1
|
Chen M, Wang J, Cai F, Guo J, Qin X, Zhang H, Chen T, Ma L. Chirality-driven strong thioredoxin reductase inhibition. Biomaterials 2024; 311:122705. [PMID: 39047537 DOI: 10.1016/j.biomaterials.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.
Collapse
Affiliation(s)
- Mingkai Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junping Wang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Fei Cai
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Junxian Guo
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Xiaoyu Qin
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Huajie Zhang
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| | - Li Ma
- Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
He S, Zheng Q, Ma L, Shen H, Zheng B, Zhang Y, Deng HH, Chen W, Fan K. Mucin-Triggered Osmium Nanoclusters as Protein-Corona-Like Nanozymes with Photothermal-Enhanced Peroxidase-Like Activity for Tumor-Specific Therapy. NANO LETTERS 2024; 24:14337-14345. [PMID: 39470470 DOI: 10.1021/acs.nanolett.4c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nanomaterials with peroxidase-like activity and photothermal conversion efficiency have garnered significant attention for their ability to generate cytotoxic hydroxyl radicals and provide synergistic therapeutic effects. Selecting nanozymes with suitable properties and carriers is crucial for maximizing efficacy. While the mucin family is known for its mucoadhesive, glycosylated structures that enhance drug bioavailability and targeting, its potential in nanozymes remains underexplored. Here, we utilize mucin-2 to facilitate osmium nanoclusters (Os@Mucin), creating protein-corona-like nanozymes. This configuration bestows Os@Mucin with excellent peroxidase-like activity (769 U/mg) and photothermal conversion efficiency (22.83%, 808 nm). Mucin-2 promotes Os uptake by cells, allowing Os@Mucin to exhibit tumor environment-responsive peroxidase-like activity, further enhanced under photothermal conditions for targeted cytotoxicity and synergistic effects. In vivo experiments demonstrate that this integration effectively treats triple-negative breast cancer. This study innovatively highlights the potential of the mucin family and underscores the promising role of Os nanozymes in tumor therapy.
Collapse
Affiliation(s)
- Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Bohang Zheng
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| |
Collapse
|
3
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Kumari S, Thakur M, Chauhan C, Kumari M. Synthesis, characterization, biological activity and computation-based efficacy of cobalt(II) complexes of biphenyl-2-ol against SARS-CoV-2 virus. J Biomol Struct Dyn 2023:1-15. [PMID: 37990487 DOI: 10.1080/07391102.2023.2283144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Cobalt(II) complexes of biphenyl-2-ol of composition, CoCl2-n(OC6H4C6H5-2)n(H2O)4 (where n = 1 or 2), were prepared by reacting cobaltous(II) chloride with equi- and bimolar ratios of sodium salt of biphenyl-2-ol. The structural characterization of the synthesized complexes was accomplished by NMR, FTIR, thermogravimetry (TGA), high resolution mass spectroscopy (HRMS), electronic spectroscopic techniques coupled with density functional theory (DFT). The stability of the complexes in different pH media of solvent was studied. Chemical reactivity parameters of the newly synthesized complexes, computed using DFT, indicated greater reactivity of complex 2 over complex 1 and free ligand as indicated by its low HOMO-LUMO energy gap corresponding to 1.71 eV. Molecular docking (MD) studies were carried out in order to study the binding affinities between amino acid residues of DNA duplex (PDB ID: 1BNA) and SARS-CoV-2 (PDB ID: 7T9K) with newly synthesized complexes. Complex 2 has shown promising antivirus behaviour with an inhibition constant value of 0.0423 µmol-1 with amino acid residues of SARS-CoV-2 virus. Toxicity of the complexes was predicted using ProTox-II online server. Antibacterial studies have indicated the complexes to exhibit greater efficacy than the free ligand, while the antioxidant activities have suggested them to display enhanced antioxidant behaviour as compared to reference compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalima Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Maridula Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Chetan Chauhan
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Meena Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
5
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
6
|
Jana B, Jin S, Go EM, Cho Y, Kim D, Kim S, Kwak SK, Ryu JH. Intra-Lysosomal Peptide Assembly for the High Selectivity Index against Cancer. J Am Chem Soc 2023; 145:18414-18431. [PMID: 37525328 DOI: 10.1021/jacs.3c04467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yumi Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
7
|
(Salen)osmium(VI) nitrides catalyzed glutathione depletion in chemotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
9
|
Huang C, Huang W, Ji P, Song F, Liu T, Li M, Guo H, Huang Y, Yu C, Wang C, Ni W. A Pyrazolate Osmium(VI) Nitride Exhibits Anticancer Activity through Modulating Protein Homeostasis in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232112779. [PMID: 36361570 PMCID: PMC9656236 DOI: 10.3390/ijms232112779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 02/05/2023] Open
Abstract
Interest in the third-row transition metal osmium and its compounds as potential anticancer agents has grown in recent years. Here, we synthesized the osmium(VI) nitrido complex Na[OsVI(N)(tpm)2] (tpm = [5-(Thien-2-yl)-1H-pyrazol-3-yl]methanol), which exhibited a greater inhibitory effect on the cell viabilities of the cervical, ovarian, and breast cancer cell lines compared with cisplatin. Proteomics analysis revealed that Na[OsVI(N)(tpm)2] modulates the expression of protein-transportation-associated, DNA-metabolism-associated, and oxidative-stress-associated proteins in HepG2 cells. Perturbation of protein expression activity by the complex in cancer cells affects the functions of the mitochondria, resulting in high levels of cellular oxidative stress and low rates of cell survival. Moreover, it caused G2/M phase cell cycle arrest and caspase-mediated apoptosis of HepG2 cells. This study reveals a new high-valent osmium complex as an anticancer agent candidate modulating protein homeostasis.
Collapse
Affiliation(s)
- Chengyang Huang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wanqiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Pengchao Ji
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Fuling Song
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Meiyang Li
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Hongzhi Guo
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yongliang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Cuicui Yu
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Chuanxian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou 515041, China
- Correspondence:
| |
Collapse
|
10
|
Balogová M, Sharma S, Cherek P, Ólafsson SN, Jónsdóttir S, Ögmundsdóttir HM, Damodaran KK. Cytotoxic effects of halogenated tin phosphinoyldithioformate complexes against several cancer cell lines. Dalton Trans 2022; 51:13119-13128. [PMID: 35975724 DOI: 10.1039/d2dt01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Organotin complexes are studied as promising alternatives to the anticancer drug cisplatin. We report two monoorganotin(IV) complexes based on a dibenzyl phosphinoyldithioformate (H-DBPTF) ligand, containing either bromide (Sn-DBPTF-1) or chloride (Sn-DBPTF-2) anions. The complexes were characterized by standard analytical techniques and the structural details of these complexes were elucidated by single crystal X-ray diffraction. Sn-DBPTF-1 was cytotoxic at IC50 <10 μg mL-1 against cancer cell lines A549 (lung cancer), Aspc-1 (pancreatic cancer), OVCAR-3 (ovarian cancer), T-47D (breast cancer) and HCT116 (colon cancer), and breast epithelial stem cell line D492. The non-tumorigenic breast epithelial cell line MCF-10 was less sensitive at IC50 = 22 μg mL-1. Sn-DBPTF-2 had limited cytotoxic effect at IC50 13-37 μg mL-1. Sn-DBPTF-1 induced apoptosis and double-strand DNA breaks. Cell cycle arrest in G2 occurred in HCT116 and accumulation in G1 in Aspc-1. The results indicate that the basic effect of Sn-DBPTF-1 is to induce DNA damage, leading to apoptosis and cell cycle arrest depending on the cell line.
Collapse
Affiliation(s)
- Michaela Balogová
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Shubham Sharma
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Paulina Cherek
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Sigurjón N Ólafsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Sigrídur Jónsdóttir
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Helga M Ögmundsdóttir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|
11
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
12
|
Ye M, Huang WQ, Li ZX, Wang CX, Liu T, Chen Y, Hor CHH, Man WL, Ni WX. Osmium(VI) nitride triggers mitochondria-induced oncosis and apoptosis. Chem Commun (Camb) 2022; 58:2468-2471. [PMID: 35024704 DOI: 10.1039/d1cc05148b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a new osmium(VI) nitrido complex bearing a nonplanar tetradentate ligand with potent anticancer activity. This complex causes mitochondrial damage, which induces liver cancer cell death via oncosis and apoptosis. This is the first osmium-based anticancer candidate that induces oncosis.
Collapse
Affiliation(s)
- Meng Ye
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Zi-Xin Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Chuan-Xian Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| | - Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.
| | - YunZhou Chen
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | | | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, HKSAR, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
- Clinical Research Centre, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China
| |
Collapse
|
13
|
McFadden TP, Nwachukwu CI, Roberts AG. An amine template strategy to construct successive C-C bonds: synthesis of benzo[ h]quinolines by a deaminative ring contraction cascade. Org Biomol Chem 2022; 20:1379-1385. [PMID: 35084425 PMCID: PMC8957836 DOI: 10.1039/d1ob02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a convergent strategy to build, cyclize and excise nitrogen from tertiary amines for the synthesis of polyheterocyclic aromatics. Biaryl-linked azepine intermediates can undergo a deaminative ring contraction cascade reaction, excising nitrogen with the formation of an aromatic core. This strategy and deaminative ring contraction reaction are useful for the synthesis of benzo[h]quinolines.
Collapse
Affiliation(s)
- Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| | | | - Andrew George Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
14
|
Hasi QM, Guo Y, Yang J, Mu X, Chen L, Wang S, Xiao C, Zhang Y, Han Z. Synthesis, DNA-binding abilities, and in vitro antitumor activity of water-soluble copper porphyrin and its Schiff-base complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00326k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new water-soluble porphyrin Cu(ii)-complexes (CuP-1, CuP-2, and CuP-3) were prepared and characterized, which had the ability to bind ct-DNA and good cytotoxicity. CuP-1 showed the best antiproliferative activity towards TCA8113 cells.
Collapse
Affiliation(s)
- Qi-Meige Hasi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Yuping Guo
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Jiaqi Yang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Xiaotong Mu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Lihua Chen
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Shanshan Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Chaohu Xiao
- Center of Experiment, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Yuhan Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Zhichao Han
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| |
Collapse
|
15
|
|
16
|
Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021; 50:14498-14512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the highest incidence, breast cancer is the leading cause of cancer deaths among women in the world. Tumor metastasis is the major contributor of high mortality in breast cancer, and the existence of cancer stem cells (CSCs) has been proven to be the cause of tumor metastasis. CSCs are a small proportion of tumor cells, and they are associated with self-renewal and tumorigenic potential. Given the significance of CSCs in tumor initiation, expansion, relapse, resistance, and metastasis, studies should investigate and discover effective anticancer agents that can not only inhibit the proliferation of differentiated tumor cells but also reduce the tumorigenic capability of CSCs. Thus, new therapies must be discovered to treat and prevent this severely hazardous disease of human beings. The success of platinum complexes in cancer treatment has laid the basic foundation for the utilization of metal complexes in the treatment of malignant cancers, in particular the highly aggressive triple-negative breast cancer. Importantly, metal complexes currently have diverse and versatile competences in the therapeutic targeting of CSCs. The anti-CSC properties provide a strong impetus for the development of novel metal-based compounds for the targeting of CSCs and treatment of chemotherapy-resistant and relapsed tumors. In this review, we provide the latest advances in metal complexes including platinum, ruthenium, osmium, iridium, manganese, cobalt, nickel, copper, zinc, palladium, and tin complexes against breast CSCs obtained over the past decade, with pertinent literature including those published until 2021.
Collapse
Affiliation(s)
- Yingsi Li
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Boxin Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongdong Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials of MOE, School of Chemistry & Molecular Engineering, East China University of Science and Technology Shanghai, 200237, P. R. China
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
17
|
Needham RJ, Prokes I, Habtemariam A, Romero-Canelón I, Clarkson GJ, Sadler PJ. NMR studies of group 8 metallodrugs: 187Os-enriched organo-osmium half-sandwich anticancer complex. Dalton Trans 2021; 50:12970-12981. [PMID: 34581369 PMCID: PMC8477448 DOI: 10.1039/d1dt02213j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the synthesis of the organo-osmium anticancer complex [Os(η6-p-cym)(N,N-azpy-NMe2)Br]PF6 (1) containing natural abundance 187Os (1.96%), and isotopically-enriched (98%) [187Os]-1. Complex 1 and [187Os]-1 contain a π-bonded para-cymene (p-cym), a chelated 4-(2-pyridylazo)-N,N-dimethylaniline (azpy-NMe2), and a monodentate bromide as ligands. The X-ray crystal structure of 1 confirmed its half-sandwich 'piano-stool' configuration. Complex 1 is a member of a family of potent anticancer complexes, and exhibits sub-micromolar activity against A2780 human ovarian cancer cells (IC50 = 0.40 μM). Complex [187Os]-1 was analysed by high-resolution ESI-MS, 1D 1H and 13C NMR, and 2D 1H COSY, 13C-1H HMQC, and 1H-187Os HMBC NMR spectroscopy. Couplings of 1H and 13C nuclei from the azpy/p-cym ligands to 187Os were observed with J-couplings (1J to 4J) ranging between 0.6-8.0 Hz. The 187Os chemical shift of [187Os]-1 (-4671.3 ppm, determined by 2D 1H-187Os HMBC NMR) is discussed in relation to the range of values reported for related Os(II) arene and cyclopentadienyl complexes (-2000 to -5200 ppm).
Collapse
Affiliation(s)
- Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
18
|
Gaiddon C, Gross I, Meng X, Sidhoum M, Mellitzer G, Romain B, Delhorme JB, Venkatasamy A, Jung AC, Pfeffer M. Bypassing the Resistance Mechanisms of the Tumor Ecosystem by Targeting the Endoplasmic Reticulum Stress Pathway Using Ruthenium- and Osmium-Based Organometallic Compounds: An Exciting Long-Term Collaboration with Dr. Michel Pfeffer. Molecules 2021; 26:molecules26175386. [PMID: 34500819 PMCID: PMC8434532 DOI: 10.3390/molecules26175386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Metal complexes have been used to treat cancer since the discovery of cisplatin and its interaction with DNA in the 1960’s. Facing the resistance mechanisms against platinum salts and their side effects, safer therapeutic approaches have been sought through other metals, including ruthenium. In the early 2000s, Michel Pfeffer and his collaborators started to investigate the biological activity of organo-ruthenium/osmium complexes, demonstrating their ability to interfere with the activity of purified redox enzymes. Then, they discovered that these organo-ruthenium/osmium complexes could act independently of DNA damage and bypass the requirement for the tumor suppressor gene TP53 to induce the endoplasmic reticulum (ER) stress pathway, which is an original cell death pathway. They showed that other types of ruthenium complexes—as well complexes with other metals (osmium, iron, platinum)—can induce this pathway as well. They also demonstrated that ruthenium complexes accumulate in the ER after entering the cell using passive and active mechanisms. These particular physico-chemical properties of the organometallic complexes designed by Dr. Pfeffer contribute to their ability to reduce tumor growth and angiogenesis. Taken together, the pioneering work of Dr. Michel Pfeffer over his career provides us with a legacy that we have yet to fully embrace.
Collapse
Affiliation(s)
- Christian Gaiddon
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
- Correspondence: ; Tel.: +33-6-8352-5356
| | - Isabelle Gross
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Xiangjun Meng
- Department of Gastro-Oncology, 7th Hospital, Shanghai 200137, China;
| | | | - Georg Mellitzer
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Benoit Romain
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Jean-Batiste Delhorme
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Aïna Venkatasamy
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Alain C. Jung
- Université de Strasbourg-Inserm, UMR_S 1113 IRFAC, 67200 Strasbourg, France; (I.G.); (G.M.); (B.R.); (J.-B.D.); (A.V.); (J.A.C.)
| | - Michel Pfeffer
- CNRS UMR 7177, Institute of Chemistry, 67000 Strasbourg, France;
| |
Collapse
|
19
|
Stüker T, Xia X, Beckers H, Riedel S. High-Spin Iron(VI), Low-Spin Ruthenium(VI), and Magnetically Bistable Osmium(VI) in Molecular Group 8 Nitrido Trifluorides NMF 3. Chemistry 2021; 27:11693-11700. [PMID: 34043842 PMCID: PMC8457171 DOI: 10.1002/chem.202101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Pseudo‐tetrahedral nitrido trifluorides N≡MF3 (M=Fe, Ru, Os) and square pyramidal nitrido tetrafluorides N≡MF4 (M=Ru, Os) were formed by free‐metal‐atom reactions with NF3 and subsequently isolated in solid neon at 5 K. Their IR spectra were recorded and analyzed aided by quantum‐chemical calculations. For a d2 electron configuration of the N≡MF3 compounds in C3v symmetry, Hund's rule predict a high‐spin 3A2 ground state with two parallel spin electrons and two degenerate metal d(δ)‐orbitals. The corresponding high‐spin 3A2 ground state was, however, only found for N≡FeF3, the first experimentally verified neutral nitrido FeVI species. The valence‐isoelectronic N≡RuF3 and N≡OsF3 adopt different angular distorted singlet structures. For N≡RuF3, the triplet 3A2 state is only 5 kJ mol−1 higher in energy than the singlet 1A′ ground state, and the magnetically bistable molecular N≡OsF3 with two distorted near degenerate 1A′ and 3A“ electronic states were experimentally detected at 5 K in solid neon.
Collapse
Affiliation(s)
- Tony Stüker
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Xiya Xia
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Helmut Beckers
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
20
|
Abstract
Metal complexes have been widely used for applications in the chemical and physical sciences due to their unique electronic and stereochemical properties. For decades the use of metal complexes for medicinal applications has been postulated and demonstrated. The distinct characteristics of metal complexes, including their molecular geometries (that are not readily accessed by organic molecules), as well as their ligand exchange, redox, catalytic, and photophysical reactions, give these compounds the potential to interact and react with biomolecules in unique ways and by distinct mechanisms of action. Herein, the potential of metal complexes to act as components bioactive therapeutic compounds is discussed.
Collapse
Affiliation(s)
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Synthesis, structure and anticancer properties of new biotin- and morpholine-functionalized ruthenium and osmium half-sandwich complexes. J Biol Inorg Chem 2021; 26:535-549. [PMID: 34173882 DOI: 10.1007/s00775-021-01873-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
Ruthenium (Ru) and osmium (Os) complexes are of sustained interest in cancer research and may be alternative to platinum-based therapy. We detail here three new series of ruthenium and osmium complexes, supported by physico-chemical characterizations, including time-dependent density functional theory, a combined experimental and computational study on the aquation reactions and the nature of the metal-arene bond. Cytotoxic profiles were then evaluated on several cancer cell lines although with limited success. Further investigations were, however, performed on the most active series using a genetic approach based on RNA interference and highlighted a potential multi-target mechanism of action through topoisomerase II, mitotic spindle, HDAC and DNMT inhibition.
Collapse
|
22
|
Kim JH, Ofori S, Parkin S, Vekaria H, Sullivan PG, Awuah SG. Anticancer gold(iii)-bisphosphine complex alters the mitochondrial electron transport chain to induce in vivo tumor inhibition. Chem Sci 2021; 12:7467-7479. [PMID: 34163837 PMCID: PMC8171344 DOI: 10.1039/d1sc01418h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023] Open
Abstract
Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents. To access an excellent repository of metal-based compounds for probe/drug discovery, we capitalized on the rich chemistry of gold to create organometallic gold(iii) compounds by ligand tuning. We obtained novel organogold(iii) compounds bearing a 1,2-bis(diphenylphosphino)benzene ligand, providing structural diversity with optimal physiological stability. Biological evaluation of the lead compound AuPhos-89 demonstrates mitochondrial complex I-mediated alteration of the mitochondrial electron transport chain (ETC) to drive respiration and diminish cellular energy in the form of adenosine triphosphate (ATP). Mechanism-of-action efforts, RNA-Seq, quantitative proteomics, and NCI-60 screening reveal a highly potent anticancer agent that modulates mitochondrial ETC. AuPhos-89 inhibits the tumor growth of metastatic triple negative breast cancer and represents a new strategy to study the modulation of mitochondrial respiration for the treatment of aggressive cancer and other disease states where mitochondria play a pivotal role in the pathobiology.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Hemendra Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky USA
- Department of Neuroscience, University of Kentucky USA
- Lexington Veterans' Affairs Healthcare System USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
- Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
| |
Collapse
|
23
|
Berger G, Wach A, Sá J, Szlachetko J. Reduction Mechanisms of Anticancer Osmium(VI) Complexes Revealed by Atomic Telemetry and Theoretical Calculations. Inorg Chem 2021; 60:6663-6671. [PMID: 33871984 DOI: 10.1021/acs.inorgchem.1c00467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonant X-ray emission spectroscopy (RXES) has developed in the past decade as a powerful tool to probe the chemical state of a metal center and in situ study chemical reactions. We have used it to monitor spectral changes associated with the reduction of osmium(VI) nitrido complexes to the osmium(III) ammine state by the biologically relevant reducing agent, glutathione. RXES difference maps are consistent with the proposed DFT mechanism and the formation of two stable osmium(IV) intermediates, thereby supporting the overall pathway for the reduction of these high-valent anticancer metal complexes for which reduction by thiols within cells may be essential to the antiproliferative activity.
Collapse
Affiliation(s)
- Gilles Berger
- Microbiology, Bioorganic & Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna Wach
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| | - Jacinto Sá
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.,Physical Chemistry Division, Department of Chemistry, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31342 Krakow, Poland
| |
Collapse
|
24
|
Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Huang WQ, Wang CX, Liu T, Li ZX, Pan C, Chen YZ, Lian X, Man WL, Ni WX. A cytotoxic nitrido-osmium(VI) complex induces caspase-mediated apoptosis in HepG2 cancer cells. Dalton Trans 2020; 49:17173-17182. [PMID: 33119012 DOI: 10.1039/d0dt02715d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The osmium(vi) nitrido complex [OsVI(N)(sap)(py)Cl] is a potential anti-cancer drug with promising in vitro antiproliferative activities toward a panel of cancer cell lines, including cisplatin-resistant cells (IC50 values of 2.8-13.8 μM). This drug targets DNA and changes its conformation via covalent binding and insertion. In vitro studies indicate that the drug induces HepG2 cells G2/M phase arrest, disrupts the mitochondrial membrane potential and causes caspase-mediated apoptosis. Further in vivo studies using HepG2-bearing nude mice reveal that this drug not only shows good antitumor efficacy of inhibiting tumor growth, but also does not show the side effect of weight loss.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Coordination Complexes/chemical synthesis
- Coordination Complexes/chemistry
- Coordination Complexes/pharmacology
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Hep G2 Cells
- Humans
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Nude
- Models, Molecular
- Molecular Structure
- Nitriles/chemistry
- Nitriles/pharmacology
- Osmium/chemistry
- Osmium/pharmacology
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wan-Qiong Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abebe A, Bayeh Y, Belay M, Gebretsadik T, Thomas M, Linert W. Mono and binuclear cobalt(II) mixed ligand complexes containing 1,10-phenanthroline and adenine using 1,3-diaminopropane as a spacer: synthesis, characterization, and antibacterial activity investigations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00030-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Coordination compounds, in particular cobalt(II) mixed ligand complexes containing 1,10-phenantroline, have drawn the attention of many investigators as some of them are showing antimicrobial activities.
Result
Herein, we report three novel mixed ligand complexes of cobalt(II) having the formulae [Co(L1)2(H2O)2]Cl2, [Co(L1)2(L2)(H2O)]Cl2 and [Co2(L1)4(L2)2(L3)]Cl4 (L1 = 1,10-phenanthroline, L2 = adenine, L3 = 1,3-diaminepropane) were synthesized and characterized by elemental analysis, conductivity measurement, infrared, and UV-Vis spectroscopic techniques. Octahedral geometries are proposed to all the complexes. In vitro antibacterial activities of the ligands, salt, and metal complexes were tested on four pathogenic bacteria (Staphylococcus aureus, Salmonella typhus, Escherichia coli, and Staphylococcus epidermis) using disc diffusion method.
Conclusions
It is interesting to note that the newly synthesized cobalt(II) complexes are active against gram negative bacteria (Escherichia coli and Klebsiella pneumoniae) even though cobalt(II) complexes are well known for their activity against gram positive bacteria.
Collapse
|
27
|
Kaur P, Johnson A, Northcote-Smith J, Lu C, Suntharalingam K. Immunogenic Cell Death of Breast Cancer Stem Cells Induced by an Endoplasmic Reticulum-Targeting Copper(II) Complex. Chembiochem 2020; 21:3618-3624. [PMID: 32776422 PMCID: PMC7757018 DOI: 10.1002/cbic.202000553] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Immunogenic cell death (ICD) offers a method of stimulating the immune system to attack and remove cancer cells. We report a copper(II) complex containing a Schiff base ligand and a polypyridyl ligand, 4, capable of inducing ICD in breast cancer stem cells (CSCs). Complex 4 kills both bulk breast cancer cells and breast CSCs at sub‐micromolar concentrations. Notably, 4 exhibits greater potency (one order of magnitude) towards breast CSCs than salinomycin (an established breast CSC‐potent agent) and cisplatin (a clinically approved anticancer drug). Epithelial spheroid studies show that 4 is able to selectively inhibit breast CSC‐enriched HMLER‐shEcad spheroid formation and viability over non‐tumorigenic breast MCF10 A spheroids. Mechanistic studies show that 4 operates as a Type II ICD inducer. Specifically, 4 readily enters the endoplasmic reticulum (ER) of breast CSCs, elevates intracellular reactive oxygen species (ROS) levels, induces ER stress, evokes damage‐associated molecular patterns (DAMPs), and promotes breast CSC phagocytosis by macrophages. As far as we are aware, 4 is the first metal complex to induce ICD in breast CSCs and promote their engulfment by immune cells.
Collapse
Affiliation(s)
- Pooja Kaur
- Department of Immunology and Inflammation, Imperial College London The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Alice Johnson
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 56 South Yuexiu Road, Jiaxing, 314001 Zhejiang, P. R. China
| | | |
Collapse
|
28
|
Smitten KL, Scattergood PA, Kiker C, Thomas JA, Elliott PIP. Triazole-based osmium(ii) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem Sci 2020; 11:8928-8935. [PMID: 34123147 PMCID: PMC8163367 DOI: 10.1039/d0sc03563g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 μg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul A Scattergood
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| | - Charlotte Kiker
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Paul I P Elliott
- Department of Chemistry & Centre for Functional Materials, University of Huddersfield Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
29
|
Miller M, Mellul A, Braun M, Sherill-Rofe D, Cohen E, Shpilt Z, Unterman I, Braitbard O, Hochman J, Tshuva EY, Tabach Y. Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug. iScience 2020; 23:101262. [PMID: 32585595 PMCID: PMC7322074 DOI: 10.1016/j.isci.2020.101262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
PhenolaTi is an advanced non-toxic anticancer chemotherapy; this inert bis(phenolato)bis(alkoxo) Ti(IV) complex demonstrates the intriguing combination of high and wide efficacy with no detected toxicity in animals. Here we unravel the cellular pathways involved in its mechanism of action by a first genome study on Ti(IV)-treated cells, using an attuned RNA sequencing-based available technology. First, phenolaTi induced apoptosis and cell-cycle arrest at the G2/M phase in MCF7 cells. Second, the transcriptome of the treated cells was analyzed, identifying alterations in pathways relating to protein translation, DNA damage, and mitochondrial eruption. Unlike for common metallodrugs, electrophoresis assay showed no inhibition of DNA polymerase activity. Reduced in vitro cytotoxicity with added endoplasmic reticulum (ER) stress inhibitor supported the ER as a putative cellular target. Altogether, this paper reveals a distinct ER-related mechanism by the Ti(IV) anticancer coordination complex, paving the way for wider applicability of related techniques in mechanistic analyses of metallodrugs.
Collapse
Affiliation(s)
- Maya Miller
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anna Mellul
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Braun
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
30
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Yue S, Luo M, Liu H, Wei S. Recent Advances of Gold Compounds in Anticancer Immunity. Front Chem 2020; 8:543. [PMID: 32695747 PMCID: PMC7338717 DOI: 10.3389/fchem.2020.00543] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, gold compounds have gained more and more attentions in the design of new metal anticancer drugs. Numerous researches have reported that gold compounds, in addition to their widely studied cytotoxic antitumor effects, also reverse tumor immune escape and directly facilitate the functions of immune cells, leading to enhanced anticancer effects. This review mainly summarizes our current understandings of antitumor effects of gold drugs and their relationships with various aspects of antitumor immunity, including innate immunity, adaptive immunity, immunogenic cell death, and immune checkpoints, as well as their roles in adverse effects. Some recent examples of anticancer gold compounds are highlighted. The property of gold compounds is expected to combine with anticancer immunotherapy, such as immune checkpoint inhibitors, to develop new anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Gkika KS, Byrne A, Keyes TE. Mitochondrial targeted osmium polypyridyl probe shows concentration dependent uptake, localisation and mechanism of cell death. Dalton Trans 2020; 48:17461-17471. [PMID: 31513202 DOI: 10.1039/c9dt02967b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A symmetric osmium(ii) [bis-(4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine)] was prepared and conjugated to two mitochondrial-targeting peptide sequences; FrFKFrFK (r = d-arginine). The parent and conjugate complexes showed strong near infra-red emission centred at λmax 745 nm that was modestly oxygen dependent in the case of the parent and oxygen independent in the case of the conjugate, attributed in the latter case, surprisingly, to a shorter emission lifetime of the conjugate compared to the parent. Confocal fluorescence imaging of sub-live HeLa and MCF 7 cells showed the parent complex was cell impermeable whereas the conjugate was rapidly internalised into the cell and distributed in a concentration dependent manner. At concentrations below approximately 30 μmol, the conjugate localised to the mitochondria of both cell types where it was observed to trigger apoptosis induced by the collapse of the mitochondrial membrane potential (MPP). At concentrations exceeding 30 μmol the conjugate was similarly internalised rapidly but distributed throughout the cell, including to the nucleus and nucleolus. At these concentrations, it was observed to precipitate a caspase-dependent apoptotic pathway. The combination of concentration dependent organelle targeting, NIR emission coincident with the biological window, and distribution dependent cytotoxicity offers an interesting approach to theranostics with the possibility of eliciting site dependent therapeutic effect whilst monitoring the therapeutic effect with luminescence imaging.
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | |
Collapse
|
33
|
Tyulyaeva EY. Modern Approaches in the Synthesis of Noble Metal Porphyrins for Their Practical Application (Review). RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023619140110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols. Proc Natl Acad Sci U S A 2020; 117:1321-1329. [PMID: 31896586 DOI: 10.1073/pnas.1915202117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cysteine thiols of many cancer-associated proteins are attractive targets of anticancer agents. Herein, we unequivocally demonstrate a distinct thiol-targeting property of gold(III) mesoporphyrin IX dimethyl ester (AuMesoIX) and its anticancer activities. While the binding of cysteine thiols with metal complexes usually occurs via M-S bond formation, AuMesoIX is unique in that the meso-carbon atom of the porphyrin ring is activated by the gold(III) ion to undergo nucleophilic aromatic substitution with thiols. AuMesoIX was shown to modify reactive cysteine residues and inhibit the activities of anticancer protein targets including thioredoxin, peroxiredoxin, and deubiquitinases. Treatment of cancer cells with AuMesoIX resulted in the formation of gold-bound sulfur-rich protein aggregates, oxidative stress-mediated cytotoxicity, and accumulation of ubiquitinated proteins. Importantly, AuMesoIX exhibited effective antitumor activity in mice. Our study has uncovered a gold(III)-induced ligand scaffold reactivity for thiol targeting that can be exploited for anticancer applications.
Collapse
|
35
|
Licona C, Delhorme JB, Riegel G, Vidimar V, Cerón-Camacho R, Boff B, Venkatasamy A, Tomasetto C, da Silva Figueiredo Celestino Gomes P, Rognan D, Freund JN, Le Lagadec R, Pfeffer M, Gross I, Mellitzer G, Gaiddon C. Anticancer activity of ruthenium and osmium cyclometalated compounds: identification of ABCB1 and EGFR as resistance mechanisms. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01148j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switching from ruthenium to osmium reduces sensitivity towards ABCB1 resistance for cyclometalated anticancer drugs.
Collapse
|
36
|
Konkankit CC, Lovett J, Harris HH, Wilson JJ. X-Ray fluorescence microscopy reveals that rhenium(i) tricarbonyl isonitrile complexes remain intact in vitro. Chem Commun (Camb) 2020; 56:6515-6518. [DOI: 10.1039/d0cc02451a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An endoplasmic reticulum stress-inducing rhenium isonitrile complex was investigated for its axial ligand stability in living cells using X-ray fluorescence microscopy.
Collapse
Affiliation(s)
| | - James Lovett
- Department of Chemistry
- The University of Adelaide
- Australia
| | - Hugh H. Harris
- Department of Chemistry
- The University of Adelaide
- Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
37
|
King AP, Wilson JJ. Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem Soc Rev 2020; 49:8113-8136. [DOI: 10.1039/d0cs00259c] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal anticancer agents are rapidly emerging as selective, potent therapeutics that exhibit anticancer activity by inducing endoplasmic reticulum stress.
Collapse
Affiliation(s)
- A. Paden King
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
38
|
Zhang Z, Yu P, Gou Y, Zhang J, Li S, Cai M, Sun H, Yang F, Liang H. Novel Brain-Tumor-Inhibiting Copper(II) Compound Based on a Human Serum Albumin (HSA)-Cell Penetrating Peptide Conjugate. J Med Chem 2019; 62:10630-10644. [DOI: 10.1021/acs.jmedchem.9b00939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhenlei Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yi Gou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Juzheng Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Meiling Cai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
39
|
Thiele NA, Woods JJ, Wilson JJ. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg Chem 2019; 58:10483-10500. [DOI: 10.1021/acs.inorgchem.9b01277] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
King AP, Marker SC, Swanda RV, Woods JJ, Qian SB, Wilson JJ. A Rhenium Isonitrile Complex Induces Unfolded Protein Response-Mediated Apoptosis in Cancer Cells. Chemistry 2019; 25:9206-9210. [PMID: 31090971 DOI: 10.1002/chem.201902223] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.
Collapse
Affiliation(s)
- A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert V Swanda
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Gukathasan S, Parkin S, Awuah SG. Cyclometalated Gold(III) Complexes Bearing DACH Ligands. Inorg Chem 2019; 58:9326-9340. [DOI: 10.1021/acs.inorgchem.9b01031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
42
|
Nandanwar SK, Kim HJ. Anticancer and Antibacterial Activity of Transition Metal Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201803073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sondavid K. Nandanwar
- Department of Marine Convergence ProgramPukyong National University Busan 48513 Republic of Korea
| | - Hak Jun Kim
- Department of ChemistryPukyong National University Busan 48513 Republic of Korea
| |
Collapse
|
43
|
Sun WW, Liu JK, Wu B. Practical synthesis of polysubstituted unsymmetric 1,10-phenanthrolines by palladium catalyzed intramolecular oxidative cross coupling of C(sp2)–H and C(sp3)–H bonds of carboxamides. Org Chem Front 2019. [DOI: 10.1039/c8qo01290c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short sequence for the practical synthesis of polysubstituted unsymmetric 1,10-phenanthrolines was developed based on palladium-catalyzed oxidative cross coupling of C(sp2)–H/C(sp3)–H bonds of carboxamides.
Collapse
Affiliation(s)
- Wen-Wu Sun
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Bin Wu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
44
|
Coverdale JC, Bridgewater HE, Song JI, Smith NA, Barry NPE, Bagley I, Sadler PJ, Romero-Canelón I. In Vivo Selectivity and Localization of Reactive Oxygen Species (ROS) Induction by Osmium Anticancer Complexes That Circumvent Platinum Resistance. J Med Chem 2018; 61:9246-9255. [PMID: 30230827 PMCID: PMC6204601 DOI: 10.1021/acs.jmedchem.8b00958] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/21/2022]
Abstract
Platinum drugs are widely used for cancer treatment. Other precious metals are promising, but their clinical progress depends on achieving different mechanisms of action to overcome Pt-resistance. Here, we evaluate 13 organo-Os complexes: 16-electron sulfonyl-diamine catalysts [(η6-arene)Os( N, N')], and 18-electron phenylazopyridine complexes [(η6-arene)Os( N, N')Cl/I]+ (arene = p-cymene, biphenyl, or terphenyl). Their antiproliferative activity does not depend on p21 or p53 status, unlike cisplatin, and their selective potency toward cancer cells involves the generation of reactive oxygen species. Evidence of such a mechanism of action has been found both in vitro and in vivo. This work appears to provide the first study of osmium complexes in the zebrafish model, which has been shown to closely model toxicity in humans. A fluorescent osmium complex, derived from a lead compound, was employed to confirm internalization of the complex, visualize in vivo distribution, and confirm colocalization with reactive oxygen species generated in zebrafish.
Collapse
Affiliation(s)
| | | | - Ji-Inn Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nichola A. Smith
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nicolas P. E. Barry
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Ian Bagley
- BSU
Research Technology Platform, University
of Warwick, Coventry CV4 7AL, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- School
of Pharmacy, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
45
|
Hu K, Liu C, Li J, Liang F. Copper(ii) complexes based on quinoline-derived Schiff-base ligands: synthesis, characterization, HSA/DNA binding ability, and anticancer activity. MEDCHEMCOMM 2018; 9:1663-1672. [PMID: 30429971 DOI: 10.1039/c8md00223a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/01/2018] [Indexed: 12/20/2022]
Abstract
Three copper(ii) complexes, [Cu(L1)(NO3)2] (C1), [Cu(L2)Cl2] (C2) and [Cu(L2)SO4]2·H2O (C3), were designed and synthesized by the reaction of Cu(NO3)2·3H2O, CuCl2·2H2O and CuSO4·5H2O with a quinoline-derived Schiff base ligand, L1 or L2, prepared by the condensation of quinoline-8-carbaldehyde with 4-aminobenzoic acid methyl ester or 4-aminobenzoic acid ethyl ester (benzocaine). The efficient bindings of the C1-C3 complexes with human serum albumin (HSA) and calf thymus DNA (CT-DNA) were analyzed by spectroscopy and molecular docking. These complexes could significantly quench the fluorescence of HSA through the static quenching process, and hydrophobic interactions with HSA through the sub-domain IIA and IIIA cavities. The complexes bind to DNA via the intercalative mode and they fit well into the curved contour of the DNA target in the minor groove region. Furthermore, the interaction abilities of the Cu(ii) complexes with HSA/DNA were greater as compared to their corresponding ligands. Interestingly, C1-C3, particularly C3, exhibited more cytotoxicity toward HeLa cells compared to normal HL-7702 cells and three other tumor cell lines (Hep-G2, NCI-H460, and MGC80-3). Their cytotoxicity toward the HeLa cell lines was 1.9-3.5-fold more potent than cisplatin. Further studies indicated that these complexes arrested the cell cycle in the G0/G1 phase and promoted tumor cell apoptosis via a reactive oxygen species (ROS)-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , P. R. China . ;
| | - Chensi Liu
- State Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , P. R. China . ;
| | - Jingui Li
- State Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , P. R. China . ;
| | - Fupei Liang
- State Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , P. R. China . ; .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials , College of Chemistry and Bioengineering , Guilin University of Technology , Guilin 541004 , China
| |
Collapse
|
46
|
Feng Z, Wang H, Wang S, Zhang Q, Zhang X, Rodal A, Xu B. Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. J Am Chem Soc 2018; 140:9566-9573. [PMID: 29995402 PMCID: PMC6070399 DOI: 10.1021/jacs.8b04641] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for the synthesis and folding of a large number of proteins, as well as intracellular calcium regulation, lipid synthesis, and lipid transfer to other organelles, and is emerging as a target for cancer therapy. However, strategies for selectively targeting the ER of cancer cells are limited. Here we show that enzymatically generated crescent-shaped supramolecular assemblies of short peptides disrupt cell membranes and target ER for selective cancer cell death. As revealed by sedimentation assay, the assemblies interact with synthetic lipid membranes. Live cell imaging confirms that the assemblies impair membrane integrity, which is further supported by lactate dehydrogenase (LDH) assays. According to transmission electron microscopy (TEM), static light scattering (SLS), and critical micelle concentration (CMC), attaching an l-amino acid at the C-terminal of a d-tripeptide results in the crescent-shaped supramolecular assemblies. Structure-activity relationship suggests that the crescent-shaped morphology is critical for interacting with membranes and for controlling cell fate. Moreover, fluorescent imaging indicates that the assemblies accumulate on the ER. Time-dependent Western blot and ELISA indicate that the accumulation causes ER stress and subsequently activates the caspase signaling cascade for cell death. As an approach for in situ generating membrane binding scaffolds (i.e., the crescent-shaped supramolecular assemblies), this work promises a new way to disrupt the membrane and to target the ER for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shiyu Wang
- Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Qiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia
| | - Avital Rodal
- Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
47
|
Mo Q, Deng J, Liu Y, Huang G, Li Z, Yu P, Gou Y, Yang F. Mixed-ligand Cu(II) hydrazone complexes designed to enhance anticancer activity. Eur J Med Chem 2018; 156:368-380. [PMID: 30015073 DOI: 10.1016/j.ejmech.2018.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/24/2022]
Abstract
The ligand quantity, ligand type, and coordination geometry have important influences on the anticancer activity of metal-based complexes. On the basis of the structures of previously reported 1:1 Cu(II)/ligand complexes ([Cu(L1)Cl]·2H2O 1a, [Cu(L2)Cl]·H2O 2a, and [Cu(L2)NO3]·H2O 3a), we subsequently designed, developed, and characterized a series of corresponding 1:1:1 Cu(II)/ligand/co-ligand complexes ([Cu(L1)(Py)Cl]·H2O 1b, [Cu(L2)(Py)Cl] 2b, and [Cu(L2)(Py)NO3] 3b), where L1 = (E)-N'-(2-hydroxybenzylidene)acetohydrazide, L2 = (E)-N'-(2- hydroxybenzylidene)benzohydrazide, and Py = pyridine. All six Cu(II) complexes were assessed for their in vitro anticancer properties against a panel of human cancer cells, including cisplatin-resistant A549cisR cell lines. Interestingly, we observed that the 1:1:1 Cu/ligand/co-ligand mixed-ligand Cu(II) complexes exhibited higher anticancer activity than the corresponding 1:1 Cu(II)/ligand complexes. In particular, the 1:1:1 Cu(II)/ligand/co-ligand complex 3b displayed the greatest toxicity toward several cancer cells with better IC50 (1.12-3.77 μM) than cisplatin. Further mechanistic explorations showed that the 3b complex induced DNA damage, thus resulting in mitochondria-mediated apoptotic cell death. Furthermore, the 3b complex displayed pronounced cytostatic effects in the MCF-7 3D spheroid model.
Collapse
Affiliation(s)
- QingYou Mo
- Affiliated Hospital, Guilin Medical University, Guilin, Guangxin, China; School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - JunGang Deng
- Affiliated Hospital, Guilin Medical University, Guilin, Guangxin, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - GuiDong Huang
- Affiliated Hospital, Guilin Medical University, Guilin, Guangxin, China
| | - ZuoWen Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Ping Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Yi Gou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
48
|
Zhang D, Qiao K, Yuan X, Zheng M, Fang Z, Wan L, Guo K. Dehydrogenative etherification homocoupling of heterocyclic N-oxides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Chen F, Romero-Canelón I, Soldevila-Barreda JJ, Song JI, Coverdale JPC, Clarkson GJ, Kasparkova J, Habtemariam A, Wills M, Brabec V, Sadler PJ. Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics 2018; 37:1555-1566. [PMID: 29887657 PMCID: PMC5989272 DOI: 10.1021/acs.organomet.8b00132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/14/2022]
Abstract
![]()
We report the synthesis
and characterization of four neutral organometallic
tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl
(Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl
(Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit
moderate antiproliferative activity toward human ovarian, lung, hepatocellular,
and breast cancer cell lines. Complex 2 in particular
exhibits a low cross-resistance with cisplatin. The complexes show
potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution
(310 K, pH 7). Substituents on the chelated ligand decreased the turnover
frequency in the order Nb > Tf > Ts > Ms. An enhancement
of antiproliferative
activity (up to 22%) was observed on coadministration with nontoxic
concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not
to be the target, as little binding to calf thymus DNA or bacterial
plasmid DNA was observed. In addition, complex 2 reacts
rapidly with glutathione (GSH), which might hamper transfer hydrogenation
reactions in cells. Complex 2 induced a dose-dependent
G1 cell cycle arrest after 24 h exposure in A2780 human
ovarian cancer cells while promoting an increase in reactive oxygen
species (ROS), which is likely to contribute to its antiproliferative
activity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.,School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Ji-Inn Song
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - James P C Coverdale
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Martin Wills
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
50
|
Licona C, Spaety ME, Capuozzo A, Ali M, Santamaria R, Armant O, Delalande F, Van Dorsselaer A, Cianferani S, Spencer J, Pfeffer M, Mellitzer G, Gaiddon C. A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin. Oncotarget 2018; 8:2568-2584. [PMID: 27935863 PMCID: PMC5356824 DOI: 10.18632/oncotarget.13711] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we confirmed an interaction between the ruthenium complex and histones that impacted on histone complex formation. A comparative study of the ruthenium complex versus cisplatin showed differential epigenetic modifications on histone H3 that correlated with differential expression of histone deacetylase (HDAC) genes. We then characterized the impact of these epigenetic modifications on signaling pathways employing a transcriptomic approach. Clustering analyses showed gene expression signatures specific for cisplatin (42%) and for the ruthenium complex (30%). Signaling pathway analyses pointed to specificities distinguishing the ruthenium complex from cisplatin. For instance, cisplatin triggered preferentially p53 and folate biosynthesis while the ruthenium complex induced endoplasmic reticulum stress and trans-sulfuration pathways. To further understand the role of HDACs in these regulations, we used suberanilohydroxamic acid (SAHA) and showed that it synergized with cisplatin cytotoxicity while antagonizing the ruthenium complex activity. This study provides critical information for the characterization of signaling pathways differentiating both compounds, in particular, by the identification of a non-DNA direct target for an organoruthenium complex.
Collapse
Affiliation(s)
- Cynthia Licona
- INSERM 1113, Molecular Signaling of the Cell Stress Response and Pathology, Université de Strasbourg, Section Oncologie FMTS, Strasbourg, France
| | - Marie-Elodie Spaety
- INSERM 1113, Molecular Signaling of the Cell Stress Response and Pathology, Université de Strasbourg, Section Oncologie FMTS, Strasbourg, France
| | - Antonelle Capuozzo
- INSERM 1113, Molecular Signaling of the Cell Stress Response and Pathology, Université de Strasbourg, Section Oncologie FMTS, Strasbourg, France.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Moussa Ali
- Institut of Chemistry, UMR7177 CNRS, Université de Strasbourg, Laboratory of Metal-Induced Synthesis, France
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Olivier Armant
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Germany
| | - Francois Delalande
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, Université de Strasbourg, France
| | - Alain Van Dorsselaer
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, Université de Strasbourg, France
| | - Sarah Cianferani
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, Université de Strasbourg, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, UK
| | - Michel Pfeffer
- Institut of Chemistry, UMR7177 CNRS, Université de Strasbourg, Laboratory of Metal-Induced Synthesis, France
| | - Georg Mellitzer
- INSERM 1113, Molecular Signaling of the Cell Stress Response and Pathology, Université de Strasbourg, Section Oncologie FMTS, Strasbourg, France
| | - Christian Gaiddon
- INSERM 1113, Molecular Signaling of the Cell Stress Response and Pathology, Université de Strasbourg, Section Oncologie FMTS, Strasbourg, France
| |
Collapse
|