1
|
Kwon S, Majumder A, Straub JE. Exploring Free Energy Landscapes for Protein Partitioning into Membrane Domains in All-Atom and Coarse-Grained Simulations. J Chem Theory Comput 2024. [PMID: 39484915 DOI: 10.1021/acs.jctc.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is known that membrane environment can impact the structure and function of integral membrane proteins. As such, elucidation of the thermodynamic driving forces governing protein partitioning between membrane domains of varying lipid composition is a fundamental topic in membrane biophysics. Molecular dynamics simulations provide valuable tools for quantitatively characterizing the free energy landscapes governing protein partitioning at the molecular level. In this study, we propose an efficient simulation methodology for the calculation of free energies for the partitioning of transmembrane proteins between liquid-disorder (Ld) and liquid-ordered (Lo) domains in all-atom (AA) phase-separated lipid bilayers. The computed potential of mean force defining the equilibrium partition coefficients is compared for AA and coarse-grained systems. Energy decomposition is used to identify differences in the underlying thermodynamics. Our findings highlight the importance of employing AA models to accurately estimate relevant free energy changes during protein translation between membrane domains.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
3
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc Reconstitution and Characterization of Amyloid-β Precursor Protein C99. Anal Chem 2024; 96:9362-9369. [PMID: 38826107 DOI: 10.1021/acs.analchem.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease (AD). Since the fragmentation of the membrane-bound APP that results in the production of amyloid-β peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable and suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in the native Escherichia. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
4
|
Krishnarjuna B, Sharma G, Hiiuk VM, Struppe J, Nagorny P, Ivanova MI, Ramamoorthy A. Nanodisc reconstitution and characterization of amyloid-β precursor protein C99. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590446. [PMID: 38659865 PMCID: PMC11042261 DOI: 10.1101/2024.04.21.590446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Amyloid precursor protein (APP) plays a pivotal role in the pathology of Alzheimer's disease. Since the fragmentation of the membrane-bound APP that results in the production of amyloid-beta peptides is the starting point for amyloid toxicity in AD, it is important to investigate the structure and dynamics of APP in a near-native lipid-bilayer environment. However, the reconstitution of APP into a stable/suitable membrane-mimicking lipid environment is a challenging task. In this study, the 99-residue C-terminal domain of APP is successfully reconstituted into polymer nanodiscs and characterized using size-exclusion chromatography, mass spectrometry, solution NMR, and magic-angle spinning solid-state NMR. In addition, the feasibility of using lipid-solubilizing polymers for isolating and characterizing APP in native E. coli membrane environment is demonstrated.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Gaurav Sharma
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Volodymyr M Hiiuk
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Magdalena I Ivanova
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
| |
Collapse
|
5
|
Pauli TM, Julius A, Costa F, Eschrig S, Moosmüller J, Fischer L, Schanzenbach C, Schmidt FC, Ortner M, Langosch D. Interaction of Substrates with γ-Secretase at the Level of Individual Transmembrane Helices-A Methodological Approach. Int J Mol Sci 2023; 24:14396. [PMID: 37762696 PMCID: PMC10531681 DOI: 10.3390/ijms241814396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Intramembrane proteases, such as γ secretase, typically recruit multiple substrates from an excess of single-span membrane proteins. It is currently unclear to which extent substrate recognition depends on specific interactions of their transmembrane domains (TMDs) with TMDs of a protease. Here, we investigated a large number of potential pairwise interactions between TMDs of γ secretase and a diverse set of its substrates using two different configurations of BLaTM, a genetic reporter system. Our results reveal significant interactions between TMD2 of presenilin, the enzymatic subunit of γ secretase, and the TMD of the amyloid precursor protein, as well as of several other substrates. Presenilin TMD2 is a prime candidate for substrate recruitment, as has been shown from previous studies. In addition, the amyloid precursor protein TMD enters interactions with presenilin TMD 4 as well as with the TMD of nicastrin. Interestingly, the Gly-rich interfaces between the amyloid precursor protein TMD and presenilin TMDs 2 and 4 are highly similar to its homodimerization interface. In terms of methodology, the economics of the newly developed library-based method could prove to be a useful feature in related future work for identifying heterotypic TMD-TMD interactions within other biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martin Ortner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| |
Collapse
|
6
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Lu Y, Salsbury F, Derreumaux P. Impact of A2T and D23N mutations on C99 homodimer conformations. J Chem Phys 2022; 157:085102. [DOI: 10.1063/5.0101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteolytic cleavage of C99 by γ-secretase is the last step in the production of amyloid-β (Aβ) peptides. Previous studies have shown that membrane lipid composition, cholesterol concentration, and mutation in the transmembrane helix modified the structures and fluctuations of C99. In this study, we performed atomistic molecular dynamics simulations of the homodimer of the 55-residue congener of the C-terminal domain of the amyloid protein precursor, C99(1-55), in a POPC-cholesterol lipid bilayer, and we compared the conformational ensemble of WT sequence to those of the A2T and D23N variants. These mutations are particularly interesting as the protective Alzheimer's disease (AD) A2T mutation is known to decrease Aβ production, whereas the early onset AD D23N mutation does not affect Aβ production. We found noticeable differences in the structural ensembles of the three sequences. In particular, A2T varies from both WT and D23N by having long-range effects on the population of the extracellular justamembrane helix, the interface between the G29xxx-G33xxx-G37 motifs and the fluctuations of the transmembrane helical topologies.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics, Xidian University, China
| | | | | |
Collapse
|
8
|
Majumder A, Kwon S, Straub JE. On Computing Equilibrium Binding Constants for Protein-Protein Association in Membranes. J Chem Theory Comput 2022; 18:3961-3971. [PMID: 35580264 PMCID: PMC11260346 DOI: 10.1021/acs.jctc.2c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein association in lipid membranes is fundamental to membrane protein function and of great biomedical relevance. All-atom and coarse-grained models have been extensively used to understand the protein-protein interactions in the membrane and to compute equilibrium association constants. However, slow translational and rotational diffusion of protein in membrane presents challenges to the effective sampling of conformations defining the ensembles of free and bound states contributing to the association equilibrium and the free energy of dimerization. We revisit the homodimerization equilibrium of the TM region of glycophorin A. Conformational sampling is performed using umbrella sampling along previously proposed one-dimensional collective variables and compared with sampling over a two-dimensional collective variable space using the MARTINI v2.2 force field. We demonstrate that the one-dimensional collective variables suffer from restricted sampling of the native homodimer conformations leading to a biased free energy landscape. Conversely, simulations along the two-dimensional collective variable effectively characterize the thermodynamically relevant native and non-native interactions contributing to the association equilibrium. These results demonstrate the challenges associated with accurately characterizing binding equilibria when multiple poses contribute to the bound state ensemble.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Seulki Kwon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Silber M, Hitzenberger M, Zacharias M, Muhle-Goll C. Altered Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme-Substrate Interactions of γ-Secretase. ACS Chem Neurosci 2020; 11:4426-4433. [PMID: 33232115 DOI: 10.1021/acschemneuro.0c00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cleavage of substrates by γ-secretase is an inherently slow process where substrate-enzyme affinities cannot be broken down into specific sequence requirements in contrast to soluble proteases. Nevertheless, despite its apparent sequence tolerance single point mutations in amyloid precursor protein can severely affect cleavage efficiencies and change product line preferences. We have determined by NMR spectroscopy the structures of the transmembrane domain of amyloid precursor protein in TFE/water and compared it to that of four mutants: two FAD mutants, V44M and I45T, and the two diglycine hinge mutants, G38L and G38P. In accordance with previous publications, the transmembrane domain is composed of two helical segments connected by the diglycine hinge. Mutations alter kink angles and structural flexibility. Furthermore, to our surprise, we observe different, but specific mutual orientations of N- and C-terminal helical segments in the four mutants compared to the wildtype. We speculate that the observed orientations for G38L, G38P, V44M, and I45T lead to unfavorable interactions with γ-secretase exosites during substrate movement to the enzyme's active site in presenilin and/or for the accommodation into the substrate-binding cavity of presenilin.
Collapse
Affiliation(s)
- Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Manuel Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Mori T, Sugita Y. Implicit Micelle Model for Membrane Proteins Using Superellipsoid Approximation. J Chem Theory Comput 2019; 16:711-724. [DOI: 10.1021/acs.jctc.9b00783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Biosystems Dynamics Research, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
12
|
Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J 2019; 116:2103-2120. [PMID: 31130234 PMCID: PMC6554489 DOI: 10.1016/j.bpj.2019.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Intramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.
Collapse
Affiliation(s)
- Alexander Götz
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Nadine Mylonas
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hannes Heinel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Hannes Feyrer
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dieter Langosch
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany.
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
13
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
14
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochem J 2019; 476:1173-1189. [PMID: 30910800 DOI: 10.1042/bcj20190023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
The membrane protease γ-secretase cleaves the C99 fragment of the amyloid precursor protein, thus producing the Aβ peptides central to Alzheimer's disease. Cryo-electron microscopy has provided the topology but misses the membrane and loop parts that contribute to substrate binding. We report here an essentially complete atomic model of C99 within wild-type γ-secretase that respects all the experimental constraints and additionally describes loop, helix, and C99 substrate dynamics in a realistic all-atom membrane. Our model represents the matured auto-cleaved state required for catalysis. From two independent 500-ns molecular dynamic simulations, we identify two conformation states of C99 in equilibrium, a compact and a loose state. Our simulations provide a basis for C99 processing and Aβ formation and explain the production of longer and shorter Aβ, as the compact state retains C99 for longer and thus probably trims to shorter Aβ peptides. We expect pathogenic presenilin mutations to stabilize the loose over the compact state. The simulations detail the role of the Lys53-Lys54-Lys55 anchor for C99 binding, a loss of helicity of bound C99, and positioning of Thr48 and Leu49 leading to alternative trimming pathways on opposite sides of the C99 helix in three amino acid steps. The C99 binding topology resembles that of C83-bound γ-secretase without membrane but lacks a presenilin 1-C99 β-sheet, which could be induced by C83's stronger binding. The loose state should be selectively disfavored by γ-secretase modulators to increase C99 trimming and reduce the formation of longer Aβ, a strategy that is currently much explored but has lacked a structural basis.
Collapse
|
16
|
Götz A, Högel P, Silber M, Chaitoglou I, Luy B, Muhle-Goll C, Scharnagl C, Langosch D. Increased H-Bond Stability Relates to Altered ε-Cleavage Efficiency and Aβ Levels in the I45T Familial Alzheimer's Disease Mutant of APP. Sci Rep 2019; 9:5321. [PMID: 30926830 PMCID: PMC6440955 DOI: 10.1038/s41598-019-41766-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aβ42/Aβ40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.
Collapse
Grants
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Helmholtz-Gemeinschaft (Helmholtz Association)
- Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de Gauss Centre for Supercomputing: GCS-Geschäftsstelle Bonn, Ahrstrasse 45, 53175 Bonn, Germany, WEB: http://www.gauss-centre.eu
- Center for Integrated Protein Science: Munich Center For Integrated Protein Science (CIPSM), Butenandtstr. 5 - 13, 81377 Munich, Germany, WEB: http://www.cipsm.de/ Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de
Collapse
Affiliation(s)
- Alexander Götz
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Iro Chaitoglou
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christina Scharnagl
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany.
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
17
|
Hitzenberger M, Zacharias M. Structural Modeling of γ-Secretase Aβ n Complex Formation and Substrate Processing. ACS Chem Neurosci 2019; 10:1826-1840. [PMID: 30638370 DOI: 10.1021/acschemneuro.8b00725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intramembrane aspartyl protease γ-secretase (GSEC) cleaves single-span transmembrane helices including the C-terminal fragment of the amyloid precursor protein (APP). This substrate is initially cleaved at the ϵ-site followed by successive processing (trimming) events mostly in steps of three amino acids. GSEC is responsible for the formation of N-terminal APP amyloid-β (Aβ) peptides of different length (e.g., Aβ42) that can form aggregates involved in Alzheimer's disease pathogenesis. The molecular mechanism of GSEC-APP substrate recognition is key for understanding how different peptide products are formed and could help in designing APP-selective modulators. Based on the known structure of apo GSEC and the APP-C99 fragment we have generated putative structural models of the initial binding in three different possible modes using extensive molecular dynamics (MD) simulations. The binding mode with the substrate helix located in a cleft between the transmembrane helices 2 and 3 of the presenilin subunit was identified as a most likely binding mode. Based on this arrangement, the processing steps were investigated using restraint MD simulations to pull the scissile bond (for each processing step) into a transition like (cleavable) state. This allowed us to analyze in detail the motions and energetic contributions of participating residues. The structural model agrees qualitatively well with the influence of many mutations in GSEC and C99. It also explains the effects of inhibitors, cross-linking, as well as spectroscopic data on GSEC substrate binding and can serve as working model for the future planning of structural and biochemical studies.
Collapse
Affiliation(s)
- M. Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - M. Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| |
Collapse
|
18
|
Lu Y, Shi XF, Nguyen PH, Sterpone F, Salsbury FR, Derreumaux P. Amyloid-β(29-42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. J Phys Chem B 2019; 123:2687-2696. [PMID: 30813725 DOI: 10.1021/acs.jpcb.9b00431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The omega-3 and omega-6 polyunsaturated fatty acids are two important components of cell membranes in human brains. When incorporated into phospholipids, omega-3 slows the progression of Alzheimer's disease (AD), whereas omega-6 is linked to increased risk of AD. Little is known on the amyloid-β (Aβ) conformations in membranes rich in omega-3 and omega-6 phospholipids. Herein, the structural properties of the Aβ29-42 dimer embedded in both fatty acid membranes were comparatively studied to a 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) bilayer using all-atom molecular dynamics (MD) simulations. Starting from α-helix, both omega-6 and omega-3 membranes promote new orientations and conformations of the dimer, in agreement with the observed dependence of Aβ production upon addition of these two fatty acids. This conformational result is corroborated by atomistic MD simulations of the dimer of the 99 amino acid C-terminal fragment of amyloid precursor protein spanning the residues 15-55. Starting from β-sheet, omega-6 membrane promotes helical and disordered structures of Aβ29-42 dimer, whereas omega-3 membrane preserves the β-sheet structures differing however from those observed in POPC. Remarkably, the mixture of the two fatty acids and POPC depicts another conformational ensemble of the Aβ29-42 dimer. This finding demonstrates that variation in the abundance of the molecular phospholipids, which changes with age, modulates membrane-embedded Aβ oligomerization.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Freddie R Salsbury
- Department of Physics , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
19
|
Li CD, Junaid M, Chen H, Ali A, Wei DQ. Helix-Switch Enables C99 Dimer Transition between the Multiple Conformations. J Chem Inf Model 2019; 59:339-350. [PMID: 30570254 DOI: 10.1021/acs.jcim.8b00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
C99 is the immediate precursor of amyloid-β (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer's disease (AD). Recent studies have shown that C99 dimerization changes the Aβ ratio, but the mechanism remains unclear. Previous studies of the C99 dimer have produced controversial structure models. To address these questions, we investigated C99 dimerization using molecular dynamics (MD) simulations. A helix-switch model was revealed in the formation and transition of the C99 dimer, and six types of conformations were identified. The different conformations show differential exposures of γ-cleavage sites and insertion depths in the bilayer, which may modulate γ-cleavage of C99 and lead to different Aβ levels. Our results redefine C99 dimerization, provide a framework to mediate the current controversial results, and give insights into the understanding of the relationship between C99 dimerization and Aβ formation.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China.,Department of Mechanical Engineering and Material Science , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Hui Chen
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| |
Collapse
|
20
|
Götz A, Scharnagl C. Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease. PLoS One 2018; 13:e0200077. [PMID: 29966005 PMCID: PMC6028146 DOI: 10.1371/journal.pone.0200077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.
Collapse
Affiliation(s)
- Alexander Götz
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| | - Christina Scharnagl
- Technical University of Munich, Chair of Physics of Synthetic Biological Systems, Freising, Germany
| |
Collapse
|
21
|
Zhang X, Bao L, Wu YY, Zhu XL, Tan ZJ. Radial distribution function of semiflexible oligomers with stretching flexibility. J Chem Phys 2018; 147:054901. [PMID: 28789545 DOI: 10.1063/1.4991689] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ∼130 base pairs and RNAs longer than ∼240 base pairs.
Collapse
Affiliation(s)
- Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan 430056, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Impact of membrane curvature on amyloid aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1741-1764. [PMID: 29709613 DOI: 10.1016/j.bbamem.2018.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.
Collapse
|
23
|
Pantelopulos GA, Straub JE, Thirumalai D, Sugita Y. Structure of APP-C99 1-99 and implications for role of extra-membrane domains in function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1698-1708. [PMID: 29702072 DOI: 10.1016/j.bbamem.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023]
Abstract
The 99 amino acid C-terminal fragment of Amyloid Precursor Protein APP-C99 (C99) is cleaved by γ-secretase to form Aβ peptide, which plays a critical role in the etiology of Alzheimer's Disease (AD). The structure of C99 consists of a single transmembrane domain flanked by intra and intercellular domains. While the structure of the transmembrane domain has been well characterized, little is known about the structure of the flanking domains and their role in C99 processing by γ-secretase. To gain insight into the structure of full-length C99, REMD simulations were performed for monomeric C99 in model membranes of varying thickness. We find equilibrium ensembles of C99 from simulation agree with experimentally-inferred residue insertion depths and protein backbone chemical shifts. In thin membranes, the transmembrane domain structure is correlated with extra-membrane structural states and the extra-membrane domain structural states become less correlated to each other. Mean and variance of the transmembrane and G37G38 hinge angles are found to increase with thinning membrane. The N-terminus of C99 forms β-strands that may seed aggregation of Aβ on the membrane surface, promoting amyloid formation. In thicker membranes the N-terminus forms α-helices that interact with the nicastrin domain of γ-secretase. The C-terminus of C99 becomes more α-helical as the membrane thickens, forming structures that may be suitable for binding by cytoplasmic proteins, while C-terminal residues essential to cytotoxic function become α-helical as the membrane thins. The heterogeneous but discrete extra-membrane domain states analyzed here open the path to new investigations of the role of C99 structure and membrane in amyloidogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- George A Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA.
| | - D Thirumalai
- Department of Chemistry, The University of Texas, Austin, TX 78712-1224, USA
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Högel P, Götz A, Kuhne F, Ebert M, Stelzer W, Rand KD, Scharnagl C, Langosch D. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane Helix. Biochemistry 2018; 57:1326-1337. [DOI: 10.1021/acs.biochem.7b01197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Philipp Högel
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Alexander Götz
- Physics
of Synthetic Biological Systems (E14), Technical University of Munich, Maximus-von-Imhof Forum 4, 85354 Freising, Germany
| | - Felix Kuhne
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Maximilian Ebert
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Walter Stelzer
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christina Scharnagl
- Physics
of Synthetic Biological Systems (E14), Technical University of Munich, Maximus-von-Imhof Forum 4, 85354 Freising, Germany
| | - Dieter Langosch
- Center
for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl Chemie
der Biopolymere, Technical University of Munich, Weihenstephaner
Berg 3, 85354 Freising, Germany
| |
Collapse
|
25
|
Hung HM, Hang TD, Nguyen MT. Molecular details of spontaneous insertion and interaction of HCV non-structure 3 protease protein domain with PIP2-containing membrane. Proteins 2018; 86:423-433. [PMID: 29341226 DOI: 10.1002/prot.25458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/02/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV), known as the leading cause of liver cirrhosis, viral hepatitis, and hepatocellular carcinoma, has been affecting more than 150 million people globally. The HCV non-structure 3 (NS3) protease protein domain plays a key role in HCV replication and pathogenesis; and is currently a primary target for HCV antiviral therapy. Through unbiased molecular dynamics simulations which take advantage of the novel highly mobile membrane mimetic model, we constructed the membrane-bound state of the protein domain at the atomic level. Our results indicated that protease domain of HCV NS3 protein can spontaneously bind and penetrate to an endoplasmic reticulum complex membrane containing phosphatidylinositol 4,5-bisphosphate (PIP2). An amphipathic helix α0 and loop S1 show their anchoring role to keep the protein on the membrane surface. Proper orientation of the protein domain at membrane surface was identified through measuring tilt angles of two specific vectors, wherein residue R161 plays a crucial role in its final orientation. Remarkably, PIP2 molecules were observed to bind to three main sites of the protease domain via specific electrostatic contacts and hydrogen bonds. PIP2-interaction determines the protein orientation at the membrane while both hydrophobic interplay and PIP2-interaction can stabilize the NS3 - membrane complex. Simulated results provide us with a detailed characterization of insertion, orientation and PIP2-interaction of NS3 protease domain at membrane environment, thus enhancing our understanding of structural functions and mechanism for the association of HCV non-structure 3 protein with respect to ER membranes.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium.,Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam
| | - Tran Dieu Hang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium.,Department of Chemistry, Quy Nhon University, Quy Nhon, Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
26
|
Itkin A, Salnikov ES, Aisenbrey C, Raya J, Glattard E, Raussens V, Ruysschaert JM, Bechinger B. Structural Characterization of the Amyloid Precursor Protein Transmembrane Domain and Its γ-Cleavage Site. ACS OMEGA 2017; 2:6525-6534. [PMID: 31457253 PMCID: PMC6645296 DOI: 10.1021/acsomega.7b00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/16/2017] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease is the most common form of dementia that affects about 50 million of sufferers worldwide. A major role for the initiation and progression of Alzheimer's disease has been associated with the amyloid β-peptide (Aβ), which is a protease cleavage product of the amyloid precursor protein. The amyloid precursor protein is an integral membrane protein with a single transmembrane domain. Here, we assessed the structural integrity of the transmembrane domain within oriented phosphatidylcholine lipid bilayers and determined the tilt angle distribution and dynamics of various subdomains using solid-state NMR and attenuated total reflectance Fourier transform infrared spectroscopies. Although the overall secondary structure of the transmembrane domain is α-helical, pronounced conformational and topological heterogeneities were observed for the γ- and, to a lesser extent, the ζ-cleavage site, with pronounced implications for the production of Aβ and related peptides, the development of the disease, and pharmaceutical innovation.
Collapse
Affiliation(s)
- Anna Itkin
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
- Center
for Structural Biology and Bioinformatics, Laboratory of Structure
and Function of Biological Membranes, Université
Libre de Bruxelles, Campus
Plaine - Acces 2 - Batiment BC - Niveau 4, Boulevard du Triomphe -
CP 206/2, B-1050 Brussels, Belgium
| | - Evgeniy S. Salnikov
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
| | - Christopher Aisenbrey
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
| | - Jesus Raya
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
| | - Elise Glattard
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
| | - Vincent Raussens
- Center
for Structural Biology and Bioinformatics, Laboratory of Structure
and Function of Biological Membranes, Université
Libre de Bruxelles, Campus
Plaine - Acces 2 - Batiment BC - Niveau 4, Boulevard du Triomphe -
CP 206/2, B-1050 Brussels, Belgium
| | - Jean-Marie Ruysschaert
- Center
for Structural Biology and Bioinformatics, Laboratory of Structure
and Function of Biological Membranes, Université
Libre de Bruxelles, Campus
Plaine - Acces 2 - Batiment BC - Niveau 4, Boulevard du Triomphe -
CP 206/2, B-1050 Brussels, Belgium
| | - Burkhard Bechinger
- University
of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics
and NMR, 4, rue Blaise
Pascal, F-67070 Strasbourg, France
| |
Collapse
|
27
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
28
|
Membrane-Accelerated Amyloid-β Aggregation and Formation of Cross-β Sheets. MEMBRANES 2017; 7:membranes7030049. [PMID: 28858214 PMCID: PMC5618134 DOI: 10.3390/membranes7030049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
Abstract
Amyloid- β aggregates play a causative role in Alzheimer's disease. These aggregates are a product of the physical environment provided by the basic neuronal membrane, composed of a lipid bilayer. The intrinsic properties of the lipid bilayer allow amyloid- β peptides to nucleate and form well-ordered cross- β sheets within the membrane. Here, we correlate the aggregation of the hydrophobic fragment of the amyloid- β protein, A β 25 - 35 , with the hydrophobicity, fluidity, and charge density of a lipid bilayer. We summarize recent biophysical studies of model membranes and relate these to the process of aggregation in physiological systems.
Collapse
|
29
|
Li S, Zhang W, Han W. Initial Substrate Binding of γ-Secretase: The Role of Substrate Flexibility. ACS Chem Neurosci 2017; 8:1279-1290. [PMID: 28165225 DOI: 10.1021/acschemneuro.6b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
γ-Secretase cleaves transmembrane domains (TMD) of amyloid precursor protein (APP), producing pathologically relevant amyloid-β proteins. Initial substrate binding represents a key step of the γ-secretase cleavage whose mechanism remains elusive. Through long time scale coarse-grained and atomic simulations, we have found that the APP TMD can bind to the catalytic subunit presenilin 1 (PS1) on an extended surface covering PS1's TMD2/6/9 and PAL motif that are all known to be essential for enzymatic activity. This initial substrate binding could lead to reduction in the vertical gap between APP's ε-cleavage sites and γ-secretase's active center, enhanced flexibility and hydration levels around the ε-sites, and the presentation of these sites to the enzyme. There are heterogeneous substrate binding poses in which the substrate is found to bind to either the N- or C-terminal parts of PS1, or both. Moreover, we also find that the stability of the binding poses can be modulated by the flexibility of substrate TMD. Especially, the APP substrate, when deprived of bending fluctuation, does not bind to TMD9 at PS1's C-terminus. Our simulations have revealed further that another substrate of γ-secretase, namely, notch receptors, though bearing a rigid TMD, can still bind to PS1 TMD9, but by a different mechanism, suggesting that the influence of substrate flexibility is context-dependent. Together, these findings shed light on the mechanism of initial substrate docking of γ-secretase and the role of substrate flexibility in this process.
Collapse
Affiliation(s)
- Shu Li
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wan Zhang
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School
of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
30
|
Levine ZA, Shea JE. Simulations of disordered proteins and systems with conformational heterogeneity. Curr Opin Struct Biol 2016; 43:95-103. [PMID: 27988422 DOI: 10.1016/j.sbi.2016.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and protein regions can facilitate a wide variety of complex physiological processes such as binding, signaling, and formation of membraneless organelles. They can however also play pathological roles by aggregating into cytotoxic oligomers and fibrils. Characterizing the structure and function of disordered proteins is an onerous task, primarily because these proteins adopt transient structures, which are difficult to capture in experiments. Simulations have emerged as a powerful tool for interpreting and augmenting experimental measurements of IDPs. In this review we focus on computer simulations of disordered protein structures, functions, assemblies, and emerging questions that, taken together, give an overview of the field as it exists today.
Collapse
Affiliation(s)
- Zachary A Levine
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
31
|
Urano R, Okamoto Y. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin. J Chem Phys 2016; 143:235101. [PMID: 26696075 DOI: 10.1063/1.4935964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank's data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.
Collapse
Affiliation(s)
- Ryo Urano
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
32
|
Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub JE. Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein. J Phys Chem Lett 2016; 7:3535-41. [PMID: 27525349 PMCID: PMC5293176 DOI: 10.1021/acs.jpclett.6b01624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent NMR chemical shift measurements of the 99 residue C-terminal fragment of amyloid precursor protein (APP-C99) in the presence of cholesterol provide evidence of binary complex formation between C99 and cholesterol in membrane mimetic environments. It has also been observed that the production of Aβ protein is enhanced under conditions of high cholesterol concentration. In this study, we investigated the impact of the charge state of C99 on the structure and stability of the C99-cholesterol complex. We observed that the binding of C99 to cholesterol depends critically on the charge state of Glu 693 (E22) and Asp 694 (D23). Evaluation of the pKa values of the Asp and Glu side chains suggests that these residues may be predominantly neutral in existing experimental observations of a stable C99-cholesterol complex at lower pH (characteristic of the endosomal environment), while binding is destabilized near neutral pH (characteristic of the cytoplasm). These observations suggest that specific binding of cholesterol to C99 is a sensitive function of the pH encountered in vivo, with key E22 and D23 residues serving as a "pH switch" controlling C99-cholesterol binding.
Collapse
Affiliation(s)
- Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Laura Dominguez
- Biophysical Chemistry Laboratory, Physical Chemistry Department, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
- Corresponding Author:
| |
Collapse
|
33
|
Audagnotto M, Lemmin T, Barducci A, Dal Peraro M. Effect of the Synaptic Plasma Membrane on the Stability of the Amyloid Precursor Protein Homodimer. J Phys Chem Lett 2016; 7:3572-3578. [PMID: 27518597 DOI: 10.1021/acs.jpclett.6b01721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The proteolytic cleavage of the transmembrane (TM) domain of the amyloid precursor protein (APP) releases amyloid-β (Aβ) peptides, which accumulation in the brain tissue is an early indicator of Alzheimer's disease. We used multiscale molecular dynamics simulations to investigate the stability of APP-TM dimer in realistic models of the synaptic plasma membrane (SPM). Between the two possible dimerization motifs proposed by NMR and EPR, namely G709XXXA713 and G700XXXG704XXXG708, our study revealed that the dimer promoted by the G709XXXA713 motif is not stable in the SPM due to the competition with highly unsaturated lipids that constitute the SPM. Under the same conditions, the dimer promoted by the G700XXXG704XXXG708 motif is instead the most stable species and likely the most biologically relevant. Independently of the dimerization state, both these motifs can be involved in the recruitment of cholesterol molecules.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94143, United States
| | - Alessandro Barducci
- Inserm, U1054 Montpellier, France
- Université de Montpellier, CNRS, UMR 5048 , Centre de Biochimie Structurale, U1054 Montpellier, France
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| |
Collapse
|
34
|
Hung HM, Hang TD, Nguyen MT. Multiscale simulations on conformational dynamics and membrane interactions of the non-structural 2 (NS2) transmembrane domain. Biochem Biophys Res Commun 2016; 478:193-198. [DOI: 10.1016/j.bbrc.2016.07.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 07/16/2016] [Indexed: 01/08/2023]
|
35
|
Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc Natl Acad Sci U S A 2016; 113:E5281-7. [PMID: 27559086 DOI: 10.1073/pnas.1606482113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923-55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923-55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991-55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition.
Collapse
|
36
|
Lelimousin M, Limongelli V, Sansom MSP. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J Am Chem Soc 2016; 138:10611-22. [PMID: 27459426 PMCID: PMC5010359 DOI: 10.1021/jacs.6b05602] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.
Collapse
Affiliation(s)
- Mickaël Lelimousin
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,CERMAV, Université Grenoble Alpes and CNRS , BP 53, F-38041 Grenoble Cedex 9, France
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI), Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13, CH-6900 Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, I-80131 Naples, Italy
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
37
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
38
|
Bereau T, Kremer K. Protein-Backbone Thermodynamics across the Membrane Interface. J Phys Chem B 2016; 120:6391-400. [DOI: 10.1021/acs.jpcb.6b03682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tristan Bereau
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
39
|
Mori T, Miyashita N, Im W, Feig M, Sugita Y. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1635-51. [PMID: 26766517 DOI: 10.1016/j.bbamem.2015.12.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022]
Abstract
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Takaharu Mori
- iTHES Research Group and Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoyuki Miyashita
- Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Faculty of Biology-Oriented Science and Technology, KINDAI University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Wonpil Im
- Department of Molecular Sciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, United States
| | - Michael Feig
- Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| | - Yuji Sugita
- iTHES Research Group and Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Quantitative Biology Center, Integrated Innovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States; Computational Biophysics Research Team, RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
40
|
Sugiura Y, Ikeda K, Nakano M. High Membrane Curvature Enhances Binding, Conformational Changes, and Fibrillation of Amyloid-β on Lipid Bilayer Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11549-11557. [PMID: 26474149 DOI: 10.1021/acs.langmuir.5b03332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Aggregation of the amyloid-β (Aβ) protein and the formation of toxic aggregates are the possible pathogenic pathways in Alzheimer's disease. Accumulating evidence suggests that lipid membranes play key roles in protein aggregation, although the intermolecular forces that drive the interactions between Aβ-(1-40) and the membranes vary in different membrane systems. Here, we observed that a high positive curvature of lipid vesicles with diameters of ∼30 nm enhanced the association of Aβ with anionic phosphatidylglycerol membranes in the liquid-crystalline phase and with zwitterionic phosphatidylcholine membranes in the gel phase. The binding modes of Aβ to these membranes differ in terms of the location of the protein on the membrane and of the protein secondary structure. The fibrillation of Aβ was accelerated in the presence of the vesicles and at high protein-to-lipid ratios. Under these conditions, the protein accumulated on the surfaces, as demonstrated by a high (10(7) M(-1)) binding constant. Our findings suggest that packing defects on membranes with high curvatures, such as the intraluminal vesicles in multivesicular bodies and the exosomes, might result in the accumulation of toxic protein aggregates.
Collapse
Affiliation(s)
- Yuuki Sugiura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0194, Japan
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
41
|
Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. Proteins 2015; 83:2170-85. [PMID: 26404856 DOI: 10.1002/prot.24934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022]
Abstract
Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages. This membrane version of DOCK/PIERR is applied to the prediction of coiled-coil homodimer structures of the transmembrane region of the C-terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99 homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble.
Collapse
Affiliation(s)
- Shruthi Viswanath
- Department of Computer Science, University of Texas at Austin, Austin, Texas, 78712.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
| | - Laura Dominguez
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - Leigh S Foster
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - Ron Elber
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712.,Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
42
|
Winkler E, Julius A, Steiner H, Langosch D. Homodimerization Protects the Amyloid Precursor Protein C99 Fragment from Cleavage by γ-Secretase. Biochemistry 2015; 54:6149-52. [DOI: 10.1021/acs.biochem.5b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Edith Winkler
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Ayse Julius
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| | - Harald Steiner
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
| | - Dieter Langosch
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| |
Collapse
|
43
|
Langosch D, Scharnagl C, Steiner H, Lemberg MK. Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends Biochem Sci 2015; 40:318-27. [PMID: 25941170 DOI: 10.1016/j.tibs.2015.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022]
Abstract
Intramembrane proteolysis - cleavage of proteins within the plane of a membrane - is a widespread phenomenon that can contribute to the functional activation of substrates and is involved in several diseases. Although different families of intramembrane proteases have been discovered and characterized, we currently do not know how these enzymes discriminate between substrates and non-substrates, how site-specific cleavage is achieved, or which factors determine the rate of proteolysis. Focusing on γ-secretase and rhomboid proteases, we argue that answers to these questions may emerge from connecting experimental readouts, such as reaction kinetics and the determination of cleavage sites, to the structures and the conformational dynamics of substrates and enzymes.
Collapse
Affiliation(s)
- D Langosch
- Technische Universität München, Lehrstuhl Chemie der Biopolymere, Weihenstephaner Berg 3, 85354 Freising, and Munich Center for Integrated Protein Science (CIMPS(M)), Germany.
| | - C Scharnagl
- Fakultät für Physik E14, Technische Universität München, Maximus-von-Imhof-Forum 4, 85354 Freising, Germany
| | - H Steiner
- Ludwig-Maximilians-University Munich, Metabolic Biochemistry and DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
| | - M K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Tofoleanu F, Brooks BR, Buchete NV. Modulation of Alzheimer's Aβ protofilament-membrane interactions by lipid headgroups. ACS Chem Neurosci 2015; 6:446-55. [PMID: 25581460 DOI: 10.1021/cn500277f] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular pathogenesis of Alzheimer's disease (AD) is complex and sparsely understood. The relationship between AD's amyloid β (Aβ) peptides and neuronal membranes is central to Aβ's cytotoxicity and is directly modulated by the composition of the lipid headgroups. Molecular studies of the insertion of model Aβ40 protofilaments in lipid bilayers revealed strong interactions that affect the structural integrity of both the membranes and the ordered amyloid aggregates. In particular, electrostatics plays a crucial role in the interaction between Aβ protofilaments and palmytoil-oleoyl-phosphatidylethanolamine (POPE) lipids, a common component of neuronal plasma membranes. Here, we use all-atom molecular dynamics and steered molecular dynamics simulations to systematically compare the effects that POPE and palmytoil-oleoyl-phosphatidylcholine (POPC) headgroups have on the Aβ-lipid interactions. We find that Aβ protofilaments exhibit weaker electrostatic interactions with POPC headgroups and establish significantly shorter-lived contacts with the POPC bilayer. This illustrates the crucial yet complex role of electrostatic and hydrogen bonding interactions in modulating the anchoring and insertion of Aβ peptides into lipid bilayers. Our study reveals the atomistic details behind the barrier created by the lipid headgroup region in impeding solution-aggregated fibrillar oligomers to spontaneously insert into POPC bilayers, in contrast to the POPE case. While the biological reality is notoriously more complex (e.g., including other factors such as cholesterol), our results evidence a simple experimentally and computationally testable case for probing the factors that control the insertion of Aβ oligomeric aggregates in neuronal cell membranes--a process central to their neurotoxicity.
Collapse
Affiliation(s)
- Florentina Tofoleanu
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicolae-Viorel Buchete
- School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
45
|
Nierzwicki Ł, Czub J. Specific Binding of Cholesterol to the Amyloid Precursor Protein: Structure of the Complex and Driving Forces Characterized in Molecular Detail. J Phys Chem Lett 2015; 6:784-790. [PMID: 26262653 DOI: 10.1021/acs.jpclett.5b00197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
C99 is the C-terminal membrane-bound fragment of the amyloid precursor protein that is cleaved by γ-secretase to release Aβ peptides, the hallmark of Alzheimer's disease (AD). Specific interactions of C99 with cholesterol have been proposed to underlie the recognized role of cholesterol in promoting amyloidogenesis. By using molecular dynamics simulations, we studied cholesterol binding to C99 in a lipid bilayer. We determined the free-energy profile of binding and analyzed the structure of C99/cholesterol complexes in two low-energy binding modes. We also examined the complexation driving forces and found, unexpectedly, that the interactions between the GxxxG dimerization motif and the cholesterol ring system are not sufficient for binding and that further stabilization mediated by the C99 N-terminal domain is essential. Taken together, our results strongly support the view that C99 specifically binds cholesterol in the cell membrane; the detailed information on the structure and energetics of the complex may assist in the design of new anti-AD drugs.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
46
|
Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MSP. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation. Biochemistry 2014; 53:6641-52. [PMID: 25286141 PMCID: PMC4298228 DOI: 10.1021/bi500800x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
EphA1
is a receptor tyrosine kinase (RTK) that plays a key role
in developmental processes, including guidance of the migration of
axons and cells in the nervous system. EphA1, in common with other
RTKs, contains an N-terminal extracellular domain, a single transmembrane
(TM) α-helix, and a C-terminal intracellular kinase domain.
The TM helix forms a dimer, as seen in recent NMR studies. We have
modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain
(CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional
potential of mean force (PMF) for this system, based on interhelix
separation, has been calculated using CG MD simulations. This provides
a view of the free energy landscape for helix–helix interactions
of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest
two states, consistent with a rotation-coupled activation mechanism.
The more stable state corresponds to a right-handed helix dimer interacting
via an N-terminal glycine zipper motif, consistent with a recent NMR
structure (2K1K). A second metastable state corresponds to a structure in which
the glycine zipper motif is not involved. Analysis of unrestrained
CG MD simulations based on representative models from the PMF calculations
or on the NMR structure reveals possible pathways of interconversion
between these two states, involving helix rotations about their long
axes. This suggests that the interaction of TM helices in EphA1 dimers
may be intrinsically dynamic. This provides a potential mechanism
for signaling whereby extracellular events drive a shift in the repopulation
of the underlying TM helix dimer energy landscape.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
47
|
Dominguez L, Foster L, Meredith SC, Straub JE, Thirumalai D. Structural heterogeneity in transmembrane amyloid precursor protein homodimer is a consequence of environmental selection. J Am Chem Soc 2014; 136:9619-26. [PMID: 24926593 PMCID: PMC4105063 DOI: 10.1021/ja503150x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 99 amino acid C-terminal fragment of amyloid precursor protein (C99), consisting of a single transmembrane (TM) helix, is known to form homodimers. Homodimers can be processed by γ-secretase to produce amyloid-β (Aβ) protein, which is implicated in Alzheimer's disease (AD). While knowledge of the structure of C99 homodimers is of great importance, experimental NMR studies and simulations have produced varying structural models, including right-handed and left-handed coiled-coils. In order to investigate the structure of this critical protein complex, simulations of the C99(15-55) homodimer in POPC membrane bilayer and DPC surfactant micelle environments were performed using a multiscale approach that blends atomistic and coarse-grained models. The C99(15-55) homodimer adopts a dominant right-handed coiled-coil topology consisting of three characteristic structural states in a bilayer, only one of which is dominant in the micelle. Our structural study, which provides a self-consistent framework for understanding a number of experiments, shows that the energy landscape of the C99 homodimer supports a variety of slowly interconverting structural states. The relative importance of any given state can be modulated through environmental selection realized by altering the membrane or micelle characteristics.
Collapse
Affiliation(s)
- Laura Dominguez
- Department of Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | |
Collapse
|
48
|
Song Y, Mittendorf KF, Lu Z, Sanders CR. Impact of bilayer lipid composition on the structure and topology of the transmembrane amyloid precursor C99 protein. J Am Chem Soc 2014; 136:4093-6. [PMID: 24564538 PMCID: PMC3985881 DOI: 10.1021/ja4114374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
C99
(also known as β-CTF) is the 99 residue transmembrane
C-terminal domain (residues 672–770) of the amyloid precursor
protein and is the immediate precursor of the amyloid-β (Aβ)
polypeptides. To test the dependence of the C99 structure on the composition
of the host model membranes, NMR studies of C99 were conducted both
in anionic lyso-myristoylphosphatidylglycerol (LMPG) micelles and
in a series of five zwitterionic bicelle compositions involving phosphatidylcholine
and sphingomyelin in which the acyl chain lengths of these lipid components
varied from 14 to 24 carbons. Some of these mixtures are reported
for the first time in this work and should be of broad utility in
membrane protein research. The site-specific backbone 15N and 1H chemical shifts for C99 in LMPG and in all five
bicelle mixtures were seen to be remarkably similar, indicating little
dependence of the backbone structure of C99 on the composition of
the host model membrane. However, the length of the transmembrane
span was seen to vary in a manner that alters the positioning of the
γ-secretase cleavage sites with respect to the center of the
bilayer. This observation may contribute to the known dependency of
the Aβ42-to-Aβ40 production ratio on both membrane thickness
and the length of the C99 transmembrane domain.
Collapse
Affiliation(s)
- Yuanli Song
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-8725, United States
| | | | | | | |
Collapse
|
49
|
Straub JE, Thirumalai D. Membrane-Protein Interactions Are Key to Understanding Amyloid Formation. J Phys Chem Lett 2014; 5:633-635. [PMID: 26276620 DOI: 10.1021/jz500054d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- John E Straub
- †Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - D Thirumalai
- ‡Department of Chemistry and Biochemistry, and Biophysics Program, Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|