1
|
Kaushik B, Agarwal A, Singh A, Rahaman Laskar I. Electronic Substitution Effect on ESIPT-Driven pH and Amine Sensing: Exploring Mechanism. Chem Asian J 2025; 20:e202401217. [PMID: 39785233 DOI: 10.1002/asia.202401217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
It is required to have a more straightforward and easier way to check the quality of food to ensure the safety of the public health. The decomposition of meat protein results in ammonia and biogenic amines (BAs). Consequently, to evaluate the safety and quality of meat products throughout the storage, transit, and consumption depends on the sensitive detection of the released BAs. Here, we have designed and synthesized three luminescent-based probe molecules, which originated from 2-(2-hydroxyphenyl) benzothiazole (HBT) derivatives and showed the excited state-induced proton transfer (ESIPT) phenomenon. The two substituents (OMe and NO2) were used rationally at the para position of HBT, and the electronic properties were evaluated using Hammett substituent constants. The proton donating ability of the O-H to the acceptor is largely facilitated by the presence of a strong electron-withdrawing group, which in this case is NO2. The proton transfer rate can be controlled, and in this case, to a slower rate with the influence of the electron donating group OMe. The controllability of proton transfer led us to use it in pH sensing. A prominent and multi-color change with pH variation was observed in the case of the OMe substituted compound. These probes were further employed for amine sensing, and the limit of detection (LOD) was determined to be 28.6 μM and 61.34 nM for ammonia and hydrazine, respectively. In addition, strip-based detection of spoilage of chicken meat was studied for real-world applications via both contact and non-contact modes.
Collapse
Affiliation(s)
- Bharat Kaushik
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Annu Agarwal
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Ajeet Singh
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| | - Inamur Rahaman Laskar
- Department of Chemistry, BITS Pilani, Pilani Campus, Rajasthan, 333031, Pilani, India
| |
Collapse
|
2
|
Yan M, Li X, Liu J, Li X, Wu S, Zhou M, Cui Y. A membrane-anchored fluorescent probe for the detection of pH in living cells and NAFLD. J Mater Chem B 2024; 12:11455-11463. [PMID: 39382582 DOI: 10.1039/d4tb01767f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The abnormal pH in cell membranes can lead to disorder in membrane structure and permeability, and is also an important signal of cell cancer. The acidification of the cell membrane can lead to the disorder of cell lipid metabolism and lead to non-alcoholic fatty liver disease (NAFLD). However, fluorescent probes to detect the cell membrane pH have rarely been reported, let alone used to study NAFLD. For this, we developed a fluorescent probe (Mem-pH) that can firmly anchor the cell membrane based on lipophilic action and electrostatic action forces, and successfully detect membrane pH by fluorescence intensity. More importantly, the probe Mem-pH can quantify the pH of different kinds of cell membranes, further demonstrating that the pH of cancer cell membranes is lower than that of normal cell membranes. Furthermore, Mem-pH successfully differentiates and detects different degrees of NAFLD tissues, offering hope for timely diagnosis of NAFLD.
Collapse
Affiliation(s)
- Mengqi Yan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Jiarui Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Xinyue Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Shining Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Yuezhi Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| |
Collapse
|
3
|
Chen Y, Zong P, Chen Q, Wang X, Luo J, Liu K, Zhang R. Construction of a pH- and viscosity-switchable near-infrared fluorescent probe and its imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124527. [PMID: 38815313 DOI: 10.1016/j.saa.2024.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Viscosity is a parameter used to measure the fluidity of liquids and a key indicator in evaluating the states of body fluid in biological tissues and lesions. Most traditional detection methods have many drawbacks such as a short emission wavelength and interference by background fluorescence. Inspired by the multiple double bond structure of retinal, a novel pH and viscosity dual-response fluorescent probe (Rh-TR) was constructed in this study. Rh-TR exhibited two emission signals centered at 510 and 660 nm. As the pH of the phosphate-buffered saline increased, the fluorescence at 510 nm increased by about 124-fold, while the change in fluorescence at 660 nm was not obvious. When detecting the change in viscosity using the probe, the fluorescence at 510 nm decreased by about 85 %, while the fluorescence at 660 nm increased by over 20-fold. The probe also showed high selectivity and little toxicity. As demonstrated by the biological imaging experiment, the probe successfully imaged changes in the pH and viscosity of cells and in a live animal model of zebrafish. Considering the unique structure of Rh-TR with retinal and its pH- and viscosity-switchable spectral property, the probe may find further application in detecting viscosity-related diseases and industrial detection.
Collapse
Affiliation(s)
- Yunling Chen
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qifei Chen
- Suixi Testing Center, Huaibei, Anhui 235000, China
| | - Xiaohong Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Rongfeng Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Electrical Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
4
|
Belashov AV, Zhikhoreva AA, Salova AV, Belyaeva TN, Litvinov IK, Kornilova ES, Semenova IV, Vasyutinskii OS. Automatic segmentation of lysosomes and analysis of intracellular pH with Radachlorin photosensitizer and FLIM. Biochem Biophys Res Commun 2024; 710:149835. [PMID: 38574457 DOI: 10.1016/j.bbrc.2024.149835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.
Collapse
Affiliation(s)
- A V Belashov
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - A A Zhikhoreva
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| | - A V Salova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - T N Belyaeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - I K Litvinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - E S Kornilova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Pr., 4, St. Petersburg, 194064, Russia
| | - I V Semenova
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia.
| | - O S Vasyutinskii
- Ioffe Institute, Russian Academy of Sciences, 26, Polytekhnicheskaya, St.Petersburg, 194021, Russia
| |
Collapse
|
5
|
Dai C, Ge W, Li T, Kong X, Tian M, Niu J. Single Fluorescent Probe for Multiple Tasks: Illuminating Lipid Droplets and Lysosomes in Dual Channels and Distinguishing Autophagy and Apoptosis. Anal Chem 2024; 96:4013-4022. [PMID: 38426215 DOI: 10.1021/acs.analchem.3c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Lipid droplets (LDs) and lysosomes play key roles in autophagy and cell apoptosis, and the discriminative visualization of the two organelles and simultaneously of autophagy and apoptosis is very helpful to understand their internal relationships. However, fluorescent probes that can concurrently achieve these tasks are not available currently. Herein, we delicately fabricate a robust probe CAQ2 for multiple tasks: illumination of LDs and lysosomes in dual emission colors as well as discriminative visualization of cell apoptosis and autophagy. The probe exhibited both lipophilic and basic properties and displayed different emission colors in neutral and protonated forms; thus, LDs and lysosomes emitted blue and red fluorescence colors, respectively. Because of the lysosomal acidification during autophagy, CAQ2 detected autophagy with evidently enhanced red emission. Because of the lysosomal alkalization during apoptosis, CAQ2 imaged apoptosis with a drastically decreased red fluorescence intensity. With the robust probe, the autophagy under starvation and lipidless conditions was visualized, and the apoptosis induced by H2O2, ultraviolet (UV) irradiation, and rotenone treatment was successfully observed. The efficient detoxification of Na2S against rotenone treatment was successfully revealed.
Collapse
Affiliation(s)
- Chun Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Wei Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Tianyu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jie Niu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Institute of Otorhinolaryngology, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, China
| |
Collapse
|
6
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Ma J, Lu X, Hao M, Wang Y, Guo Y, Wang Z. Real-time visualization the pH fluctuations of living cells with a ratiometric near-infrared fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123572. [PMID: 37922853 DOI: 10.1016/j.saa.2023.123572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
In situ real-time quantitative monitoring pH fluctuation in complex living systems is vitally significant. In the current work, a ratiometric near-infrared (NIR) probe (MCyOH) was developed to confront this challenge. MCyOH exhibited good sensitivity, photostability, reversibility, and an ideal pKa (pKa = 6.65). Ratiometric character of MCyOH is beneficial to accuracy detect the pH fluctuations in living cells under different stimulation. The observations showed that intracellular pH was decreased when HepG2 cells under oxidative stress or starvation conditions. In particular, HepG2 cells was acidulated after addition of ethanol, however, the acidification phenomenon was attenuated or disappeared when HepG2 cells preincubated with disulfiram or fomepizole. Finally, MCyOH was successfully applied to observe the increasement of intracellular pH when HepG2 cells treated with fomepizole individually. Overall, MCyOH would be a practical candidate to explore pH-associated physiological and pathological varieties.
Collapse
Affiliation(s)
- Jianlong Ma
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China; Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| | - Mingyao Hao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yumeng Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China.
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, PR China.
| |
Collapse
|
8
|
Wang X, Liu M, Liu Y, Shang S, Du C, Hong J, Gao W, Hua C, Xu H, You Z, Chen J, Liu Y. Topology-Selective Manipulation of Two-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023. [PMID: 38010167 DOI: 10.1021/jacs.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.
Collapse
Affiliation(s)
- Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunyu Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Helin Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zewen You
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
9
|
Hu M, Zhou XL, Xiao TX, Hao L, Li Y. Inducing and monitoring mitochondrial pH changes with an iridium(III) complex via two-photon lifetime imaging. Dalton Trans 2023; 52:15859-15865. [PMID: 37828856 DOI: 10.1039/d3dt02541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Real-time monitoring of mitochondrial dynamic changes plays a key role in the development of mitochondria-targeted anticancer theranostic agents. In this work, a pH-responsive and mitochondria-targeted cyclometalated iridium(III) complex MitoIr-NH has been explored as a novel anticancer agent. MitoIr-NH displayed pH-responsive phosphorescence intensity and lifetime, accumulated in mitochondria, showed higher antiproliferative activity and induced a series of mitochondria-related events. Moreover, MitoIr-NH could simultaneously induce mitophagy and quantitatively monitor mitochondrial pH changes through two-photon phosphorescence lifetime imaging microscopy (TPPLIM) in a real-time manner.
Collapse
Affiliation(s)
- Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xin-Lan Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Tian-Xin Xiao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
10
|
Ge W, Wang H, Wu X, Dong B, Zhang R, Tian M. Construction of a Dual-Emissive Probe for Discriminative Visualization of Lysosomal and Mitochondrial Dysfunction. Anal Chem 2023; 95:14787-14796. [PMID: 37726214 DOI: 10.1021/acs.analchem.3c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Discriminatively visualizing mitochondrial and lysosomal dysfunction is crucial for an in-depth understanding of cell apoptosis regulation and relative biology. However, fluorescent probes for the separate visualization of lysosomal and mitochondria damages have not been reported yet. Herein, we have constructed a fluorescent probe [2-(4-hydroxystyryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (HBSI)] for labeling mitochondria and lysosomes in dual emission colors and discriminatively imaging mitochondrial and lysosomal damage in two different sets of fluorescent signals. In living cells, HBSI targeted both lysosomes and mitochondria to give green and red emission, respectively. During mitochondrial damages, HBSI immigrated into lysosomes, and the red emission decreased. During lysosomal damage, HBSI immigrated into mitochondria, and the green emission decreased. With the robust probe, the different damaging sequences of mitochondria and lysosomes under different amounts of H2O2 and chloral hydrate have been revealed. The sequential damage of lysosomes and mitochondria during cell apoptosis induced by rotenone, paclitaxel, and colchicine has been discovered. Furthermore, the regulation of mitochondria, lysosome, and their interplay during autophagy was also observed with the probe.
Collapse
Affiliation(s)
- Wei Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Huina Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaofen Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Ruoyao Zhang
- School of Medical Technology, Institute of Engineering Medicine, School of Life Science, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing 100081, China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
11
|
Munan S, Yadav R, Pareek N, Samanta A. Ratiometric fluorescent probes for pH mapping in cellular organelles. Analyst 2023; 148:4242-4262. [PMID: 37581493 DOI: 10.1039/d3an00960b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial. Accordingly, the development of fluorescence imaging probes for targeting specific organelles and monitoring their dynamics at the molecular level has become the forefront of research in the last three decades. Among them, ratiometric fluorescent probes minimize the interference from the excitation wavelength of light, auto-fluorescence from probe concentration, environmental fluctuations, and instrument sensitivity through self-correction compared to monochromatic fluorescent probes, which are known as turn-on/off fluorescent probes. Small-molecular ratiometric fluorescent probes for detecting ΔpHi are challenging yet demanding. To date, sixty-two ratiometric pH probes have been reported for monitoring internal pH alterations in cellular organelles. However, a critical review on organelle-specific ratiometric probes for pH mapping is still lacking. Thus, in the present review, we report the most recent advances in ratiometric pH probes and the previous data on the role of mapping the ΔpHi of cellular organelles. The development strategy, including ratiometric fluorescence with one reference signal (RFRS) and ratiometric fluorescence with two reversible signals (RFRvS), is systematically illustrated. Finally, we emphasize the major challenges in developing ratiometric probes that merit further research in the future.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Rashmi Yadav
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Niharika Pareek
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| |
Collapse
|
12
|
Xin H, Huang Y, Han Y, Tang L, Yang G, Zhang Y, Zhao S, Wang KN, Li Y, Cao D. A two-photon iridium(III) complex probe for sensitive detection of SO 2 derivatives in living cell mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122876. [PMID: 37210855 DOI: 10.1016/j.saa.2023.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
The derivatives of sulfur dioxide (HSO3-) formed in the biological environment play a vital role in the circulation system. Excessive SO2 derivatives will cause serious damage to the living system. Herein, a two-photon phosphorescent probe based on Ir(III) complex (named as Ir-CN) was designed and synthesized. Ir-CN is extremely selective and sensitive to SO2 derivatives with significant phosphorescent enhancement and increased phosphorescent lifetime. The detection limit of Ir-CN for SO2 derivatives reaches 0.17 μM. More importantly, Ir-CN preferentially accumulates in mitochondria, so bisulfite derivatives can be detected at subcellular level, which enriching the application of metal complex probe in biological detection. In addition, both single-photon and two-photon images can clearly show that Ir-CN is targeted to mitochondria. Benefits from its good biocompatibility, Ir-CN may be used as a reliable tool to detect SO2 derivatives in mitochondrion of living cells.
Collapse
Affiliation(s)
- Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Han
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Luyao Tang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China.
| | - Yibing Li
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, China.
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
13
|
Huang Q, Huang Z, Peng C, Zhou G, Xiang X, Li Z, Jia Y, Liu P, Xue M. Rational N,P-Codoped pH-Activatable Red Carbon Dot for In Vitro and In Vivo Tumor Imaging. ACS APPLIED BIO MATERIALS 2023; 6:1906-1914. [PMID: 37133734 DOI: 10.1021/acsabm.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tumor detection and imaging via tumor microenvironmental indicators can have practical value. Here, a low-pH-responsive red carbon dot (CD) was prepared via a hydrothermal reaction for specific tumor imaging in vitro and in vivo. The probe responded to the acidic tumor microenvironment. The CDs are codoped by nitrogen and phosphorene and contain anilines on the surface. These anilines are efficient electron donors and modulate the pH response: Fluorescence is undetectable at common physical pH (>7.0), but red fluorescence (600-720 nm) increases with decreasing pH. The inactivation of fluorescence is due to three aspects: photoinduced electron transfer from anilines, deprotonation-induced energy states changing, and particle aggregation-induced quenching. It is believed that this pH-responsive character of CD is better than other reported CDs. Thus, in vitro images of HeLa cells show strong fluorescence that is 4-fold higher than normal cells. Subsequently, the CDs are used for in vivo imaging of tumors in mice. Tumors can be clearly observed within 1 h, and clearance of CDs will be finished within 24 h due to the small size of the CDs. The CDs offer excellent tumor-to-normal tissue (T/N) ratios and have great potential for biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Qiuyu Huang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Zijie Huang
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Chuting Peng
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Guohua Zhou
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Xia Xiang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiguo Li
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Yongmei Jia
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Peilian Liu
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Mingyue Xue
- Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| |
Collapse
|
14
|
Nawaz H, Chen S, Zhang X, Li X, You T, Zhang J, Xu F. Cellulose-Based Fluorescent Material for Extreme pH Sensing and Smart Printing Applications. ACS NANO 2023; 17:3996-4008. [PMID: 36786234 DOI: 10.1021/acsnano.2c12846] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Environment-responsive fluorescence materials are being widely investigated for instrument-free determination of various environmental factors. However, developing an eco-friendly cellulose-based fluorescent pH sensor for sensing extreme acidity and alkalinity is still challenging. Herein, a highly fluorescent and multifunctional material is developed from biopolymer-based cellulose acetate. A biopolymer-based structure containing responsive functional groups such as -C═O and -NH is constructed by chemically bonding 5-amino-2,3-dihydrophthalazine-1,4-dione (luminol) onto cellulose acetate using 4,4'-diphenylmethane diisocyanate (MDI) as a cross-linking agent. The prepared material (Lum-MDI-CA) is characterized by UV-vis, Fourier transform infrared, 1H NMR, 13C NMR spectroscopies, and fluorescence techniques. The material exhibits excellent aqua blue fluorescence and demonstrates extreme pH sensing applications. Interesting results are further revealed after adding a pH-unresponsive dye such as MTPP as the reference to develop the ratiometric method. The ratiometric system clearly differentiates the extreme acidic pH 1 from pH 2 and extreme alkaline pH 12, 13, and 14 by visual and fluorescence color change response under a narrow pH range. In addition, the material is fabricated into transparent flexible fluorescent films which demonstrate an outstanding UV shielding, security printing, and haze properties for smart food packaging and printing applications.
Collapse
Affiliation(s)
- Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Lee H, Lee S, Han MS. Turn-On Fluorescent pH Probes for Monitoring Alkaline pHs Using Bis[2-(2'-hydroxyphenyl)benzazole] Derivatives. SENSORS (BASEL, SWITZERLAND) 2023; 23:2044. [PMID: 36850652 PMCID: PMC9965889 DOI: 10.3390/s23042044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For surveilling human health, industries, and the environment, pH monitoring is important. Numerous studies on fluorescent probes have been conducted to monitor various pH ranges. However, fluorescent probes that are capable of sensing alkaline regions are rare. In this study, we propose turn-on-type fluorescent probes for detecting alkaline pHs using bis[2-(2'-hydroxyphenyl)benzazole] (bis(HBX)) derivatives. These probes have high pKa values (from 9.7 to 10.8) and exhibit strong fluorescence intensity and color changes at alkaline pHs. Probes derived from bis(HBX) exhibit good photostability, reversibility, and anti-interference toward pH variations, which can be identified as a certain fluorescence change toward a basic pH. Therefore, compounds would be advantageous to use fluorescent probes for monitoring alkaline pH changes.
Collapse
|
16
|
Dai YX, Li YX, Zhang XJ, Cosnier S, Shan D. Tuning Dimensionality of Benzimidazole Aggregates by Using Tetraoctylammonium Bromide: Enhanced Electrochemiluminescence Studies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6228-6233. [PMID: 36655778 DOI: 10.1021/acsami.2c22393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the depolymerization strategy of liposoluble luminophores in the aqueous phase is vital for the development of electrochemiluminescence (ECL). In this work, tetraoctylammonium bromide (TOAB) with four long hydrophobic chains and short hydrophilic ends is used as a template to limit the aggregation of benzimidazole (BIM). By adjusting the loading of BIM on the hydrophobic chains of TOAB, a two-dimensional lamellar BIM/TOAB is formed, the ECL intensity of which is 6.4 times higher than that of the aggregated BIM (H2O2 as the coreactant). In terms of ECL spectroscopies, cyclic voltammetry , ECL transients, and the adjustment of the scanning potential range, the ECL mechanism is thoroughly studied. This work provides a new way to depolymerize organic luminophores and reveals a possible pathway in the annihilation ECL mechanism.
Collapse
Affiliation(s)
- Yu-Xuan Dai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yi-Xuan Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, GrenobleF-38000, France
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| |
Collapse
|
17
|
Jing C, Wang Y, Song X, Li X, Kou M, Zhang G, Dou W, Liu W. Dual-Fluorophore and Dual-Site Multifunctional Fluorescence Sensor for Visualizing the Metabolic Process of GHS to SO 2 and the SO 2 Toxicological Mechanism by Two-Photon Imaging. Anal Chem 2023; 95:1376-1384. [PMID: 36562538 DOI: 10.1021/acs.analchem.2c04333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a momentous gas signal molecule, sulfur dioxide (SO2) participates in diverse physiological activities. Excess SO2 will cause an apparent decrease in the level of intracellular glutathione (GSH), thereby damaging the body's antioxidant defense system. In addition, endogenous SO2 can be generated from GSH by reacting with thiosulfate (S2O32-) and enzymatically reduced to cysteine (Cys), a synthetic precursor of GSH. In view of their close correlation, a two-photon (TP) mitochondria-targeted multifunctional fluorescence sensor Mito-Na-BP was rationally designed and synthesized for detecting SO2 and GSH simultaneously. Under single-wavelength excitation, the sensor responded to GSH-SO2 and SO2-GSH continuously with blue-shifted and green fluorescence-enhanced signal modes, respectively, not just to GSH (enhanced) and SO2 (quenched) at 638 nm with a completely converse response tendency. Given its favorable spectral performance (high sensitivity, superior selectivity, and fast response rate) at physiological pH, Mito-Na-BP has been successfully applied in monitoring the level fluctuation of GSH affected from high-dose SO2 and visualizing in real time the metabolic process of GSH to SO2 by TP imaging. It is expected that this research will provide a convenient and efficient tool for elucidating intricate relationships of GSH and SO2 and facilitate further exploration of their functions in biomedicine.
Collapse
Affiliation(s)
- Chunlin Jing
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingzhe Wang
- Laboratory for Nano Medical Photonics, School of Basic Medical Science, Henan University, Kaifeng, 475004, P. R. China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xinxin Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Manchang Kou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei Dou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
18
|
Xu Y, Nie Z, Ni N, Zhang X, Yuan J, Gao Y, Gong Y, Liu S, Wu M, Sun X. Shield-activated two-way imaging nanomaterials for enhanced cancer theranostics. Biomater Sci 2022; 10:6893-6910. [PMID: 36317535 DOI: 10.1039/d2bm01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart nanomaterials with stimuli-responsive imaging enhancement have been widely developed to meet the requirements of accurate cancer diagnosis. However, these imaging nanoenhancers tend to be always on during circulation, which significantly increases the background signal when assessing the imaging performance. To improve unfavorable signal-to-noise ratios, an effective way is to shield the noise signal of these nanoprobes in non-targeted areas. Fortunately, there is a natural mutual shielding effect between some imaging nanomaterials, which provides the possibility of designing engineered nanomaterials with imaging quenching between two different components at the beginning. Once in the tumor microenvironment, the two components will present activated dual-mode imaging ability because of their separation, designated as two-way imaging tuning. This review highlights the design and mechanism of a series of engineered nanomaterials with two-way imaging tuning and their latest applications in the fields of cancer magnetic resonance imaging, fluorescence imaging, and their combination. The challenges and future directions for the improvement of these engineered nanomaterials towards clinical transformation are also discussed. This review aims to introduce the special constraint relationships of imaging components and provide scientists with simpler and more efficient nanoplatform construction ideas, promoting the development of engineered nanomaterials with two-way imaging tuning in cancer theranostics.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Zhaokun Nie
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xinyu Zhang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jia Yuan
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Yufang Gong
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Shuangqing Liu
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Min Wu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
19
|
Juvekar V, Lee HW, Lee DJ, Kim HM. Two-photon fluorescent probes for quantitative bio-imaging analysis in live tissues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Li S, Yu X, Zeng L, Xu Y, Zhao X, Tang W, Duan X. A Sensitive Fluorescent Probe with Large Stokes Shift for Real‐Time Tracking Lysosomal pH Changes in Live Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202202620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siyuan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xianrong Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Linlin Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Yuhan Xu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xiaolan Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| |
Collapse
|
21
|
Zhang Z, Yang S, Dong B, Kong X, Tian M. Chameleon-Like Fluorescent Probe for Monitoring Interplays between Three Organelles and Reporting Cell Damage Processes through Dramatic Color Change. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205026. [PMID: 36161769 DOI: 10.1002/smll.202205026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The in-depth study of the interplay and cooperation between multiple organelles is an important biological task. Single fluorescent probes for separate visualization of multiple organelles is a desirable molecular tool, but the construction of such a probe is extremely difficult owing to the lack of valid strategies. In this work, utilizing the reversible cyclization reaction and intermolecular π stacking mechanism, a robust fluorescent probe is constructed to discriminatively illuminate lipid droplets (LDs), mitochondria, and lysosomes with blue, green, and red emission colors, respectively. Using the probe, the interplays and cooperation between LDs, mitochondria, and lysosomes are successfully studied, and the critical roles of lysosomes and LDs during mitochondrial fission are successfully revealed. Furthermore, this unique probe reveals the sequential damage of mitochondria and lysosomes during apoptosis through the successive fading of green and red emission. Thereby, the probe enables the discrimination of health state, early apoptosis, and late apoptosis of cells with three different sets of fluorescent signals. Overall, the robust probe is a desirable molecular tool to reveal the interactions between the three organelles, and investigate cell apoptosis and relative areas.
Collapse
Affiliation(s)
- Zheming Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Shuxian Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| |
Collapse
|
22
|
Li N, Zhang J, Wang M, Wang K, Liu J, Sun H, Su X. A pH-responsive ratiometric fluorescence system based on AIZS QDs and azamonardine for urea detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121431. [PMID: 35653812 DOI: 10.1016/j.saa.2022.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Herein, a ratiometric fluorescent nanoprobe was strategically fabricated using pH-sensitive azamonardine (Aza) as a pH indicator and pH-insensitive AIZS QDs as a reference fluorescence signal for urea activity determination and pH sensing. As the pH changed from 9.7 to 11.7, the resorcinol could react with dopamine to form the cyclization product (Aza), producing a fluorescence signal at 455 nm. Meanwhile, the fluorescence intensity of AIZS QDs at 566 nm remained unchanged. Thus, the ratio of the fluorescence intensity (F455/F566) was able to quantify pH value. Our designed pH-sensing platform showed a linear respond to pH values in the range of 9.7 to 11.7 at intervals of 0.2. In addition, the hydrolysis of urea by urease caused an increase of the system pH value, which can be used to measure the concentration of urea. The developed method for urea determination exhibited a good linear relationship from 0.02 to 20 mM and the limit of detection was 0.0103 mM. Moreover, the practical application was confirmed by urea analysis in real water sample with high feasibility and accuracy, indicating the great application prospects of this sensing platform for urea activity analysis.
Collapse
Affiliation(s)
- Ning Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China; Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengjun Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kaishuo Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Huilin Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Wang J, Huo F, Zhang Y, Yin C. Spiropyran isomerization triggering ESIPT for visualization of pH fluctuations during oxidative stress in living cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Assies L, Mercier V, López‐Andarias J, Roux A, Sakai N, Matile S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. Chembiochem 2022; 23:e202200192. [PMID: 35535626 PMCID: PMC9400975 DOI: 10.1002/cbic.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Labeled ammonium cations with pKa ∼7.4 accumulate in acidic organelles because they can be neutralized transiently to cross the membrane at cytosolic pH 7.2 but not at their internal pH<5.5. Retention in early endosomes with less acidic internal pH was achieved recently using weaker acids of up to pKa 9.8. We report here that primary ammonium cations with higher pKa 10.6, label early endosomes more efficiently. This maximized early endosome tracking coincides with increasing labeling of Golgi networks with similarly weak internal acidity. Guanidinium cations with pKa 13.5 cannot cross the plasma membrane in monomeric form and label the plasma membrane with selectivity for vesicles embarking into endocytosis. Self-assembled into micelles, guanidinium cations enter cells like arginine-rich cell-penetrating peptides and, driven by their membrane potential, penetrate mitochondria unidirectionally despite their high inner pH. The resulting tracking rules with an approximated dynamic range of pKa change ∼3.5 are expected to be generally valid, thus enabling the design of chemistry tools for biology research in the broadest sense. From a practical point of view, most relevant are two complementary fluorescent flipper probes that can be used to image the mechanics at the very beginning of endocytosis.
Collapse
Affiliation(s)
- Lea Assies
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Vincent Mercier
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Javier López‐Andarias
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Aurelien Roux
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
25
|
Wang K, Yan S, Han T, Wu Q, Yan N, Kang M, Ge J, Wang D, Tang BZ. Cascade C-H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for Intracellular pH Mapping and Cancer Cell Killing. J Am Chem Soc 2022; 144:11788-11801. [PMID: 35736562 DOI: 10.1021/jacs.2c04032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of straightforward and efficient synthetic methods toward ring-fused heteroaromatic polymers with attractive functionalities has great significance in both chemistry and materials science. Herein, we develop a facile cascade C-H-activated polyannulation route that can in situ generate multiple ring-fused aza-heteroaromatic polymers from readily available monomers in an atom-economical manner. A series of complex polybenzimidazole derivatives with high absolute molecular weights of up to 24 000 are efficiently produced in high yields within 2 h. Benefiting from their unique imidazole-containing ring-fused structures with multiple aryl pendants, the obtained polymers show excellent thermal and morphological stability, good solution processability, high refractive index, small chromic dispersion, as well as remarkable acid-base-responsive fluorescence. Taking advantage of the ratiometric fluorescence response of the triphenylamine-substituted heteroaromatic polymer to pH variations, we successfully apply it as a sensitive fluorescence probe for the mapping and quantitative analysis of intracellular pH in live cells. Furthermore, through the simple N-methylation reaction of the ring-fused polybenzimidazoles, diverse azonia-containing polyelectrolytes are readily produced, which can efficiently kill cancer cells via the synergistic effects of dark toxicity and phototoxicity.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Saisai Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Neng Yan
- Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
26
|
Li X, Zhao X, Wu L, Leng Y, Cai X. Highly Reversible “Off‐On‐Off” Dual‐channel Fluorescence Probe Based on Amino Pyrazole and Phenothiazine for Sensing Extremely Alkaline Solution. ChemistrySelect 2022. [DOI: 10.1002/slct.202104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohong Li
- Department of Chemical Engineering Guizhou Minzu University Guiyang China
| | - Xiaoli Zhao
- Department of Chemical Engineering Guizhou Minzu University Guiyang China
| | - Linli Wu
- Department of Chemical Engineering Guizhou Minzu University Guiyang China
| | - Yanli Leng
- Department of Chemical Engineering Guizhou Minzu University Guiyang China
| | - Xiaohua Cai
- Department of Chemical Engineering Guizhou Minzu University Guiyang China
| |
Collapse
|
27
|
Zheng S, Fang Y, Chen Y, Kong Q, Wang F, Chen X. Benzothiazole derivatives based colorimetric and fluorescent probes for detection of amine/ammonia and monitoring the decomposition of urea by urease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120616. [PMID: 34840048 DOI: 10.1016/j.saa.2021.120616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Amines play critical roles in chemical, agrochemical and pharmaceutical industries. However, volatile amine vapours cause widespread pollution and threaten human health. An efficient, highly sensitive and recyclable sensor for monitoring amine vapours is highly demanded. Typically, 2-(2-hydroxy-5-methyl) benzothiazole (HBT) derivates exhibit excellent aggregation-induced emission (AIE) phenomena in keto form originated from a unique excited-state intramolecular proton transfer (ESIPT) process. In this work, we have designed and synthesized two HBT-based fluorescent probes for ratiometric detection toward amine vapours and ammonia. In addition, the detection limits for ammonia were calculated as 226 ppm and 13 ppm respectively. Additionally, the test strips and electrospinning film dopped with fluorescent probes were utilized to recognize amine vapours and ammonia colorimetric with high sensitivity in solid states. According to the above characteristics, probes could monitor the biological activity of urease conveniently and rapidly.
Collapse
Affiliation(s)
- Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Yu Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Qing Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
28
|
Wang X, Feng Y, Liu J, Cheng K, Liu Y, Yang W, Zhang H, Peng H. Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120477. [PMID: 34662780 DOI: 10.1016/j.saa.2021.120477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report a two-photon ratiometric fluorescent pH nanosensor based on conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) nanoparticles loaded with pH-sensitive fluorescein isothiocyanate (FITC) for intracellular pH monitoring. The obtained nanosensor (FITC-PFO NPs) possesses high sensitivity, excellent stability, good reversibility, favorable two-photon excitability and low cytotoxicity. The ratiometric fluorescence of FITC and PFO (F517/F417) in FITC-PFO NPs solution shows an efficient pH-sensitive response over the pH range from 3 to 10 (pKa = 6.43) under two-photon excitation. Additionally, the FITC-PFO NPs is successfully applied for ratiometric imaging of intracellular pH and its fluctuation in both one-photon and two-photon excitation modes. Overall, the two-photon pH nanosensor based on FITC-PFO NPs exhibits great potential in crucial physiological and biological processes related to intracellular pH fluctuations.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| | - Yuanxiangyi Feng
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jinhua Liu
- Department of Pulmonary and Critical Care Medicine, The Third Hospital of Changsha, Changsha 410015, China
| | - Kun Cheng
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yuanan Liu
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Wei Yang
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hongxin Zhang
- Beijing Key laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hongshang Peng
- School of Science, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
29
|
Galactose-imidazole mediated dual-targeting fluorescent probe for detecting Fe3+ in the lysosomes of hepatocytes: Design, synthesis and evaluation. Biosens Bioelectron 2022; 204:114083. [DOI: 10.1016/j.bios.2022.114083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
|
30
|
Liu Q, Liu C, Cai S, He S, Zhao L, Zeng X, Zhou J, Gong J. A new near-infrared fluorescent probe for sensing extreme acidity and bioimaging in lysosome. Methods Appl Fluoresc 2022; 10. [PMID: 35073535 DOI: 10.1088/2050-6120/ac4e73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Since the intracellular pH plays an important role in the physiological and pathological processes, however, the probes that can be used for monitoring pH fluctuation under extreme acidic conditions are currently rare, so it is necessary to construct fluorescent probes for sensing pH less than 4. In this work, we developed a new near-infrared (NIR) fluorescent probe Cy-SNN for sensing pH fluctuation under extremely acidic conditions. For the preparation of this probe, benzothiozolium moiety was chosen as lysosomal targeting unit and NIR fluorophore, and barbituric acid moiety was fused in the polymethine chain of probe to introduce protonation center. Surprisingly, on the basis of the balance of quaternary ammonium salts and free amines, the pKa value of Cy-SNN was calculated as low as 2.96, implying that Cy-SNN can be used in acidic conditions with pH < 4. Moreover, Cy-SNN exhibited highly selective response to H+ over diverse analytes in real-time with dependable reversibility. Importantly, Cy-SNN can be used to specifically target lysosome, providing potential tools for monitoring the function of lysosome in autophagy process.
Collapse
Affiliation(s)
- Qiuchen Liu
- Tianjin University of Technology, Tianjin, 300384,, Tianjin, 300191, CHINA
| | - Chang Liu
- Tianjin University of Technology, Tianjin, 300384, Tianjin, 300191, CHINA
| | - Songtao Cai
- Shenzhen University, Shenzhen 518060, Shenzhen, Guangdong, 518060, CHINA
| | - Song He
- Tianjin University of Technology, Tianjin, 300384, Tianjin, 300384, CHINA
| | - Liancheng Zhao
- School of Material Science and Engineering, Harbin Institute of Technology, PO Box 433, 92 West Dazhi Street, Harbin 150001, Harbin, 150001, CHINA
| | - Xianshun Zeng
- Tianjin University of Technology, Tianjin, Tianjin, 300384, CHINA
| | - Jin Zhou
- Weifang Medical University, Baotong West Street 7166, Weifang, 261053, CHINA
| | - Jin Gong
- Weifang Medical University, Baotong West Street 7166, Weifang, Shandong, 261053, CHINA
| |
Collapse
|
31
|
Liu J, Zhang J, Zhang Y, Wang Y, Wang M, Li Z, Wang G, Su X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022; 237:122956. [PMID: 34736681 DOI: 10.1016/j.talanta.2021.122956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
In this paper, we proposed a dual-signal fluorometric and colorimetric system based on silicon quantum dots (SiQDs) and 4-nitrophenol (4-NP) for pH and urease sensing. SiQDs with fluorescence emission of 460 nm were prepared via aqueous-phase synthesis. As the pH of the system gradually increased, the absorption band of 4-NP at 400 nm increased and a color reaction from colorless to yellow occurred. The absorption of 4-NP overlapped quiet well with the fluorescence excitation spectrum of SiQDs, which can effectively quench the fluorescence of SiQDs. Therefore, the change of fluorescence and absorption intensities could be used to quantify pH value. The fluorometric and colorimetric pH-sensing systems both exhibited a linear respond to pH ranging from 6.0 to 7.8 with an interval of 0.2 pH unit. Urease could specifically hydrolyze urea to generate carbon dioxide and ammonia, causing an obvious increase of the pH value. Thus, urease could also be detected quantitatively by the above dual-signal pH sensing system. The linear ranges of the fluorometric and colorimetric methods for urease detection were both 2-40 U L-1. The limits of detection were 1.67 and 1.07 U L-1, respectively. More importantly, this established dual-signal system has been successfully exploited in the detection of urease in real samples with satisfactory recoveries. Compared with other traditional single-signal assay strategies, the results obtained by dual-signal methods are more accurate and reliable.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ziwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, PR China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
32
|
Wen C, Ge J, Huang Y, Gong T, Wang C, Yu B, Liang W. A benzimidazole-based ratiometric fluorescent probe for the accurate and rapid monitoring of lysosomal pH in cell autophagy and anticounterfeiting. Analyst 2022; 147:4389-4398. [DOI: 10.1039/d2an01112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The lysosomal targeted ratiometric fluorescent BD probe reveals excellent application performance in the fields of selective monitoring of the lysosome pH of living cells, real-time dynamic monitoring of autophagy, and document anti-counterfeiting.
Collapse
Affiliation(s)
- Chaochao Wen
- Institute of Environmental Science, Department of Chemistry, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinyin Ge
- Institute of Environmental Science, Department of Chemistry, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Congying Wang
- Institute of Environmental Science, Department of Chemistry, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
- Shaanxi Key Laboratory of Land Consolidation, School of Earth Science and Resources, Chang'an University, Xi'an 710064, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
33
|
Mahanty S, Rathinasamy K, Suresh D. Spectral Characterization of Purpurin Dye and Its Application in pH Sensing, Cell Imaging and Apoptosis Detection. J Fluoresc 2022; 32:247-256. [PMID: 34731386 DOI: 10.1007/s10895-021-02836-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Purpurin (1,2,4-trihydroxy-9,10-anthraquinone) is a natural red dye obtained from the red madder plant that is widely used in food and dyeing industries. The present study investigated the characteristics of purpurin and its application as a pH-sensitive probe to detect the pH of solutions and intracellular pH of mammalian and bacterial cells. Purpurin exhibited high pH-sensitive behavior, low analytes interference, high stability with pKa of 4.6 and visible colorimetric change. 1H NMR and FTIR studies indicated protonation of phenolic hydroxyl group under acidic condition with hypsochromic shift in the absorption and fluorescence spectra relative to that of basic condition. Cell culture studies using HeLa cells revealed that purpurin is well tolerated by the cells and the fluorescent imaging result indicated excellent cell permeability with possible use of the dye to detect the pH fluctuations in living cells under various physiological conditions such as apoptosis. Microbiological studies indicated that the dye could be used for visualization of bacteria under acidic condition.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Tamil Nadu, 613 401, Thanjavur, India
| |
Collapse
|
34
|
Lin PC, Lin YT, LIU KUANTING, Chen MS, Zhang YY, Li JC, Leung MK. Differential Detection of Strong-Acids in Weak-Acids: A combination of Benzimidazole-carbazole backbone with AIE luminophores as highly sensitive and selective turn-on fluorescent probes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
o-BzcDPE and p-BzcDPE have been synthesized and used as probes for strong acid detection. The probes contain an aggregation-induced emission luminogens (AIEgens) that is incorporated with benzimidazole-carbazole backbone. Both probes...
Collapse
|
35
|
Fu M, Yang M, Xu X. Upconversion fluorescent nanoprobe based on 4-NP reversible structure for a wide range of pH determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate detection of pH value has received more and more attention in various fields. However, most reported probes show pH values in the acidic or alkaline range and work within...
Collapse
|
36
|
Tang Y, Chen X, Zhang S, Smith ZJ, Gao T. Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes. Anal Chem 2021; 93:15659-15666. [PMID: 34779624 DOI: 10.1021/acs.analchem.1c03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2'-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.
Collapse
Affiliation(s)
- Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuqi Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
37
|
Ma Q, Zhuo W, Zhai Z, Gong G, Zhang T, Xiao H, Zhou Z, Liu Y. A new fluorescent probe for neutral to alkaline pH and imaging application in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120031. [PMID: 34119767 DOI: 10.1016/j.saa.2021.120031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
A new pH-sensitive fluorescent probe NAP-MDA was designed and synthesized. NAP-MDA consists of 1,8-naphthalimide as fluorophore, morpholine and N,N-dimethylethylenediamine as pH-responsive groups. Due to the photoinduced electron transfer (PET) mechanism, the fluorescence of 1, 8-naphthalimide was thoroughly quenched under alkaline condition (pH > 10.0), however, NAP-MDA displayed increasing fluorescence as the rise of acidity. Notably, NAP-MDA possessed an excellent linear dependence with neutral to alkaline pH (7.2-9.4), with a pKa of 8.38. NAP-MDA had good photostability and reversibility. Meanwhile, the probe was selective to pH without interference from common reactive species, temperature and viscosity. Fluorescent testing strips were fabricated with NAP-MDA and were successfully utilized to visualize the different pH with a handhold UV lamp. Confocal fluorescence imaging in live cells demonstrated that NAP-MDA mainly fluoresced in lysosomes, and could be applied for quantification of the pH within live cells.
Collapse
Affiliation(s)
- Qingqing Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Wenfeng Zhuo
- Jiangsu Xinhe Agricultural and Chemical Company Limited, Xinyi 221400, PR China
| | - Zhaodong Zhai
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Guangshuai Gong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Ziyan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
38
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Development of a Simple Dansyl-Based PH Fluorescent Probe in Acidic Medium and Its Application in Cell Imaging. J Fluoresc 2021; 32:227-233. [PMID: 34705194 DOI: 10.1007/s10895-021-02843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
A simple pH fluorescent probe based on dansyl derivative (Bu-Dns) was synthesized via one-step reaction between dansyl chloride and 4-bromobutan-1-amine hydrobromide. The obtained probe showed good selectivity and sensitivity toward H+ in acidic medium over two pH units (~4-2). At pH > 4, Bu-Dns solution emitted yellow fluorescent light, which became gradually weaker with decreasing pH value. At pH below 2, complete fluorescence quenching occurred. The pH response of Bu-Dns was ascribed to the protonation of dimethylamine group. The lack of influence of metal ion on pH response increases the prevalence of Bu-Dns in the potential detection of pH variation in acidic aqueous media. More importantly, it can sense the intracellular pH change in acidic range.
Collapse
|
40
|
Xu Y, Duan R, Liu H, Xia C, Duan G, Ge Y. Preparation of a Novel pH-responsive Fluorescent Probe Based on an Imidazo[1,2-a]indole Fluorophore and its Application in Detecting Extremely Low pH in Saccharomyces cerevisiae. J Fluoresc 2021; 31:1219-1225. [PMID: 34255255 DOI: 10.1007/s10895-021-02739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 10/20/2022]
Abstract
A novel pH-responsive probe based on an imidazo[1,2-a]indole fluorophore architecture is reported. The probe was highly selective to strongly acidic pH (pKa = 3.56) with high sensitivity and a fast response time (within 30 s). The probe did not demonstrate any fluorescence changes in the presence of interfering metal ions, and it featured excellent reversibility under strongly acidic conditions. The mechanism of detection of the probe was determined to be based on intramolecular charge transfer (ICT) at different pH. The probe was also able to be used for imaging for detecting acidic pH in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yanhao Xu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, People's Republic of China
| | - Ruikang Duan
- Shanghai Fengxian Central Hospital, Shanghai, 201400, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, People's Republic of China
| | - Chengcai Xia
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, People's Republic of China
| | - Guiyun Duan
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, People's Republic of China
| | - Yanqing Ge
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, People's Republic of China.
| |
Collapse
|
41
|
Li X, Wu S, Yu K, Hou J, Jiang C, Li K, Chu Z, Jiang X, Yu X, Xu W. A dual-site controlled pH probe revealing the pH of sperm cytoplasm and screening for healthy spermatozoa. J Mater Chem B 2021; 9:3662-3665. [PMID: 33870986 DOI: 10.1039/d1tb00108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A dual-site controlled pH probe, which is composed of gold nanoparticles and modified with rhodamine and fluorescein derivatives, was applied to sensitively monitor intracellular pH changes in sperm. The pH probe revealed the intracellular pH of sperm under different conditions and demonstrated the lower pH in asthenozoospermia patients as compared to healthy individuals. Importantly, the pH probe can help screen for healthy sperm.
Collapse
Affiliation(s)
- Xiaoliang Li
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Sixian Wu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kangkang Yu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jianwen Hou
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Zhiwen Chu
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xiaohui Jiang
- Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. and Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
42
|
Yang S, Zhan Y, Shou W, Chen L, Lin Z, Guo L. 1,2,4-Triaminobenzene as a Fluorescent Probe for Intracellular pH Imaging and Point-of-Care Ammonia Sensing. ACS APPLIED BIO MATERIALS 2021; 4:6065-6072. [PMID: 35006915 DOI: 10.1021/acsabm.1c00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As one of the health indicators, intracellular pH plays important roles in many processes of cell functions. Abnormal pH changes would result in the occurrence of inflammation, cancer, and other diseases. Thus, it is of significant importance to develop effective techniques for sensitive detection of pH changes for the clinical diagnosis of various diseases related to cells. In this paper, 1,2,4-triaminobenzene hydrochloride was explored as an organic molecular fluorescent probe for sensitive and selective detection of intracellular pH changes for the first time. Due to the protonation and deprotonation of amino groups of the probe, its fluorescent intensity at 599 nm or the ratio of absorbance at 505 and 442 nm has a good linear relationship with pH values in the range of 5.0-7.0. Benefiting from the excellent physical and chemical properties of 1,2,4-triaminobenzene hydrochloride, the fluorescent probe has good water solubility, low toxicity, high photostability, great reversibility, good cell penetration, fast response speed, and so on. As a proof-of-concept demonstration, the proposed probe is employed for the fluorescence imaging of cells and mouse tissue sections with satisfactory performance in pH differentiation. Additionally, the probe was successfully employed to prepare test strips as a kind of point-of-care testing device to detect ammonia, which showed great potential in practical applications.
Collapse
Affiliation(s)
- Shuangting Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Yuanjin Zhan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China
| | - Wen Shou
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
43
|
Das S, Maity S, Ghosh P, Dutta A. The ninhydrin core as carbonyl source to access 2-(2′-hydroxyaryl)benzimidazoles exploiting the ortho selectivity of ninhydrin-phenol adducts. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1960379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, India
| | - Suvendu Maity
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Prasanta Ghosh
- Department of Chemistry, R K Mission Residential College, Narendrapur, Kolkata, India
| | - Arpita Dutta
- Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, India
| |
Collapse
|
44
|
Liu J, Yang L, Xue C, Huang G, Chen S, Zheng J, Yang R. Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33894-33904. [PMID: 34275283 DOI: 10.1021/acsami.1c08979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monitoring hypoxia-related changes in subcellular organelles would provide deeper insights into hypoxia-related metabolic pathways, further helping us to recognize various diseases on subcellular level. However, there is still a lack of real-time, in situ, and controllable means for biosensing in subcellular organelles under hypoxic conditions. Herein, we report a reductase and light programmatical gated nanodevice via integrating light-responsive DNA probes into a hypoxia-responsive metal-organic framework for spatiotemporally controlled imaging of biomolecules in subcellular organelles under hypoxic conditions. A small-molecule-decorated strategy was applied to endow the nanodevice with the ability to target subcellular organelles. Dynamic changes of mitochondrial adenosine triphosphate under hypoxic conditions were chosen as a model physiological process. The assay was validated in living cells and tumor tissue slices obtained from mice models. Due to the highly integrated, easily accessible, and available for living cells and tissues, we envision that the concept and methodology can be further extended to monitor biomolecules in other subcellular organelles under hypoxic conditions with a spatiotemporal controllable approach.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Caoye Xue
- Hunan Institute of Sports Science, 410003 Changsha, China
| | - Ge Huang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Ronghua Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410006 Hunan, China
| |
Collapse
|
45
|
Yuan L, Shi X, Tang BZ, Wang WX. Real-time in vitro monitoring of the subcellular toxicity of inorganic Hg and methylmercury in zebrafish cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105859. [PMID: 34004410 DOI: 10.1016/j.aquatox.2021.105859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a prominent environmental contaminant and can cause various subcellular effects. Elucidating the different subcellular toxicities of inorganic Hg (Hg2+) and methylmercury (MeHg) is critical for understanding their overall cytotoxicity. In this study, we employed aggregation-induced emission (AIE) probes to investigate the toxicity of Hg at the subcellular level using an aquatic embryonic zebrafish fibroblast cell line ZF4 as a model. The dynamic monitoring of lysosomal pH and the mapping of pH distribution during Hg2+ or MeHg exposure were successfully realized for the first time. We found that both Hg2+ and MeHg decreased the mean lysosomal pH, but with contrasting effects and mechanisms. Hg2+ had a greater impact on lysosomal pH than MeHg at a similar intracellular concentration. In addition, Hg2+ in comparison to MeHg exposure led to an increased number of lysosomes, probably because of their different effects on autophagy. We further showed that MeHg (200 nM) exposure had an inverse effect on mitochondrial respiratory function. A high dose (1000 nM) of Hg2+ increased the amount of intracellular lipid droplets by 13%, indicating that lipid droplets may potentially play a role in Hg2+detoxification. Our study suggested that, compared with other parameters, lysosome pH was most sensitive to Hg2+ and MeHg. Therefore, lysosomal pH can be used as a potential biomarker to assess the cellular toxicity of Hg in vitro.
Collapse
Affiliation(s)
- Liuliang Yuan
- Division of Life Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiujuan Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, HKUST, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China.
| |
Collapse
|
46
|
Cheng F, Qiang T, Ren L, Liang T, Gao X, Wang B, Hu W. Observation of inflammation-induced mitophagy during stroke by a mitochondria-targeting two-photon ratiometric probe. Analyst 2021; 146:2632-2637. [PMID: 33660731 DOI: 10.1039/d1an00208b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study reports the development of a new, pH-sensitive, mitochondria-targeting two-photon ratiometric probe (Mito-BNO) for real-time tracking of mitophagy, a process that can be accelerated in brain tissue during stroke. Mito-BNO shows excellent capability for mitochondrial localisation (Pearson's correlation coefficient, r = 0.91), and can also effectively distinguish mitochondria from other subcellular organelles such as lysosomes and the endoplasmic reticulum (r = 0.40 and r = 0.33, respectively). Meanwhile, a rewarding pKa value (5.23 ± 0.03) and the pH reversibility suggest that Mito-BNO can track mitophagy in real time via confocal imaging. Most importantly, the relationship between mitophagy and neuroinflammation during stroke has been successfully demonstrated by evaluating the fluorescence of PC12 cells stained with Mito-BNO during an oxygen-glucose deprivation/reperfusion (OGD/R) process with and without anti-inflammatory treatment. The results indicate that the occurrence of mitophagy during stroke is caused by oxidative stress induced by neuroinflammation. This study will help further understanding stroke pathogenesis, can provide potential new targets for early diagnosis and treatment, and can also help to develop therapeutic drugs for stroke.
Collapse
Affiliation(s)
- Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Xiaoyang Gao
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
47
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021; 60:12258-12263. [DOI: 10.1002/anie.202016105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
48
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
49
|
Lu Y, Wang R, Sun Y, Tian M, Dong B. Endoplasmic reticulum-specific fluorescent probe for the two-photon imaging of endogenous superoxide anion (O2•-) in live cells and zebrafishes. Talanta 2021; 225:122020. [DOI: 10.1016/j.talanta.2020.122020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
|
50
|
Kim H, Sarkar S, Nandy M, Ahn KH. Imidazolyl-benzocoumarins as ratiometric fluorescence probes for biologically extreme acidity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119088. [PMID: 33187882 DOI: 10.1016/j.saa.2020.119088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
A rational approach to develop a fluorescent probe for sensing biologically "extreme" acidity (pH <3) is disclosed. The probe, a push-full type 3-(imidazolyl)benzocoumarin dye, has the lowest pKa = 1.3 among ratiometric probes known so far, which is ascribed due to a unique sensing mechanism. The probe has high quantum yields, high chemical stability and good aqueous solubility. The probe was successfully applied to ratiometric fluorescence imaging of intrabacterial acidity from pH 4.0-1.0, offering a practical means for studying biological systems under the extreme pH conditions.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Madhurima Nandy
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Republic of Korea.
| |
Collapse
|