaluate the effect of stereochemistry on glycopolymer solution aggregation processes alone and in the presence of Aβ42 peptide using dynamic light scattering, gel permeation chromatography-multiangle laser light scattering, and fluorescence assays. Fourier transform infrared and nuclear magnetic resonance (NMR) were employed to determine hydrogen bonding patterns of the systems. The galactose-containing polymer displayed significant intramolecular hydrogen bonding and self-aggregation and minimal association with Aβ42, while the glucose-containing glycopolymers showed intermolecular interactions with the surrounding environment and association with Aβ42. Saturation transfer difference NMR spectroscopy demonstrated different binding affinities for the two glycopolymers to Aβ42 peptide.
Collapse
Affiliation(s)
- Ashleigh N Bristol
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Jhinuk Saha
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Hannah E George
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Pradipta K Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Lisa K Kemp
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - William L Jarrett
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
35
|
Dao TPT, Vezenkov L, Subra G, Amblard M, In M, Le Meins JF, Aubrit F, Moradi MA, Ladmiral V, Semsarilar M. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. P. Tuyen Dao
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Martin In
- Laboratoire Charles Coulomb, L2C, Univ Montpellier, CNRS, Montpellier 34095, France
| | - Jean-François Le Meins
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Florian Aubrit
- Laboratoire de Chimie des Polymères Organiques, LCPO UMR 5629, Université Bordeaux, CNRS, Pessac 33607, France
| | - Mohammad-Amin Moradi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier, ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Mona Semsarilar
- Institut Européen des Membranes, IEM, University Montpellier, CNRS, ENSCM, Montpellier 34095, France
| |
Collapse
|
36
|
Characterizing the Core-Shell Architecture of Block Copolymer Nanoparticles with Electron Microscopy: A Multi-Technique Approach. Polymers (Basel) 2020; 12:polym12081656. [PMID: 32722462 PMCID: PMC7464915 DOI: 10.3390/polym12081656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Electron microscopy has proved to be a major tool to study the structure of self-assembled amphiphilic block copolymer particles. These specimens, like supramolecular biological structures, are problematic for electron microscopy because of their poor capacity to scatter electrons and their susceptibility to radiation damage and dehydration. Sub-50 nm core-shell spherical particles made up of poly(hydroxyethyl acrylate)–b–poly(styrene) are prepared via polymerization-induced self-assembly (PISA). For their morphological characterization, we discuss the advantages, limitations, and artefacts of TEM with or without staining, cryo-TEM, and SEM. A number of technical points are addressed such as precisely shaping of particle boundaries, resolving the particle shell, differentiating particle core and shell, and the effect of sample drying and staining. TEM without staining and cryo-TEM largely evaluate the core diameter. Negative staining TEM is more efficient than positive staining TEM to preserve native structure and to visualize the entire particle volume. However, no technique allows for a satisfactory imaging of both core and shell regions. The presence of long protruding chains is manifested by patched structure in cryo-TEM and a significant edge effect in SEM. This manuscript provides a basis for polymer chemists to develop their own specimen preparations and to tackle the interpretation of challenging systems.
Collapse
|
37
|
Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J. pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5249-5258. [PMID: 32286845 DOI: 10.1021/acs.jafc.9b08171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pH-stimuli amphiphilic lignin-based copolymer was prepared, and it could self-assemble to form spherical nanomicelles with the addition of "switching" water. The morphology, structure, and physical properties of micelles were characterized with transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), particle-size analysis, and zeta-potential measurement. In vitro drug release exemplified that the micelles were pH-sensitive, retaining more than 84.36% ibuprofen (IBU) in simulated gastric fluid (pH 1.5) and presenting a smooth release of 81.81% IBU in simulated intestinal fluid (pH 7.4) within 72 h. Cell culture studies showed that the nanomicelles were biocompatible and boosted the proliferation of human bone marrow stromal cells hBMSC and mouse embryonic fibroblast cells NIH-3T3. Interestingly, the nanomicelles inhibited the survival of human colon cancer cells HT-29 with a final survival rate of only 5.34%. Therefore, this work suggests a novel strategy to synthesize intelligent lignin-based nanomicelles that show a great potential as oral drug carriers.
Collapse
Affiliation(s)
- Lianghao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Bin Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Weihua Luo
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shaofei Nie
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xinyi Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Yanan Yin
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Shibo Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Peng Zhan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Lin Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jienan Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Bioethanol Research Center of State Forestry Bureau, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Hunan Engineering Research Center of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|
38
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
39
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
40
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Men Y, Li W, Lebleu C, Sun J, Wilson DA. Tailoring Polymersome Shape Using the Hofmeister Effect. Biomacromolecules 2020; 21:89-94. [PMID: 31525869 PMCID: PMC6961129 DOI: 10.1021/acs.biomac.9b00924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Reshaping polymersomes remains a challenge for both size and shape control, methodology development, and mechanism understanding, which hindered their application in nanomedicine and nanomachine. Unlike liposome, polymersomes are capable of maintaining their shape due to their rigid and glassy membrane. Here we use the Hofmeister effect to guide the shape control of polymersome by tuning the ion type and concentration. Multiple morphologies such as ellipsoid, tube, disc, stomatocytes, and large compound vesicles are found. These results give evidence of demonstrating that the shape changes are not only induced by osmotic pressure, but also by the interaction with the polymersome membranes. Additionally, this methodology provides a general tool to tailor the shape of polymersome into various morphologies.
Collapse
Affiliation(s)
- Yongjun Men
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | - Wei Li
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | - Coralie Lebleu
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | - Jiawei Sun
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| | - Daniela A Wilson
- Radboud University , Institute for Molecules and Materials , Heyendaalseweg 135 , 6525 AJ , Nijmegen , The Netherlands
| |
Collapse
|
42
|
Romero-Azogil L, Penfold NJW, Armes SP. Tuning the hydroxyl functionality of block copolymer worm gels modulates their thermoresponsive behavior. Polym Chem 2020. [DOI: 10.1039/d0py00834f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Partial replacement of a hydroxyl-functional steric stabilizer with a poly(ethylene glycol)-based stabilizer modulates the thermoresponsive behavior of block copolymer worm gels prepared via aqueous polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Lucia Romero-Azogil
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | | | - Steven P. Armes
- Department of Chemistry
- Dainton Building
- University of Sheffield
- Brook Hill
- Sheffield
| |
Collapse
|
43
|
Folgado E, Guerre M, Da Costa A, Ferri A, Addad A, Ladmiral V, Semsarilar M. “One-pot” aminolysis/thia-Michael addition preparation of well-defined amphiphilic PVDF-b-PEG-b-PVDF triblock copolymers: self-assembly behaviour in mixed solvents. Polym Chem 2020. [DOI: 10.1039/c9py00970a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Novel amphiphilic PVDF-based triblock copolymer (PVDF50-b-PEG136-b-PVDF50) is synthesized using RAFT polymerization and a one-pot thia-Michael addition. Self-assembly of this ABA copolymer resulted in formation of original crystalline structures.
Collapse
Affiliation(s)
- Enrique Folgado
- Institut Charles Gerhardt Montpellier
- ICGM UMR5253
- Univ Montpellier
- CNRS
- ENSCM
| | - Marc Guerre
- Institut Charles Gerhardt Montpellier
- ICGM UMR5253
- Univ Montpellier
- CNRS
- ENSCM
| | | | - Anthony Ferri
- Université Artois
- CNRS
- Centrale Lille
- ENSCL
- Université Lille
| | - Ahmed Addad
- Université Lille
- Sciences et Technologies
- CNRS
- Unité Matériaux Et Transformations (UMET)
- F-59000 Lille
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier
- ICGM UMR5253
- Univ Montpellier
- CNRS
- ENSCM
| | - Mona Semsarilar
- Institut Européen des Membranes
- IEM
- UMR5635
- Univ Montpellier
- CNRS
| |
Collapse
|
44
|
Busatto N, Keddie JL, Roth PJ. Sphere-to-worm morphological transitions and size changes through thiol–para-fluoro core modification of PISA-made nano-objects. Polym Chem 2020. [DOI: 10.1039/c9py01585j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spherical diblock copolymer nanoparticles became larger spheres, unimers, or worm-shaped particles when functionalised via thiol–para-fluoro substitution in the core.
Collapse
Affiliation(s)
| | | | - Peter J. Roth
- Department of Chemistry
- University of Surrey
- Guildford
- UK
| |
Collapse
|
45
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
46
|
Li S, Han G, Zhang W. Cross-linking approaches for block copolymer nano-assemblies via RAFT-mediated polymerization-induced self-assembly. Polym Chem 2020. [DOI: 10.1039/d0py00627k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This minireview summarizes the current cross-linking approaches to stabilize block copolymer nano-assemblies obtained via RAFT-mediated PISA process.
Collapse
Affiliation(s)
- Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
47
|
Bao C, Chen J, Li D, Zhang A, Zhang Q. Synthesis of lipase–polymer conjugates by Cu(0)-mediated reversible deactivation radical polymerization: polymerization vs. degradation. Polym Chem 2020. [DOI: 10.1039/c9py01462d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cu(0)-RDRP was first used for the polymerization-induced self-assembly of lipase–polymer conjugates, inducing the formation of nanospheres with preserved activity and degradability.
Collapse
Affiliation(s)
- Chunyang Bao
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Jing Chen
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Die Li
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Aotian Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials
- Ministry of Industry and Information Technology
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
| |
Collapse
|
48
|
Ratcliffe LPD, Derry MJ, Ianiro A, Tuinier R, Armes SP. A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angew Chem Int Ed Engl 2019; 58:18964-18970. [PMID: 31596541 PMCID: PMC6973111 DOI: 10.1002/anie.201909124] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/30/2019] [Indexed: 12/17/2022]
Abstract
It is well-known that the self-assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano-objects. In this study, PISA is used to prepare a new thermoresponsive poly(N-(2-hydroxypropyl) methacrylamide)-poly(2-hydroxypropyl methacrylate) [PHPMAC-PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well-defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well-suited to theoretical analysis. Self-consistent mean field theory suggests this rich self-assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1 H NMR studies.
Collapse
Affiliation(s)
- Liam P. D. Ratcliffe
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
- Present address: Unilever Research & DevelopmentColworth Laboratory, Colworth HouseSharnbrookBedfordMK44 1LQUK
| | - Matthew J. Derry
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
| | - Alessandro Ianiro
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Remco Tuinier
- Laboratory of Physical ChemistryDepartment of Chemical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Steven P. Armes
- Department of Chemistry, Dainton BuildingUniversity of SheffieldBrook HillSouth YorkshireS3 7HFUK
| |
Collapse
|
49
|
Men Y, Li W, Tu Y, Peng F, Janssen GJA, Nolte RJM, Wilson DA. Nonequilibrium Reshaping of Polymersomes via Polymer Addition. ACS NANO 2019; 13:12767-12773. [PMID: 31697471 PMCID: PMC6887890 DOI: 10.1021/acsnano.9b04740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polymersomes are a class of artificial liposomes, assembled from amphiphilic synthetic block copolymers, holding great promise toward applications in nanomedicine. The diversity in polymersome morphological shapes and, in particular, the precise control of these shapes, which is an important aspect in drug delivery studies, remains a great challenge. This is due to a lack of general methodologies that can be applied and the inability to capture the morphologies at the nanometer scale. Here, we present a methodology that can accurately control the shape of polymersomes via the addition of polyethylene glycol (PEG) under nonequilibrium conditions. Various shapes including spheres, ellipsoids, tubes, discs, stomatocytes, nests, stomatocyte-in-stomatocytes, disc-in-discs, and large compound vesicles (LCVs) can be uniformly captured by adjusting the water content and the PEG concentration. Moreover, these shapes undergo nonequilibrium changes in time, which is reflected in their phase diagram changes. This research provides a universal tool to fabricate all shapes of polymersomes by controlling three variables: water content, PEG concentration, and time. The use of the biofriendly polymer PEG enables the application of this methodology in the field of nanomedicine.
Collapse
|
50
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|