1
|
Chang Z, Guo L, Cai J, Shu Y, Ding J, Sun Q. Oxygen Concentration Effect in Photosensitized Generation of 1O 2 from Normoxia to Hypoxia. J Phys Chem Lett 2024; 15:11126-11130. [PMID: 39479962 DOI: 10.1021/acs.jpclett.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photodynamic therapy (PDT) has gained widespread acceptance as a clinical cancer treatment modality and has been attracting intensive attention on developing novel PDT strategies. However, the hypoxic environment in tumors is considered as a significant challenge for efficient type II PDT, based on the inference of the highly oxygen-concentration-related 1O2 generation. Contrary to this conventional understanding, our research demonstrates oxygen concentration independence in the photosensitized generation of 1O2, as evidenced through steady-state and transient spectroscopy for chlorin e6 and methylene blue from normoxic to hypoxic conditions. We propose an oxygen-concentration-independent kinetic model, suggesting that efficient 1O2 generation can take place as long as the triplet-state lifetime ratio of the photosensitizer (τh/τn) is in a similar range to pO2n/pO2h. Our findings provide insights into PDT mechanisms and indicate that the oxygen concentration reduction concerns may not be critical for effective PDT in hypoxic tumor environments.
Collapse
Affiliation(s)
- Zong Chang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Like Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jianglan Cai
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Ding
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology and Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Yin CW, Zhuo LT, Chen JY, Lin YH, Lin YT, Chen HY, Tsai MK, Chen YJ. Intrinsic 77 K Phosphorescence Characteristics and Computational Modeling of Ru(II)-(Bidentate Cyclometalated-Aromatic Ligand) Chromophores: Their Relatively Low Nonradiative Rate Constants Originating from Low Spin-Orbit Coupling Driven Vibronic Coupling Amplitudes between Emitting and Ground States. Inorg Chem 2024. [PMID: 39509593 DOI: 10.1021/acs.inorgchem.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We investigated the photoinduced relaxation of Kasha-type emitting ruthenium-(bidentate cyclometalated aromatic ligand), Ru-CM, chromophores of [Ru(pzpy)2(CM)]+ ions (CM = 1-phenylisoquinoline, 2,3-diphenylpyrazine, and 1,4-diazatriphenylene and pzpy = 2-pyrazol-1-yl-pyridine). This is the first report of the phosphorescence behavior of pure Ru-(bidentate CM) chromophores. The 77 K photoinduced relaxation characteristics of phosphorescence chromophores showed emission quantum yields higher than those of reference Ru-bpy (bpy = 2,2'-bipyridine) chromophores in the emission region of 670-900 nm. This phenomenon of the Ru-CM chromophores could be attributed to their unusually low magnitudes for 77 K nonradiative rate constants (kNRD), although their radiative rate-constants (kRAD) are not remarkable. In order to examine the 77 K photoinduced behavioral relaxation difference between Ru-CM and Ru-bpy chromophores, we used computational simulation, applying the fundamental formalism of kRAD and temperature-independent kNRD equations, which included calculated spin-orbit coupling values.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Li-Ting Zhuo
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Jie Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Hui Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Ting Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Kang Tsai
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
3
|
Paveliuc G, Lawson Daku LM. Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. J Phys Chem A 2024; 128:8404-8420. [PMID: 39315737 DOI: 10.1021/acs.jpca.4c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Designing ligands for transition metal complexes with a specified low-spin, high-spin or spin-crossover behavior is challenging. A major advance was recently made by Phan et al. [J. Am. Chem. Soc. 2017, 139, 6437-6447] who showed that the spin state of a homoleptic tris-diimine Fe(II) complex can be predicted from the N-N distance in the free diimine. They could thus predict the change in magnetic behavior on passing from the complexes of 2,2'-bipyridine (bpy), 2,2'-biimidazole (bim) and 2,2'-bis-2-imidazoline (bimz) ligands to those obtained with the modified analogs 4,5-diazafluoren-9-one (dafo), 1,1'-(α,α'-o-xylyl)-2,2'-bisimidazole (xbim) and 2,3,5,6,8,9-hexahydrodiimidazo[1,2-a:2', 1'-c]pyrazine (etbimz), respectively. Theoretically, the challenge lies in the accurate determination of the HS-LS zero-point energy difference ΔEHL°. The issue can be circumvented by using a variation-based approach, wherein ΔEHL° is not directly evaluated but obtained from the estimate of its variation Δ(ΔEHL°) in series of related systems, which include one whose ΔEHL° is accurately known [Phys. Chem. Chem. Phys. 2013, 15, 3752-3763; J. Phys. Chem. A 2022, 126, 6221-6235]. In this study, density functional theory (DFT), second-order multireference perturbation theory in its CASPT2 formulation, multiconfigurational pair DFT (MC-PDFT) and its hybrid formulation (HMC-PDFT) have been applied to the determination of Δ(ΔEHL°) in the pairs of complexes ( [ F e ( b p y ) 3 ] 2 + , [ F e ( d a f o ) 3 ] 2 + ) , ( [ F e ( b i m ) 3 ] 2 + , [ F e ( x b i m ) 3 ] 2 + ) and ( [ F e ( b i m z ) 3 ] 2 + , [ F e ( e t b i m z ) 3 ] 2 + ) . In DFT, we used several semilocal functionals and their global hybrids, as well as their D2, D3, D3BJ and D4 dispersion-corrected forms; and in MC-PDFT, different translated and fully translated functionals. The results are consistent with one another and in very good agreement with experiments. They show small to vanishing dependence on key details of the methods used: namely, the exact-exchange contribution to global hybrids; the ionization potential-electron affinity shift and basis sets used in the CASPT2 calculations; and the active spaces employed for the CASSCF wave functions used in the MC-PDFT and HMC-PDFT calculations. Insights into the change in the spin-state energetics accompanying the ligand exchanges were gained through a complexation energy analysis. Using the accurate CCSD(T) estimate of the HS-LS adiabatic energy difference in [ F e ( N C H ) 6 ] 2 + [J. Chem. Theory Comput. 2012, 8, 4216-4231], the Δ(ΔEHL°)-approach has been applied to the determination of ΔEHL° in the diimine complexes. The CASPT2 and DFT-D2 methods only give results in agreement with experiments. This suggests for the other methods a limitation in their treatment of dispersion which prevents them from accurately describing the spin-state energetics change accompanying the passing from [ F e ( N C H ) 6 ] 2 + with the tetragonal arrangement of its nitrile ligands to the tris-diimine complexes with the trigonal packing of their bulkier ligands.
Collapse
Affiliation(s)
- Gheorghe Paveliuc
- Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | | |
Collapse
|
4
|
Chatterjee P, Mishra R, Chawla S, Sonkar AK, De AK, Patra AK. Dual Photoreactive Ternary Ruthenium(II) Terpyridyl Complexes: A Comparative Study on Visible-Light-Induced Single-Step Dissociation of Bidentate Ligands and Generation of Singlet Oxygen. Inorg Chem 2024; 63:14998-15015. [PMID: 39092885 DOI: 10.1021/acs.inorgchem.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Avinash Kumar Sonkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Wysocki W, Kamecka A, Karczmarzyk Z. Synthesis and structural characterizations of three carbonyl(α-diimine)hydrido(triphenylphosphine)ruthenium(II) complexes with derivatives of 1,10-phenanthroline. Acta Crystallogr C Struct Chem 2024; 80:319-330. [PMID: 38934274 DOI: 10.1107/s2053229624005898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Three new ruthenium(II) polypyridyl complexes containing α-diimine ligands, namely, carbonylhydrido(1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, [RuH(C12H8N2)(C18H15P)2(CO)]PF6, carbonylhydrido(2,9-dimethyl-1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, and carbonylhydrido(4,7-dimethyl-1,10-phenanthroline-κ2N,N)bis(triphenylphosphine-κP)ruthenium(II) hexafluorophosphate, both [RuH(C14H12N2)(C18H15P)2(CO)]PF6, were synthesized and characterized by spectroscopic and X-ray diffraction methods. In these complexes, the ruthenium(II) ion adopts a distorted octahedral geometry. There are no intermolecular hydrogen bonds in the crystal structures of the analysed complexes and Hirshfeld surface analysis showed that the H...H contacts constitute a high percentage, close to 50%, of the intermolecular interactions.
Collapse
Affiliation(s)
- Waldemar Wysocki
- Faculty of Sciences, University of Siedlce, 3-Maja 54, Siedlce 08-110, Poland
| | - Anna Kamecka
- Faculty of Sciences, University of Siedlce, 3-Maja 54, Siedlce 08-110, Poland
| | | |
Collapse
|
6
|
Eastham K, Kennedy ADW, Scottwell SØ, Bramham JE, Hardman S, Golovanov AP, Scattergood PA, Crowley JD, Elliott PIP. Photochemistry of Ru(II) Triazole Complexes with 6-Membered Chelate Ligands: Detection and Reactivity of Ligand-Loss Intermediates. Inorg Chem 2024; 63:9084-9097. [PMID: 38701516 PMCID: PMC11110011 DOI: 10.1021/acs.inorgchem.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Photochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)2(pictz)]2+ (1) and [Ru(bpy)2(btzm)]2+ (2) (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.079 and 0.091, respectively) in acetonitrile solution to form cis-[Ru(bpy)2(NCMe)2]2+ (3) in both cases. Ligand-loss intermediates of the form [Ru(bpy)2(κ1-pictz or κ1-btzm)(NCCD3)]2+ are detected by 1H NMR spectroscopy and mass spectrometry. Photolysis of 1 yields three ligand-loss intermediates with monodentate pictz ligands, two of which form through simple decoordination of either the pyridine or triazole donor with subsequent solvent coordination (4-tz(N2) and 4-py, respectively). The third intermediate, shown to be able to form photochemically directly from 1, arises through linkage isomerism in which the monodentate pictz ligand is coordinated by the triazole N3 atom (4-tz(N3)) with a comparable ligand-loss intermediate with an N3-bound κ1-btzm ligand also observed for 2.
Collapse
Affiliation(s)
- Katie Eastham
- Department
of Chemical Sciences and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - Aaron D. W. Kennedy
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Synøve Ø. Scottwell
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jack E. Bramham
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Samantha Hardman
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, U.K.
| | - Paul A. Scattergood
- Department
of Chemical Sciences and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| | - James D. Crowley
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Paul I. P. Elliott
- Department
of Chemical Sciences and Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
7
|
Robinette FN, Valentine NP, Sehler KM, Medeck AM, Reynolds KE, Lane SN, Price AN, Cavanaugh IG, Shell SM, Ashford DL. Modulating Excited State Properties and Ligand Ejection Kinetics in Ruthenium Polypyridyl Complexes Designed to Mimic Photochemotherapeutics. Inorg Chem 2024; 63:8426-8439. [PMID: 38662617 DOI: 10.1021/acs.inorgchem.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Ruthenium(II) polypyridyl complexes have gained significant interest as photochemotherapeutics (PCTs) due to their synthetic viability, strong light absorption, well understood excited state properties, and high phototoxicity indexes. Herein, we report the synthesis, characterization, electrochemical, spectrochemical, and preliminary cytotoxicity analyses of three series of ruthenium(II) polypyridyl complexes designed to mimic PCTs. The three series have the general structure of [Ru(bpy)2(N-N)]2+ (Series 1), [Ru(bpy)(dmb)(N-N)]2+ (Series 2), and [Ru(dmb)2(N-N)]2+ (Series 3, where N-N is a bidentate polypyridyl ligand, bpy = 2,2'-bipyridine, and dmb = 6,6'-dimethyl-2,2'-bipyridine). In the three series, the N-N ligand was systematically modified to incorporate increased conjugation and/or electronegative heteroatoms to increase dπ-π* backbonding, red-shifting the lowest energy metal-to-ligand charge transfer (MLCT) absorptions from λmax = 454 to λmax = 580 nm, nearing the therapeutic window for PCTs (600-1100 nm). In addition, steric bulk was systematically introduced through the series, distorting the Ru(II) octahedra, making the dissociative 3dd* state thermally accessible at room and body temperatures. This resulted in a 4 orders of magnitude increase in photoinduced ligand ejection kinetics, and demonstrates the ability to modulate both the MLCT* and dd* manifolds in the complexes, which is critical in PCT drug design. Preliminary cell viability assays suggest that the increased steric bulk to lower the 3dd* states may interfere with the cytotoxicity mechanism, limiting photoinitiated toxicity of the complexes. This work demonstrates the importance of understanding both the MLCT* and dd* manifolds and how they impact the ability of a complex to act as a PCT agent.
Collapse
Affiliation(s)
- Faith N Robinette
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Konrad M Sehler
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Andrew M Medeck
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Keylon E Reynolds
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Skylar N Lane
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Averie N Price
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Ireland G Cavanaugh
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia College at Wise, Wise, Virginia 24293, United States
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Greeneville, Tennessee 37745, United States
| |
Collapse
|
8
|
Xu X, Marlton SJP, Flint KL, Hudson RJ, Keene FR, Hall CR, Smith TA. Photophysical Studies of Helicate and Mesocate Double-Stranded Dinuclear Ru(II) Complexes. J Phys Chem A 2024. [PMID: 38640443 DOI: 10.1021/acs.jpca.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.
Collapse
Affiliation(s)
- Xinyue Xu
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kate L Flint
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Rohan J Hudson
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - F Richard Keene
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Christopher R Hall
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| | - Trevor A Smith
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence in Exciton Science, Parkville, Victoria 3010, Australia
| |
Collapse
|
9
|
Sinha N, Wellauer J, Maisuradze T, Prescimone A, Kupfer S, Wenger OS. Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. J Am Chem Soc 2024; 146:10418-10431. [PMID: 38588581 PMCID: PMC11027151 DOI: 10.1021/jacs.3c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Light-triggered dissociation of ligands forms the basis for many compounds of interest for photoactivated chemotherapy (PACT), in which medicinally active substances are released or "uncaged" from metal complexes upon illumination. Photoinduced ligand dissociation is usually irreversible, and many recent studies performed in the context of PACT focused on ruthenium(II) polypyridines and related heavy metal complexes. Herein, we report a first-row transition metal complex, in which photoinduced dissociation and spontaneous recoordination of a ligand unit occurs. Two scorpionate-type tridentate chelates provide an overall six-coordinate arylisocyanide environment for chromium(0). Photoexcitation causes decoordination of one of these six ligating units and coordination of a solvent molecule, at least in tetrahydrofuran and 1,4-dioxane solvents, but far less in toluene, and below detection limit in cyclohexane. Transient UV-vis absorption spectroscopy and quantum chemical simulations point to photoinduced ligand dissociation directly from an excited metal-to-ligand charge-transfer state. Owing to the tridentate chelate design and the substitution lability of the first-row transition metal, recoordination of the photodissociated arylisocyanide ligand unit can occur spontaneously on a millisecond time scale. This work provides insight into possible self-healing mechanisms counteracting unwanted photodegradation processes and seems furthermore relevant in the contexts of photoswitching and (photo)chemical information storage.
Collapse
Affiliation(s)
- Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- School
of Chemical Sciences, Indian Institute of
Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Tamar Maisuradze
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Stephan Kupfer
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Maroń AM, Cannelli O, Socie EC, Lodowski P, Oppermann M, Machura B, Chergui M. Early bird or night owl? Controlling the ultrafast photodynamics of triphenylamine substituted 2,2':6',2''-terpyridine. Phys Chem Chem Phys 2024; 26:6265-6276. [PMID: 38305747 DOI: 10.1039/d3cp04492k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Controlling the ultrafast photodynamics of metal-free organic molecules has great potential for technological applications. In this work, we use solvent polarity and viscosity as "external knobs" to govern the photodynamics of an electron-donating derivative of 2,2':6',2''-terpyridine (terpy), namely 4'-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2':6',2''-terpyridine (tBuTPAterpy). We combine femtosecond fluorescence upconversion (FlUC), transient absorption (TA) and quantum mechanical calculations to provide a comprehensive description of the tBuTPAterpy's photodynamics. Our results demonstrate that, by changing the solvent, the time scale of light-induced conformational changes of the system can be tuned over two orders of magnitude, controlling the tBuTPAterpy fluorescence spectral region and yield. As a result, depending on the local environment, tBuTPAterpy can act either as an "early bird" or a "night owl", with a tunability that makes it a promising candidate for metal-free sensors.
Collapse
Affiliation(s)
- Anna Maria Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Oliviero Cannelli
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607 Hamburg, Germany.
| | - Etienne Christophe Socie
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Malte Oppermann
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC CH H1 625, Station 6, CH-1015, Lausanne, Switzerland
- Elettra - Sincrotrone Trieste S.C.p.A., S.S.14 Km.163, 5 in Area Science Park, I - 34149, Trieste, Italy
| |
Collapse
|
11
|
Tavakkoli Fard S, Thongrom B, Achazi K, Ma G, Haag R, Tzschucke CC. Photo-responsive hydrogels based on a ruthenium complex: synthesis and degradation. SOFT MATTER 2024; 20:1301-1308. [PMID: 38240363 DOI: 10.1039/d3sm01232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We report the synthesis of a photo responsive metallo-hydrogel based on a ruthenium(II) complex as a functional cross-linker. This metal complex contains reactive 4AAMP (= 4-(acrylamidomethyl)pyridine) ligands, which can be cleaved by light-induced ligand substitution. Ru[(bpy)2(4AAMP)2] cross-links 4-arm-PEG-SH macromonomers by thia-Michael-addition to the photocleavable 4AAMP ligand for the preparation of the hydrogel. Irradiation with green light at 529 nm leads to photodegradation of the metallo-hydrogel due to the ligand dissociation, which can be adjusted by adjusting the Ru[(bpy)2(4AAMP)2] concentration. The ligand substitution forming [Ru(bpy)2(L)2]2+ (L = H2O and CH3CN) can be monitored by 1H NMR spectroscopy and UV-visible absorption. The control of degradation by light irradiation plays a significant role in modulating the elasticity and stiffness of the light sensitive metallo-hydrogel network. The photo-responsive hydrogel is a viable substrate for cell cultures.
Collapse
Affiliation(s)
- Sara Tavakkoli Fard
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Boonya Thongrom
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guoxin Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - C Christoph Tzschucke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Lindh L, Pascher T, Persson S, Goriya Y, Wärnmark K, Uhlig J, Chábera P, Persson P, Yartsev A. Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers. J Phys Chem A 2023; 127:10210-10222. [PMID: 38000043 DOI: 10.1021/acs.jpca.3c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
Collapse
Affiliation(s)
- Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Samuel Persson
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yogesh Goriya
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Hernández‐Castillo D, Nau REP, Schmid M, Tschierlei S, Rau S, González L. Mehrere Triplett-Metall-zentrierte Jahn-Teller-Isomere bestimmen die temperaturabhängigen Lumineszenzlebensdauern in [Ru(bpy) 3] 2. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202308803. [PMID: 38529088 PMCID: PMC10962581 DOI: 10.1002/ange.202308803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 03/27/2024]
Abstract
AbstractEin genaues Verständnis der Faktoren, welche die Lumineszenzlebensdauer von Übergangsmetallverbindungen bestimmen, ist für Anwendungen in der Photokatalyse und der photodynamischen Therapie von entscheidender Bedeutung. Die im Falle von [Ru(bpy)3]2+ (bpy=2,2’‐Bipyridin) allgemein akzeptierte Theorie besagt, dass die Emissionslebensdauer durch Optimierung der Energiebarriere zwischen dem emittierenden Triplett‐Zustand des Metall‐Liganden‐Ladungstransfers (3MLCT) und dem thermisch aktivierten Triplett‐Zustand des Metall‐Zentrums (3MC), oder der Energielücke zwischen beiden Zuständen gesteuert werden kann. Hier zeigen wir, dass dies nicht allgemeingültig ist. Darüber hinaus demonstrieren wir, dass die Betrachtung eines einzelnen Relaxationspfades, der vom energetisch niedrigsten Minimum aus bestimmt wird, zu falschen Vorhersagen der temperaturabhängigen Emissionslebensdauer führt. Stattdessen erhalten wir eine ausgezeichnete Übereinstimmung mit den experimentellen temperaturabhängigen Lebensdauern, wenn ein erweitertes kinetisches Modell herangezogen wird, welches alle Pfade im Zusammenhang mit mehreren Jahn–Teller‐Isomeren und ihren effektiven Reaktionsbarrieren beinhaltet. Diese Konzepte sind für das Design weiterer lumineszierender Übergangsmetallkomplexe mit individuell angepassten Emissionslebensdauern auf der Grundlage theoretischer Vorhersagen unerlässlich.
Collapse
Affiliation(s)
- David Hernández‐Castillo
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Roland E. P. Nau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marie‐Ann Schmid
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Stefanie Tschierlei
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
14
|
Hernández‐Castillo D, Nau REP, Schmid M, Tschierlei S, Rau S, González L. Multiple Triplet Metal-Centered Jahn-Teller Isomers Determine Temperature-Dependent Luminescence Lifetimes in [Ru(bpy) 3 ] 2. Angew Chem Int Ed Engl 2023; 62:e202308803. [PMID: 37433755 PMCID: PMC10962642 DOI: 10.1002/anie.202308803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Understanding the factors that determine the luminescence lifetime of transition metal compounds is key for applications in photocatalysis and photodynamic therapy. Here we show that for[ Ru ( bpy ) 3 ] 2 + ${[{\rm{Ru}}({\rm{bpy}})_{\rm{3}} ]^{{\rm{2 + }}} }$ (bpy = 2,2'-bipyridine), the generally accepted idea that emission lifetimes can be controlled optimizing the energy barrier from the emissive triplet metal-to-ligand charge-transfer (3 MLCT) state to the thermally-activated triplet metal-centered (3 MC) state or the energy gap between both states is a misconception. Further, we demonstrate that considering a single relaxation pathway determined from the minimum that is lowest in energy leads to wrong temperature-dependent emission lifetimes predictions. Instead, we obtain excellent agreement with experimental temperature-dependent lifetimes when an extended kinetic model that includes all the pathways related to multiple Jahn-Teller isomers and their effective reaction barriers is employed. These concepts are essential to correctly design other luminescent transition metal complexes with tailored emission lifetimes based on theoretical predictions.
Collapse
Affiliation(s)
- David Hernández‐Castillo
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Straße 421090ViennaAustria
| | - Roland E. P. Nau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marie‐Ann Schmid
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Stefanie Tschierlei
- Technische Universität BraunschweigDepartment of Energy Conversion, Institute of Physical and Theoretical ChemistryRebenring 3138106BraunschweigGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Vienna Research Platform Accelerating Photoreaction DiscoveryUniversity of ViennaWähringer Straße 171090ViennaAustria
| |
Collapse
|
15
|
Yin CW, Tsai MK, Chen YJ. Low-Temperature Observation of the Excited-State Decay of Ruthenium-(Mono-2,2':6',2″-Terpyridine) Ions with Innocent Ligands: DFT Modeling of an 3MLCT- 3MC Intersystem Crossing Pathway. ACS OMEGA 2023; 8:11623-11633. [PMID: 37008138 PMCID: PMC10061511 DOI: 10.1021/acsomega.3c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The synthesis, electrochemistry, and photophysical characterization of five 2,2':6',2″-terpyridine ruthenium complexes (Ru-tpy complexes) is reported. The electrochemical and photophysical behavior varied depending on the ligands, i.e., amine (NH3), acetonitrile (AN), and bis(pyrazolyl)methane (bpm), for this series of Ru-tpy complexes. The target [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ complexes were found to have low-emission quantum yields in low-temperature observations. To better understand this phenomenon, density functional theory (DFT) calculations were performed to simulate the singlet ground state (S0), Te, and metal-centered excited states (3MC) of these complexes. The calculated energy barriers between Te and the low-lying 3MC state for [Ru(tpy)(AN)3]2+ and [Ru(tpy)(bpm)(AN)]2+ provided clear evidence in support of their emitting state decay behavior. Developing a knowledge of the underlying photophysics of these Ru-tpy complexes will allow new complexes to be designed for use in photophysical and photochemical applications in the future.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Ming-Kang Tsai
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, ROC
| | - Yuan Jang Chen
- Department
of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| |
Collapse
|
16
|
Ramírez-Wierzbicki I, Pieslinger GE, Aramburu-Trošelj BM, Abate PO, Cadranel A. Ru Monoimines with Extended Excited-State Lifetimes and Geometrical Modulation of Photoinduced Mixed-Valence Interactions. Inorg Chem 2023; 62:3808-3816. [PMID: 36802519 DOI: 10.1021/acs.inorgchem.2c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The photophysical properties of monodentate-imine ruthenium complexes do not usually fulfil the requirements for supramolecular solar energy conversion schemes. Their short excited-state lifetimes, like the 5.2 ps metal-to-ligand charge transfer (MLCT) lifetime of [Ru(py)4Cl(L)]+ with L = pz (pyrazine), preclude bimolecular or long-range photoinduced energy or electron transfer reactions. Here, we explore two strategies to extend the excited-state lifetime, based on the chemical modification of the distal N atom of pyrazine. On one hand, we used L = pzH+, where protonation stabilized MLCT states, rendering thermal population of MC states less favorable. On the other hand, we prepared a symmetric bimetallic arrangement in which L = {(μ-pz)Ru(py)4Cl} to enable hole delocalization via photoinduced mixed-valence interactions. A lifetime extension of 2 orders of magnitude is accomplished, with charge transfer excited states living 580 ps and 1.6 ns, respectively, reaching compatibility with bimolecular or long-range photoinduced reactivity. These results are similar to those obtained with Ru pentaammine analogues, suggesting that the strategy employed is of general applicability. In this context, the photoinduced mixed-valence properties of the charge transfer excited states are analyzed and compared with those of different analogues of the Creutz-Taube ion, demonstrating a geometrical modulation of the photoinduced mixed-valence properties.
Collapse
Affiliation(s)
- Ivana Ramírez-Wierzbicki
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - German E Pieslinger
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Bruno M Aramburu-Trošelj
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Pedro O Abate
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET─Universidad de Buenos Aires, Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,Department Chemie und Pharmazie, Physikalische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058, Germany.,Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
17
|
Schüssler L, Israil RGE, Hütchen P, Thiel WR, Diller R, Riehn C. Ultrafast spectroscopy of Ru II polypyridine complexes in the gas phase and the liquid phase: [Ru(2,2'-bipyridine) 2(nicotinamide) 2] 2. Phys Chem Chem Phys 2023; 25:4899-4914. [PMID: 36722394 DOI: 10.1039/d2cp03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
[Ru(bipyridine)2(nicotinamide)2]2+ (1) and its monoaqua-complex [Ru(bipyridine)2(nicotinamide)(H2O)]2+ (2) were spectroscopically studied for the first time in the gas phase by static and time resolved UV photodissociation spectroscopy, observing nicotinamide and H2O ligand dissociation for 1 and 2, respectively. Both processes and their ultrafast dynamics were investigated in parallel by transient absorption spectroscopy in aqueous solution. The latter data were newly acquired for the long-wavelength MLCT band excitation of 1 and provide novel ultrafast ligand dissociation results for 2, confirming the gas phase results, i.e., exclusive H2O cleavage over nicotinamide loss. Similar apparent time constants in the sub-ps and few ps ranges were obtained for 1 in both phases, whereas a larger time constant of ca. two hundreds of ps for the ground state recovery was observed exclusively in the solution phase. Our reaction scheme accounts for faster dissociation dynamics in the gas phase by energetical lowering of the 3MC vs. the 3MLCT states by lack of solvent stabilization of the latter. Based on the apparent time constants, we favour, for the solution dynamics, a fast bimodal vibrational deactivation in the 3MLCT/3MC manifolds and a slow dissociation obfuscated by the ground state recovery. This is substantiated by a similar reaction scheme proposed for the ultrafast dynamics of 2, resulting in a new assignment for transient absorption features with λ > 550 nm to the 3MC manifold, and a common kinetic description for 1 and 2. Computations at the TD-DFT/cc-PVTZ/MDF28 level support our spectroscopic findings and the suggested deactivation pathways.
Collapse
Affiliation(s)
- L Schüssler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany.
| | - R G E Israil
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.
| | - P Hütchen
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - W R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 54, D-67663 Kaiserslautern, Germany
| | - R Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 46, D-67663 Kaiserslautern, Germany.
| | - C Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany. .,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, D-67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
Chih YR, Lin YT, Yin CW, Chen YJ. High Intrinsic Phosphorescence Efficiency and Density Functional Theory Modeling of Ru(II)-Bipyridine Complexes with π-Aromatic-Rich Cyclometalated Ligands: Attributions of Spin-Orbit Coupling Perturbation and Efficient Configurational Mixing of Singlet Excited States. ACS OMEGA 2022; 7:48583-48599. [PMID: 36591186 PMCID: PMC9798779 DOI: 10.1021/acsomega.2c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A series of π-aromatic-rich cyclometalated ruthenium(II)-(2,2'-bipyridine) complexes ([Ru(bpy)2(πAr-CM)]+) in which πAr-CM is diphenylpyrazine or 1-phenylisoquinoline were prepared. The [Ru(bpy)2(πAr-CM)]+ complexes had remarkably high phosphorescence rate constants, k RAD(p), and the intrinsic phosphorescence efficiencies (ιem(p) = k RAD(p)/(νem(p))3) of these complexes were found to be twice the magnitudes of simply constructed cyclometalated ruthenium(II) complexes ([Ru(bpy)2(sc-CM)]+), where νem(p) is the phosphorescence frequency and sc-CM is 2-phenylpyridine, benzo[h]quinoline, or 2-phenylpyrimidine. Density functional theory (DFT) modeling of the [Ru(bpy)2(CM)]+ complexes indicated numerous singlet metal-to-ligand charge transfers for 1MLCT-(Ru-bpy) and 1MLCT-(Ru-CM), excited states in the low-energy absorption band and 1ππ*-(aromatic ligand) (1ππ*-LAr) excited states in the high-energy band. DFT modeling of these complexes also indicated phosphorescence-emitting state (Te) configurations with primary MLCT-(Ru-bpy) characteristics. The variation in ιem(p) for the spin-forbidden Te (3MLCT-(Ru-bpy)) excited state of the complex system that was examined in this study can be understood through the spin-orbit coupling (SOC)-mediated sum of intensity stealing (∑SOCM-IS) contribution from the primary intensity of the low-energy 1MLCT states and second-order intensity perturbation from the significant configuration between the low-energy 1MLCT and high-energy intense 1ππ*-LAr states. In addition, the observation of unusually high ιem(p) magnitudes for these [Ru(bpy)2(πAr-CM)]+ complexes can be attributed to the values for both intensity factors in the ∑SOCM-IS formalism being individually greater than those for [Ru(bpy)2(sc-CM)]+ ions.
Collapse
Affiliation(s)
| | | | | | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C.
| |
Collapse
|
19
|
Eastham K, Scattergood PA, Chu D, Boota RZ, Soupart A, Alary F, Dixon IM, Rice CR, Hardman SJO, Elliott PIP. Not All 3MC States Are the Same: The Role of 3MC cis States in the Photochemical N ∧N Ligand Release from [Ru(bpy) 2(N ∧N)] 2+ Complexes. Inorg Chem 2022; 61:19907-19924. [PMID: 36450138 DOI: 10.1021/acs.inorgchem.2c03146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ruthenium(II) complexes feature prominently in the development of agents for photoactivated chemotherapy; however, the excited-state mechanisms by which photochemical ligand release operates remain unclear. We report here a systematic experimental and computational study of a series of complexes [Ru(bpy)2(N∧N)]2+ (bpy = 2,2'-bipyridyl; N∧N = bpy (1), 6-methyl-2,2'-bipyridyl (2), 6,6'-dimethyl-2,2'-bipyridyl (3), 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (4), 1-benzyl-4-(6-methylpyrid-2-yl)-1,2,3-triazole (5), 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl (6)), in which we probe the contribution to the promotion of photochemical N∧N ligand release of the introduction of sterically encumbering methyl substituents and the electronic effect of replacement of pyridine by 1,2,3-triazole donors in the N∧N ligand. Complexes 2 to 6 all release the ligand N∧N on irradiation in acetonitrile solution to yield cis-[Ru(bpy)2(NCMe)2]2+, with resultant photorelease quantum yields that at first seem counter-intuitive and span a broad range. The data show that incorporation of a single sterically encumbering methyl substituent on the N∧N ligand (2 and 5) leads to a significantly enhanced rate of triplet metal-to-ligand charge-transfer (3MLCT) state deactivation but with little promotion of photoreactivity, whereas replacement of pyridine by triazole donors (4 and 6) leads to a similar rate of 3MLCT deactivation but with much greater photochemical reactivity. The data reported here, discussed in conjunction with previously reported data on related complexes, suggest that monomethylation in 2 and 5 sterically inhibits the formation of a 3MCcis state but promotes the population of 3MCtrans states which rapidly deactivate 3MLCT states and are prone to mediating ground-state recovery. On the other hand, increased photochemical reactivity in 4 and 6 seems to stem from the accessibility of 3MCcis states. The data provide important insights into the excited-state mechanism of photochemical ligand release by Ru(II) tris-bidentate complexes.
Collapse
Affiliation(s)
- Katie Eastham
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Danny Chu
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Rayhaan Z Boota
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Adrien Soupart
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3─Paul Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Craig R Rice
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.,Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| |
Collapse
|
20
|
Steinke SJ, Piechota EJ, Loftus LM, Turro C. Acetonitrile Ligand Photosubstitution in Ru(II) Complexes Directly from the 3MLCT State. J Am Chem Soc 2022; 144:20177-20182. [DOI: 10.1021/jacs.2c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean J. Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Eric J. Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
21
|
McCullough AB, Chen J, Valentine NP, Franklin TM, Cantrell AP, Darnell VM, Qureshi Q, Hanson K, Shell SM, Ashford DL. Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Trans 2022; 51:10186-10197. [PMID: 35735218 DOI: 10.1039/d2dt01237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium polypyridyl complexes have gained significant interest as photochemotherapies (PCTs) where their excited-state properties play a critical role in the photo-cytotoxicity mechanism and efficacy. Herein we report a systematic electrochemical, spectrochemical, and photophysical analysis of a series of ruthenium(II) polypyridyl complexes of the type [Ru(bpy)2(N-N)]2+ (where bpy = 2,2'-bipyridine; N-N is a bidentate polypyridyl ligand) designed to mimic PCTs. In this series, the N-N ligand was modified through increased conjugation and/or incorporation of electronegative heteroatoms to shift the metal-to-ligand charge-transfer (MLCT) absorptions near the therapeutic window for PCTs (600-1100 nm) while incorporating steric bulk to trigger photoinduced ligand dissociation. The lowest energy MLCT absorptions were red-shifted from λmax = 454 nm to 564 nm, with emission energies decreasing from λmax = 620 nm to 850 nm. Photoinduced ligand ejection and temperature-dependent emission studies revealed an important interplay between red-shifting MLCT absorptions and accessing the dissociative 3dd* states, with energy barriers between the 3MLCT* and 3dd* states ranging from 850 cm-1 to 2580 cm-1 for the complexes measured. This work demonstrates the importance of understanding both the MLCT manifold and 3dd* state energy levels in the future design of ligands and complexes for PCT.
Collapse
Affiliation(s)
- Annie B McCullough
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Jiaqi Chen
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Nathaniel P Valentine
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Toney M Franklin
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Andrew P Cantrell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Vayda M Darnell
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| | - Qasim Qureshi
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Steven M Shell
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, Virginia, 24293, USA
| | - Dennis L Ashford
- Department of Natural Sciences, Tusculum University, Greeneville, Tennessee, 37745, USA.
| |
Collapse
|
22
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
23
|
Li H, Huang L, Huang Z, Zhang L, Tang Y, Wang X, He Y, Liu Z. Improving the chemical stability of blue heteroleptic iridium emitter FIrpic in the lowest triplet state through ancillary ligand modification: a theoretical perspective. Phys Chem Chem Phys 2022; 24:9543-9550. [PMID: 35389412 DOI: 10.1039/d2cp00185c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the aim of providing a deeper understanding of the underlying degradation mechanisms associated with the lifetime of blue emitters during the decay process of blue PhOLEDs, quantum chemistry studies were performed to examine the chemical degradation mechanism of common sky blue emitter iridium(III)bis(4,6-di-fluorophenyl)-pyridinato-N,C2')picolinate (FIrpic) and its derivatives with density functional theory (DFT) calculations. For these Ir(III) emitters, the Ir-N1 bond between the ancillary ligand (picolinate) and central iridium will be broken by external light stimuli, which is followed by conversion from the initial emissive metal-to-ligand charge transfer (3MLCT) state to the non-emissive metal centered (3MC) state. The potential energy change for the photo-induced degradation path is then dominated by the energy levels of the 3MT and 3MC states, which are related to the triplet transition energy and the Ir-N1 bond strength, respectively. Thereby, the Ir-N1 bond dissociation in the lowest triplet state will be much harder to proceed if the S0 → T1 transition energy gets more energetically stable or the bond strength gets larger. It is believed that strategic modification of the ancillary ligand, especially by substitution of electron-donating groups at the para position of the pyridyl N atom or extension of the p-electron delocalization, is an effective and easy way to enhance the photochemical stability of the typical blue emitter FIrpic.
Collapse
Affiliation(s)
- Huifang Li
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Luyan Huang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Zehua Huang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Lisheng Zhang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Xiaojun Wang
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Yan He
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| | - Zhiming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, Qingdao, Shandong 266061, China.
| |
Collapse
|
24
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
25
|
Oladipupo O, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, McFarland SA, Kim Y, Papish ET. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochem Photobiol 2022; 98:102-116. [PMID: 34411308 PMCID: PMC8810589 DOI: 10.1111/php.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2 Ru(n,n'-dhbp)]Cl2 with n = 6 and 4 in 1A and 2A , respectively). Full characterization data are reported for 1A and 2A and single crystal X-ray diffraction for 1A . Both 1A and 2A are diprotic acids. We have studied 1A , 1B , 2A , and 2B (B = deprotonated forms) by UV-vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy 3 MLCT states relative to the acidic forms. Complexes 1A and 2A produce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50 light values as low as 0.50 μM with PI values as high as >200 vs. MCF7. Computational studies were used to predict the energies of the 3 MLCT and 3 MC states. An inaccessible 3 MC state for 2B suggests a rationale for why photodissociation does not occur with the 4,4'-dhbp ligand. Low dark toxicity combined with an accessible 3 MLCT state for 1 O2 generation explains the excellent photocytotoxicity of 2.
Collapse
Affiliation(s)
- Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R. Brown
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Robert W. Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Jessica L. Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Alexa R. DeRegnaucourt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nicholas A. Ward
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - James Fletcher Hall
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Courtney M. Petersen
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ambar B. Shrestha
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew K. Thompson
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
26
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
27
|
Magra K, Francés‐Monerris A, Cebrián C, Monari A, Haacke S, Gros PC. Bidentate Pyridyl‐NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kévin Magra
- Université de Lorraine, CNRS, L2CM 57000 Metz France
| | | | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT 54000 Nancy France
- Université de de Paris and CNRS, Itodys 75006 Paris France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, IPCMS 67000 Strasbourg France
| | | |
Collapse
|
28
|
Takaishi K, Nakatsuka Y, Asano H, Yamada Y, Ema T. Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry 2021; 28:e202104212. [PMID: 34837262 DOI: 10.1002/chem.202104212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/21/2022]
Abstract
RutheniumII complexes bearing three axially chiral bipyridyl ligands were synthesized as a new family of chiral complex dyes, and Δ-(S)- and Λ-(S)-diastereomers were obtained. The X-ray crystal structure analyses, spectroscopy, and DFT calculations suggested that all the bipyridyls maintained chirality in both the ground and excited states, and the Δ-(S)- and Λ-(S)-isomers are the matched (more relaxed) and mismatched (more constrained) pairs, respectively. The mismatched Λ-(S)-isomer exhibited red circularly polarized phosphorescence (CPP) both in solution and in the solid state. The solution state CPP is the most intense of ruthenium complexes, while the solid state CPP is the first example of them. It is supposed that, for the Λ-(S)-isomer, the six cumulative CH/π interactions suppress further distortion in the T1 state.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yusuke Nakatsuka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Hitomi Asano
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Yuya Yamada
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
29
|
Zippel C, Israil R, Schüssler L, Hassan Z, Schneider EK, Weis P, Nieger M, Bizzarri C, Kappes MM, Riehn C, Diller R, Bräse S. Metal-to-Metal Distance Modulated Au(I)/Ru(II) Cyclophanyl Complexes: Cooperative Effects in Photoredox Catalysis. Chemistry 2021; 27:15187-15200. [PMID: 34655123 PMCID: PMC8596992 DOI: 10.1002/chem.202102341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The modular synthesis of Au(I)/Ru(II) decorated mono- and heterobimetallic complexes with π-conjugated [2.2]paracyclophane is described. [2.2]Paracyclophane serves as a rigid spacer which holds the metal centers in precise spatial orientations and allows metal-to-metal distance modulation. A broad set of architectural arrangements of pseudo -geminal, -ortho, -meta, and -para substitution patterns were employed. Metal-to-metal distance modulation of Au(I)/Ru(II) heterobimetallic complexes and the innate transannular π-communication of the cyclophanyl scaffold provides a promising platform for the investigations of structure-activity relationship and cooperative effects. The Au(I)/Ru(II) heterobimetallic cyclophanyl complexes are stable, easily accessible, and exhibit promising catalytic activity in the visible-light promoted arylative Meyer-Schuster rearrangement.
Collapse
Affiliation(s)
- Christoph Zippel
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Roumany Israil
- Department of Chemistry, Technische Universität Kaiserslautern (TUK)Erwin-Schrödinger-Str. 5267663KaiserslauternGermany
| | - Lars Schüssler
- Department of Physics, Technische Universität Kaiserslautern (TUK)Erwin-Schrödinger-Str. 4667663KaiserslauternGermany
| | - Zahid Hassan
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Erik K. Schneider
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber Weg 276131KarlsruheGermany
| | - Patrick Weis
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber Weg 276131KarlsruheGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP. O. Box 55Helsinki00014Finland
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Manfred M. Kappes
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber Weg 276131KarlsruheGermany
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHerman-von Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK)Erwin-Schrödinger-Str. 5267663KaiserslauternGermany
- Research Center OPTIMASErwin-Schrödinger-Str. 4667663KaiserslauternGermany
| | - Rolf Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK)Erwin-Schrödinger-Str. 4667663KaiserslauternGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical SystemsFunctional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
30
|
Ma R, Hong K, Kim Y, Lee JH, Kim TK. Time‐resolved
X‐Ray Absorption Spectroscopy of Solvated [Ru(m‐bpy)
3
]
2+
Complex: Electronic Structures of
3
dd State. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rory Ma
- Pohang Accelerator Laboratory POSTECH Pohang 37673 Republic of Korea
| | - Kiryong Hong
- Gas Metrology Group, Division of Chemical and Biological Metrology Korea Research Institute of Standards and Science Daejeon 34113 Republic of Korea
| | - Yujin Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory POSTECH Pohang 37673 Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
31
|
Lanquist AP, Gupta S, Al-Afyouni KF, Al-Afyouni M, Kodanko JJ, Turro C. Trifluoromethyl substitution enhances photoinduced activity against breast cancer cells but reduces ligand exchange in Ru(ii) complex. Chem Sci 2021; 12:12056-12067. [PMID: 34667571 PMCID: PMC8457392 DOI: 10.1039/d1sc03213e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis-[Ru(bpy)2(P(p-R-Ph)3)(CH3CN)]2+, where bpy = 2,2'-bipyridine and P(p-R-Ph)3 represent para-substituted triphenylphosphine ligands with R = -OCH3 (1), -CH3 (2) -H (3), -F (4), and -CF3 (5), were synthesized and characterized. The photolysis of 1-5 in water with visible light (λ irr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ 400, where 1 is the most efficient with a Φ 400 = 0.076(2), and 5 the least photoactive complex, with Φ 400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and pK a values of the ancillary phosphine ligands. Complexes 1-5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, but 3 and 5 are >4.2 and >19-fold more cytotoxic upon irradiation with blue light, respectively. A number of experiments point to apoptosis, and not to necrosis or necroptosis, as the mechanism of cell death by 5 upon irradiation. These findings provide a foundation for understanding the role of phosphine ligands on photoinduced ligand substitution and show the enhancement afforded by -CF3 groups on photochemotherapy, which will aid the future design of photocages for photochemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Austin P Lanquist
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Kathlyn F Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Malik Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
32
|
Vittardi SB, Magar RT, Schrage BR, Ziegler CJ, Jakubikova E, Rack JJ. Evidence for a lowest energy 3MLCT excited state in [Fe(tpy)(CN) 3] . Chem Commun (Camb) 2021; 57:4658-4661. [PMID: 33977987 DOI: 10.1039/d1cc01090e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transient absorption data of [FeII(tpy)(CN)3]- reveals spectroscopic signatures indicative of 3MLCT with a ∼10 ps kinetic component. These data are supported by DFT and TD-DFT calculations, which show that excited state ordering is responsive to the number of cyanide ligands on the complex.
Collapse
Affiliation(s)
- Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Briana R Schrage
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Elena Jakubikova
- Knight Chemical Laboratory, Department of Chemistry, University of Akron, Akron, OH, USA.
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
33
|
Cotic A, Ramírez-Wierzbicki I, Pieslinger GE, Aramburu-Trošelj BM, Cadranel A. Ligand field states dominate excited state decay in trans-[Ru(py)4Cl2] MLCT chromophores. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Li Y, Dong Z, Liang L, Liu Y, Peng D. Simultaneous 3D surface profile and pressure measurement using phase-shift profilometry and pressure-sensitive paint. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:035107. [PMID: 33820064 DOI: 10.1063/5.0031036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
A simultaneous three-dimensional (3D) surface profile and pressure measurement method that integrates phase-shift profilometry and pressure-sensitive paint (PSP2) is proposed. The advantages of this novel technique over previous 3D pressure-sensitive paint (3D-PSP) techniques include a simplified system with low cost, no interference with PSP coatings, high spatial resolution, and high accuracy. A modified digital light-processing (DLP) projector-structured light generator is used to encode ultraviolet light and generate fringe projection to excite the pressure-sensitive paint. The 3D profile is reconstructed using four phase-shifting emission images. Meanwhile, the surface intensity ratio distribution is obtained. The PSP2 method is applied to a nitrogen jet impingement experiment onto a spherical model. The intensity ratio results obtained using the PSP2 method differ little from the conventional PSP results obtained using uniform excitation. The phase distortion due to the emission intensity fluctuation leads to errors in surface profile measurement, and the fringe projection with high contrast improves surface profile measurement accuracy. In most of the final results, the average total errors between the reconstructed 3D surface and the CAD geometry are less than 0.1 mm.
Collapse
Affiliation(s)
- Yongzeng Li
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Dong
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liang
- China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
| | - Yingzheng Liu
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Peng
- Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Lu IC, Tsai CN, Lin YT, Hung SY, Chao VPS, Yin CW, Luo DW, Chen HY, Endicott JF, Chen YJ. Near-IR Charge-Transfer Emission at 77 K and Density Functional Theory Modeling of Ruthenium(II)-Dipyrrinato Chromophores: High Phosphorescence Efficiency of the Emitting State Related to Spin-Orbit Coupling Mediation of Intensity from Numerous Low-Energy Singlet Excited States. J Phys Chem A 2021; 125:903-919. [PMID: 33470828 DOI: 10.1021/acs.jpca.0c05910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient charge-transfer (CT) phosphorescence in the near-IR (NIR) spectral region is reported for four substituted Ru-(R-dipyrrinato) complexes, [Ru(bpy)2(R-dipy)](PF6), where bpy is 2,2'-bipyridine and the substituent R is phenyl (ph), 2,4,6-trimethylphenyl, 4-carboxyphenyl (HOOC-ph), or 4-pyridinyl. The experimentally determined phosphorescence efficiency, ιem(p) = kRAD(p)/(νem(p))3 (where kRAD(p) and νem(p) are the phosphorescence rate constant and the phosphorescence frequency, respectively), of the [Ru(bpy)2(R-dipy)]+ complexes was approximately double that of [Ru(bpy)(Am)4]2+ complexes (Am = ammine ligand) in the NIR region. Density functional theory (DFT) modeling indicated two strikingly different electronic configurations of the triplet emitting state (Te) in the two types of complexes. The Te of [Ru(bpy)2(R-dipy)]+ complexes shows a CT-type corresponding to the metal-to-ligand charge transfer (MLCT)-(Ru-(R-dipy)) and the ππ*-(R-dipy) moiety configurations, and the Te state in the [Ru(bpy)(Am)4]2+ complexes corresponds to an approximately MLCT excited state consisting of mostly MLCT-(Ru-bpy) with a minimal ππ*(bpy) contribution. DFT modeling also indicated that the low-energy singlet excited states in the Te geometry (Sn(T)) of the [Ru(bpy)2(ph-dipy)]+ complex consist of numerous CT-Sn(T)-type states of the Ru-dipy and Ru-bpy moieties, whereas the [Ru(bpy)(Am)4]2+ ions show quite simple MLCT-Sn(T)-type states of the Ru-bpy moiety. Based on experimental observations, DFT modeling, and the plain spin-orbit coupling (SOC) principle, we conclude that the remarkably high ιem(p) amplitudes of the [Ru(bpy)2(R-dipy)]+ complexes relative to those of [Ru(bpy)(Am)4]2+ complexes can be attributed to the relatively substantial contribution of intrinsic SOC-mediated intensity stealing from the numerous low-energy CT-type Sn(T) states.
Collapse
Affiliation(s)
- I-Chen Lu
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Chia Nung Tsai
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Yu-Ting Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Shin-Yi Hung
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Vincent P S Chao
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Chi-Wei Yin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| | - Dao-Wen Luo
- Instruments Center and Department of Chemistry, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - John F Endicott
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, ROC
| |
Collapse
|
36
|
Qu F, Lamb RW, Cameron CG, Park S, Oladipupo O, Gray JL, Xu Y, Cole HD, Bonizzoni M, Kim Y, McFarland SA, Webster CE, Papish ET. Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorg Chem 2021; 60:2138-2148. [PMID: 33534562 DOI: 10.1021/acs.inorgchem.0c02027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ruthenium complexes bearing protic diimine ligands are cytotoxic to certain cancer cells upon irradiation with blue light. Previously reported complexes of the type [(N,N)2Ru(6,6'-dhbp)]Cl2 with 6,6'-dhbp = 6,6'-dihydroxybipyridine and N,N = 2,2'-bipyridine (bipy) (1A), 1,10-phenanthroline (phen) (2A), and 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) (3A) show EC50 values as low as 4 μM (for 3A) vs breast cancer cells upon blue light irradiation ( Inorg. Chem. 2017, 56, 7519). Herein, subscript A denotes the acidic form of the complex bearing OH groups, and B denotes the basic form bearing O- groups. This photocytotoxicity was originally attributed to photodissociation, but recent results suggest that singlet oxygen formation is a more plausible cause of photocytotoxicity. In particular, bulky methoxy substituents enhance photodissociation but these complexes are nontoxic ( Dalton Trans 2018, 47, 15685). Cellular studies are presented herein that show the formation of reactive oxygen species (ROS) and apoptosis indicators upon treatment of cells with complex 3A and blue light. Singlet oxygen sensor green (SOSG) shows the formation of 1O2 in cell culture for cells treated with 3A and blue light. At physiological pH, complexes 1A-3A are deprotonated to form 1B-3B in situ. Quantum yields for 1O2 (ϕΔ) are 0.87 and 0.48 for 2B and 3B, respectively, and these are an order of magnitude higher than the quantum yields for 2A and 3A. The values for ϕΔ show an increase with 6,6'-dhbp derived substituents as follows: OMe < OH < O-. TD-DFT studies show that the presence of a low lying triplet metal-centered (3MC) state favors photodissociation and disfavors 1O2 formation for 2A and 3A (OH groups). However, upon deprotonation (O- groups), the 3MLCT state is accessible and can readily lead to 1O2 formation, but the dissociative 3MC state is energetically inaccessible. The changes to the energy of the 3MLCT state upon deprotonation have been confirmed by steady state luminescence experiments on 1A-3A and their basic analogs, 1B-3B. This energy landscape favors 1O2 formation for 2B and 3B and leads to enhanced toxicity for these complexes under physiological conditions. The ability to convert readily from OH to O- groups allowed us to investigate an electronic change that is not accompanied by steric changes in this fundamental study.
Collapse
Affiliation(s)
- Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Robert W Lamb
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Seungjo Park
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Olaitan Oladipupo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jessica L Gray
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yifei Xu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Marco Bonizzoni
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Elizabeth T Papish
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
37
|
Shafikov MZ, Martinscroft R, Hodgson C, Hayer A, Auch A, Kozhevnikov VN. Non-Stereogenic Dinuclear Ir(III) Complex with a Molecular Rack Design to Afford Efficient Thermally Enhanced Red Emission. Inorg Chem 2021; 60:1780-1789. [DOI: 10.1021/acs.inorgchem.0c03251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marsel Z. Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
| | - Ross Martinscroft
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Craig Hodgson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Anna Hayer
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Armin Auch
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Valery N. Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
38
|
Kaufhold S, Rosemann NW, Chábera P, Lindh L, Bolaño Losada I, Uhlig J, Pascher T, Strand D, Wärnmark K, Yartsev A, Persson P. Microsecond Photoluminescence and Photoreactivity of a Metal-Centered Excited State in a Hexacarbene-Co(III) Complex. J Am Chem Soc 2021; 143:1307-1312. [PMID: 33449685 PMCID: PMC7877722 DOI: 10.1021/jacs.0c12151] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The
photofunctionality of the cobalt–hexacarbene complex
[Co(III)(PhB(MeIm)3)2]+ (PhB(MeIm)3 = tris(3-methylimidazolin-2-ylidene)(phenyl)borate)
has been investigated by time-resolved optical spectroscopy. The complex
displays a weak (Φ ∼ 10–4) but remarkably
long-lived (τ ∼ 1 μs) orange photoluminescence
at 690 nm in solution at room temperature following excitation with
wavelengths shorter than 350 nm. The strongly red-shifted emission
is assigned from the spectroscopic evidence and quantum chemical calculations
as a rare case of luminescence from a metal-centered state in a 3d6 complex. Singlet oxygen quenching supports the assignment
of the emitting state as a triplet metal-centered state and underlines
its capability of driving excitation energy transfer processes.
Collapse
Affiliation(s)
- Simon Kaufhold
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nils W Rosemann
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Linnea Lindh
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Iria Bolaño Losada
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Torbjörn Pascher
- Pascher Instruments AB, Stora Råby Byaväg 24, S-22480 Lund, Sweden
| | - Daniel Strand
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
39
|
Dey A, Ghorai N, Das A, Ghosh HN. Proton-Coupled Electron Transfer for Photoinduced Generation of Two-Electron Reduced Species of Quinone. J Phys Chem B 2020; 124:11165-11174. [PMID: 33241933 DOI: 10.1021/acs.jpcb.0c07809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose-built molecules that follow the fundamental process of photosynthesis have significance in developing better insight into the natural photosynthesis process. Quinones have a significant role as electron acceptors in natural photosynthesis, and their reduction is assisted through H-bond donation or protonation. The major challenge in such studies is to couple the multielectron and proton-transfer process and to achieve a reasonably stable charge-separated state for the elucidation of the mechanistic pathway. We have tried to address this issue through the design of a donor-acceptor-donor molecular triad (2RuAQ) derived from two equivalent [Ru(bpy)3]2+ derivatives and a bridging anthraquinone moiety (AQ). Photoinduced proton-coupled electron transfer (PCET) for this molecular triad was systematically investigated in the absence and presence of hexafluoroisopropanol and p-toluenesulfonic acid (PTSA) using time-resolved absorption spectroscopy in the ultrafast time domain. Results reveal the generation of a relatively long-lived charge-separated state in this multi-electron transfer reaction, and we could confirm the generation of AQ2- and RuIII as the transient intermediates. We could rationalize the mechanistic pathway and the dynamics associated with photoinduced processes and the role of H-bonding in stabilizing charge-separated states. Transient absorption spectroscopic studies reveal that the rates of intramolecular electron transfer and the mechanistic pathways associated with the PCET process are significantly different in different solvent compositions having different polarities. In acetonitrile, a concerted PCET mechanism prevails, whereas the stepwise PCET reaction process is observed in the presence of PTSA. The results of the present study represent a unique model for the mechanistic diversity of PCET reactions.
Collapse
Affiliation(s)
- Ananta Dey
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364 002, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Nandan Ghorai
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Amitava Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
40
|
Levin N, Marcolongo JP, Cadranel A, Slep LD. Time-Resolved Exploration of a photoCORM {Ru(bpy)} Model Compound. Inorg Chem 2020; 59:12075-12085. [DOI: 10.1021/acs.inorgchem.0c01025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natalia Levin
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Juan Pablo Marcolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Leonardo Daniel Slep
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
41
|
Wagner HE, Di Martino‐Fumo P, Boden P, Zimmer M, Klopper W, Breher F, Gerhards M. Structural Characterization and Lifetimes of Triple-Stranded Helical Coinage Metal Complexes: Synthesis, Spectroscopy and Quantum Chemical Calculations. Chemistry 2020; 26:10743-10751. [PMID: 32428347 PMCID: PMC7496093 DOI: 10.1002/chem.202001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Indexed: 11/11/2022]
Abstract
This work reports on a series of polynuclear complexes containing a trinuclear Cu, Ag, or Au core in combination with the fac-isomer of the metalloligand [Ru(pypzH)3 ](PF6 )2 (pypzH=3-(pyridin-2-yl)pyrazole). These (in case of the Ag and Au containing species) newly synthesized compounds of the general formula [{Ru(pypz)3 }2 M3 ](PF6 ) (2: M=Cu; 3: M=Ag; 4: M=Au) contain triple-stranded helical structures in which two ruthenium moieties are connected by three N-M-N (M=Cu, Ag, Au) bridges. In order to obtain a detailed description of the structure both in the electronic ground and excited states, extensive spectroscopic and quantum chemical calculations are applied. The equilateral coinage metal core triangle in the electronic ground state of 2-4 is distorted in the triplet state. Furthermore, the analyses offer a detailed description of electronic excitations. By using time-resolved IR spectroscopy from the microsecond down to the nanosecond regime, both the vibrational spectra and the lifetime of the lowest lying electronically excited triplet state can be determined. The lifetimes of these almost only non-radiative triplet states of 2-4 show an unusual effect in a way that the Au-containing complex 4 has a lifetime which is by more than a factor of five longer than in case of the Cu complex 2. Thus, the coinage metals have a significant effect on the electronically excited state, which is localized on a pypz ligand coordinated to the Ru atom indicating an unusual cooperative effect between two moieties of the complex.
Collapse
Affiliation(s)
- Hanna E. Wagner
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Patrick Di Martino‐Fumo
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Pit Boden
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Manuel Zimmer
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Willem Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Markus Gerhards
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| |
Collapse
|
42
|
Livshits MY, Wang L, Vittardi SB, Ruetzel S, King A, Brixner T, Rack JJ. An excited state dynamics driven reaction: wavelength-dependent photoisomerization quantum yields in [Ru(bpy) 2(dmso) 2] 2. Chem Sci 2020; 11:5797-5807. [PMID: 34094082 PMCID: PMC8159332 DOI: 10.1039/d0sc00551g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022] Open
Abstract
We report the excited-state behavior of a structurally simple bis-sulfoxide complex, cis-S,S-[Ru(bpy)2(dmso)2]2+, as investigated by femtosecond pump-probe spectroscopy. The results reveal that a single photon prompts phototriggered isomerization of one or both dmso ligands to yield a mixture of cis-S,O-[Ru(bpy)2(dmso)2]2+ and cis-O,O-[Ru(bpy)2(dmso)2]2+. The quantum yields of isomerization of each product and relative product distribution are dependent upon the excitation wavelength, with longer wavelengths favoring the double isomerization product, cis-O,O-[Ru(bpy)2(dmso)2]2+. Transient absorption measurements on cis-O,O-[Ru(bpy)2(dmso)2]2+ do not reveal an excited-state isomerization pathway to produce either the S,O or S,S isomers. Femtosecond pulse shaping experiments reveal no change in the product distribution. Pump-repump-probe transient absorption spectroscopy of cis-S,S-[Ru(bpy)2(dmso)2]2+ shows that a pump-repump time delay of 3 ps dramatically alters the S,O : O,O product ratio; pump-repump-probe transient absorption spectroscopy of cis-O,O-[Ru(bpy)2(dmso)2]2+ with a time delay of 3 ps uncovers an excited-state isomerization pathway to produce the S,O isomer. In conjunction with low-temperature steady-state emission spectroscopy, these results are interpreted in the context of an excited-state bifurcating pathway, in which the isomerization product distribution is determined not by thermodynamics, but rather as a dynamics driven reaction.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| | - Lei Wang
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| | - Sebastian B Vittardi
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Albert King
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131 USA
- Department of Chemistry and Biochemistry, Ohio University Athens OH 45701 USA
| |
Collapse
|
43
|
Soupart A, Alary F, Heully JL, Elliott PI, Dixon IM. Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213184] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
On the Possible Coordination on a 3MC State Itself? Mechanistic Investigation Using DFT-Based Methods. INORGANICS 2020. [DOI: 10.3390/inorganics8020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding light-induced ligand exchange processes is key to the design of efficient light-releasing prodrugs or photochemically driven functional molecules. Previous mechanistic investigations had highlighted the pivotal role of metal-centered (MC) excited states in the initial ligand loss step. The question remains whether they are equally important in the subsequent ligand capture step. This article reports the mechanistic study of direct acetonitrile coordination onto a 3MC state of [Ru(bpy)3]2+, leading to [Ru(bpy)2(κ1-bpy)(NCMe)]2+ in a 3MLCT (metal-to-ligand charge transfer) state. Coordination of MeCN is indeed accompanied by the decoordination of one pyridine ring of a bpy ligand. As estimated from Nudged Elastic Band calculations, the energy barrier along the minimum energy path is 20 kcal/mol. Interestingly, the orbital analysis conducted along the reaction path has shown that creation of the metallic vacancy can be achieved by reverting the energetic ordering of key dσ* and bpy-based π* orbitals, resulting in the change of electronic configuration from 3MC to 3MLCT. The approach of the NCMe lone pair contributes to destabilizing the dσ* orbital by electrostatic repulsion.
Collapse
|
45
|
Asahara M, Kurimoto H, Nakamizu M, Hattori S, Shinozaki K. H/D solvent isotope effects on the photoracemization reaction of enantiomeric the tris(2,2′-bipyridine)ruthenium(ii) complex and its analogues. Phys Chem Chem Phys 2020; 22:6361-6369. [DOI: 10.1039/c9cp06758b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work assessed solvent isotope effects on the photoracemization rate and emission lifetime for [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) in water.
Collapse
Affiliation(s)
- Masahiro Asahara
- Department of Materials Science
- Graduate School of Nanobioscience
- Yokohama City University
- Kanazawa-ku
- Japan
| | - Haruhiko Kurimoto
- Department of Materials Science
- Graduate School of Nanobioscience
- Yokohama City University
- Kanazawa-ku
- Japan
| | - Masato Nakamizu
- Department of Materials Science
- Graduate School of Nanobioscience
- Yokohama City University
- Kanazawa-ku
- Japan
| | - Shingo Hattori
- Department of Materials Science
- Graduate School of Nanobioscience
- Yokohama City University
- Kanazawa-ku
- Japan
| | - Kazuteru Shinozaki
- Department of Materials Science
- Graduate School of Nanobioscience
- Yokohama City University
- Kanazawa-ku
- Japan
| |
Collapse
|
46
|
Tatsuno H, Kjær KS, Kunnus K, Harlang TCB, Timm C, Guo M, Chàbera P, Fredin LA, Hartsock RW, Reinhard ME, Koroidov S, Li L, Cordones AA, Gordivska O, Prakash O, Liu Y, Laursen MG, Biasin E, Hansen FB, Vester P, Christensen M, Haldrup K, Németh Z, Sárosiné Szemes D, Bajnóczi É, Vankó G, Van Driel TB, Alonso‐Mori R, Glownia JM, Nelson S, Sikorski M, Lemke HT, Sokaras D, Canton SE, Dohn AO, Møller KB, Nielsen MM, Gaffney KJ, Wärnmark K, Sundström V, Persson P, Uhlig J. Hot Branching Dynamics in a Light‐Harvesting Iron Carbene Complex Revealed by Ultrafast X‐ray Emission Spectroscopy. Angew Chem Int Ed Engl 2019; 59:364-372. [DOI: 10.1002/anie.201908065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Indexed: 12/13/2022]
|
47
|
Tatsuno H, Kjær KS, Kunnus K, Harlang TCB, Timm C, Guo M, Chàbera P, Fredin LA, Hartsock RW, Reinhard ME, Koroidov S, Li L, Cordones AA, Gordivska O, Prakash O, Liu Y, Laursen MG, Biasin E, Hansen FB, Vester P, Christensen M, Haldrup K, Németh Z, Sárosiné Szemes D, Bajnóczi É, Vankó G, Van Driel TB, Alonso‐Mori R, Glownia JM, Nelson S, Sikorski M, Lemke HT, Sokaras D, Canton SE, Dohn AO, Møller KB, Nielsen MM, Gaffney KJ, Wärnmark K, Sundström V, Persson P, Uhlig J. Hot Branching Dynamics in a Light‐Harvesting Iron Carbene Complex Revealed by Ultrafast X‐ray Emission Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Meijer M, Talens VS, Hilbers M, Kieltyka RE, Brouwer AM, Natile MM, Bonnet S. NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12079-12090. [PMID: 31389710 PMCID: PMC6753655 DOI: 10.1021/acs.langmuir.9b01318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2',7'-dichlorodihydrofluorescein (DCFH2-). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA)).
Collapse
Affiliation(s)
- Michael
S. Meijer
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Victorio Saez Talens
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Michiel
F. Hilbers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Roxanne E. Kieltyka
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Albert M. Brouwer
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marta M. Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy (ICMATE),
National Research Council (CNR), c/o Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
- E-mail: (M.M.N.)
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: (S.B.)
| |
Collapse
|
49
|
van Wonderen JH, Hall CR, Jiang X, Adamczyk K, Carof A, Heisler I, Piper SEH, Clarke TA, Watmough NJ, Sazanovich IV, Towrie M, Meech SR, Blumberger J, Butt JN. Ultrafast Light-Driven Electron Transfer in a Ru(II)tris(bipyridine)-Labeled Multiheme Cytochrome. J Am Chem Soc 2019; 141:15190-15200. [DOI: 10.1021/jacs.9b06858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jessica H. van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher R. Hall
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Katrin Adamczyk
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Antoine Carof
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Ismael Heisler
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Samuel E. H. Piper
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Thomas A. Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Nicholas J. Watmough
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Igor V. Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Stephen R. Meech
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas-Young Centre, University College London, London WC1E 6BT, United Kingdom
- Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| | - Julea N. Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
50
|
Luis ET, Iranmanesh H, Beves JE. Photosubstitution reactions in ruthenium(II) trisdiimine complexes: Implications for photoredox catalysis. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|